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Abstract Formulae for the biaxial moduli along the directions of principal stress for (hkl)
interfaces of cubic materials are given for situations in which there is equi-biaxial strain
within the plane. These formulae are relevant in the consideration of the deposition of thin
films on single crystal substrates such as silicon. Within a particular (hkl), the directions
defining these principal biaxial moduli are shown to be those along which there are the
extreme values of the shear modulus and Poisson’s ratio. Conditions for stationary values of
the biaxial moduli are also derived, from which the conditions for the global extrema of the
biaxial moduli are established.
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1 Introduction

In contrast to mathematical expressions and their graphical representations for Young’s mod-
ulus, Poisson’s ratio and the shear modulus, as a function of crystal orientation for cubic
crystals [1–16], expressions in the literature for the orientation dependence of the biaxial
modulus of cubic materials subjected to an equi-biaxial elastic strain are limited to circum-
stances where this strain is in a {001}, {111} or {011} plane [17–23]. In almost all studies in
which biaxial moduli are of interest, the material can reasonably be assumed to be isotropic,
e.g., if the material is a glass or a fully annealed polycrystalline metal or ceramic. In such cir-
cumstances, it is straightforward to show that if there is zero stress perpendicular to the plane
on which there is equi-biaxial strain (the Kirchhoff hypothesis of thin plate theory [20]), the
single-valued biaxial modulus is E/(1− ν), where E is Young’s modulus and ν is Poisson’s
ratio [19, 20, 22].
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However, as Janssen et al. note [22], biaxial moduli are important in the deposition of
thin films on single crystal substrates, such as in the semiconductor industry where single
crystal silicon is a common substrate, and where a state of equi-biaxial strain in the film
and substrate has been introduced during deposition and/or by a change in temperature. For
example, a polycrystalline metal film might be deposited on the silicon substrate at a high
temperature, after which the thin film/substrate assembly is cooled to room temperature.
This equi-biaxial strain introduces a state of biaxial stress in the thin film and curvature in
the thin film/substrate assembly [19, 20, 22] which can be measured experimentally. This
physical situation of an equi-biaxial strain in the material of interest and a zero normal stress
also applies to the situation where a single crystal thin film with a (hkl) orientation parallel
to the substrate and with a cubic crystal structure is deposited onto an isotropic substrate.
Janssen et al. comment on the need to use correct mathematical expressions when deducing
film stress from wafer curvature measurements and show how biaxial moduli of (001) and
(111) silicon substrates can be derived [22].

The purpose of the work reported here is the generation of analytical expressions and
their graphical representations for the biaxial moduli of cubic materials relevant for thin
film/substrate assemblies in which there is an equi-biaxial elastic strain, and where the sub-
strate is a single crystal, cut so that the interface between the thin film and the substrate is a
general (hkl) plane, rather than a plane of high symmetry such as (001) or (111). For such
a situation, in which the film could be a polycrystalline film isotropic in the plane of the
film, the substrate will have induced in it curvature associated with two principal radii of
curvature orthogonal to one another. These principal radii of curvature are directly related
to the two orthogonal principal biaxial moduli in the (hkl) plane. For the high symmetry
situations of (001) and (111) cubic substrates, the two principal biaxial moduli are identical
and the substrate appears to be transversely isotropic, so that the curvature induced by an
equi-biaxial strain is radially symmetric [22].

The paper is organised as follows. A statement of the problem of determining princi-
pal biaxial moduli for a plane of a general anisotropic material of undeclared symmetry
subjected to in-plane biaxial strain is given in Sect. 2. The process of how the equations
generated for a general anisotropic material of undeclared symmetry reduce for equi-biaxial
strain when the material is cubic is then presented in Sect. 3. Computations of the principal
biaxial moduli for various (hkl) for cubic materials and their extrema as a function of (hkl)
are presented in Sect. 4. Finally, in Sects. 5 and 6, remarks are made on the magnitude of
shear stresses out of the plane on which there is an equi-biaxial strain and conclusions drawn
on the practical consequences for cubic materials of the results established in Sect. 4.

2 General Tensor Transformation Relations for Biaxial Strains
in Thin Plates

Under the assumption that elastic conditions pertain, the symmetric stress and strain tensors,
σij and εkl respectively, are related to one another through the equations

σij = Cijklεkl and εij = Sijklσkl, (1)

in which Cijkl is the stiffness tensor and Sijkl the compliance tensor, both tensors of the
fourth rank, and where i, j , k and l take all values between 1 and 3 [7, 24, 25]. For an arbi-
trary rotation of axes from one axis system to another, fourth rank tensors, Tijkl , transform
as

T ′
ijkl = aimajnakpalqTmnpq, (2)
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for i, j , k, l, m, n, p and q all taking values from 1 to 3 [7, 24, 25], where the aim are
direction cosines specifying the angle between the ith axis of the ‘new’ axis system and
the mth axis of the ‘old’ axis system. Both the ‘old’ axis system and the ‘new’ axis system
in this formalism are defined by orthonormal axis systems [7, 24, 25]. For materials with
relatively high symmetry, ‘old’ axis systems are straightforward to define with respect to the
crystal axis, whereas this is not the case with monoclinic or triclinic symmetry.

Defining axes 1′, 2′ and 3′ in the ‘new’ axis system, it is convenient to choose axis 3′ to
be parallel to the normal to the plane (hkl) of interest within the crystal and 1′ and 2′ to be
parallel to principal strains within the plane of the film. The Kirchhoff hypothesis of thin
plate theory requires that σ ′

33 = 0. Hence, within the plane, we have the three equations

σ ′
11 = C ′

1111ε
′
11 + C ′

1122ε
′
22 + C ′

1133ε
′
33,

σ ′
22 = C ′

2211ε
′
11 + C ′

2222ε
′
22 + C ′

2233ε
′
33, (3)

σ ′
12 = C ′

1211ε
′
11 + C ′

1222ε
′
22 + C ′

1233ε
′
33.

These equations together with the condition

σ ′
33 = C ′

3311ε
′
11 + C ′

3322ε
′
22 + C ′

3333ε
′
33 = 0 (4)

determine the problem of an unequal biaxial strain within a thin plate or film. However,
for many practical situations, such as those described in Sect. 1, there is good reason to
expect the strain to be equi-biaxial, so that ε′

11 = ε′
22 = ε. Under these circumstances, using

the contracted two suffix Voigt notation [7], the biaxial modulus M along 1′ for a general
anisotropic material of undeclared symmetry is defined by the expression

M = σ ′
1

ε
= c′

11 + c′
12 − 1

c′
33

(
c′

13
2 + c′

13c
′
23

)
. (5)

in which the stiffness components in contracted Voigt notation have been denoted by c.
A similar result pertains for the biaxial modulus along the direction 2′ perpendicular to 1′
within the plane. To ensure that the biaxial moduli along 1′ and 2′ are principal biaxial
moduli, a further constraint is that σ ′

12 in Eq. (3) is zero.
For a general anisotropic material, and for a general (hkl), the number of independent

components of the stiffness tensor makes evaluation of the principal biaxial moduli compu-
tationally challenging, even for this special case of equi-biaxial strain. However, for cubic
materials, the effect of crystal symmetry simplifies the problem considerably, as is shown in
the next section.

3 Equations Defining the Biaxial Moduli for Cubic Materials when There
Is an Equi-biaxial Strain

When a cubic single crystal substrate has a (hkl) orientation, it is convenient to define the
‘old’ axis system to be the orthonormal axis system aligned with respect to the 〈100〉 direc-
tions of the cubic crystal. Sixty coefficients of tensors of the fourth rank for cubic materials
are zero in this axis system. The twenty one non-zero Cijkl and Sijkl for cubic crystals are

c11 = Ciiii , c12 = Ciijj , c44 = Cijij , s11 = Siiii , s12 = Siijj , s44 = 4Sijij (6)
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[7, 24, 25], in which the contracted two suffix Voigt notation [7] is denoted by c and s

for stiffness and compliance to distinguish these from the full tensor C and S components.
Hence, there are only three independent elements of cij and sij . These non-zero cij and sij

are related to one another through the equations

s11 = c11 + c12

(c11 − c12)(c11 + 2c12)
, s12 = −c12

(c11 − c12)(c11 + 2c12)
, s44 = 1

c44
,

c11 = s11 + s12

(s11 − s12)(s11 + 2s12)
, c12 = −s12

(s11 − s12)(s11 + 2s12)
, c44 = 1

s44
.

(7)

The Cijkl and Sijkl transform from axes 1, 2 and 3 to the axes 1′, 2′ and 3′ in such a way that
the C ′

ijkl and S ′
ijkl can be written in the succinct forms

C ′
ijkl = c12δij δkl + c44(δikδjl + δilδjk) + (c11 − c12 − 2c44)aiuajuakualu,

4S ′
ijkl = 4s12δij δkl + s44(δikδjl + δilδjk) + (4s11 − 4s12 − 2s44)aiuajuakualu,

(8)

in which δ is the Kronecker delta and the dummy suffix u takes the values 1, 2 and 3 [26].
The direction cosines for 3′, the direction parallel to the normal to (hkl), are [a31, a32, a33],

where

a31 = h/
√

h2 + k2 + l2, a32 = k/
√

h2 + k2 + l2 and a33 = l/
√

h2 + k2 + l2. (9)

Using Eqs. (8) and (9), it then follows from Eq. (5) and some straightforward mathemat-
ical manipulation that the biaxial modulus M[a11, a12, a13] along the direction 1′, i.e., along
the unit direction [a11, a12, a13] within (hkl), is specified by the equation

M[a11, a12, a13] = (c11 + 2c12)(2c44 + (P − Q)H)

c12 + 2c44 − QH
, (10)

in which

P = a2
11a

2
31 + a2

12a
2
32 + a2

13a
2
33 and Q = a4

31 + a4
32 + a4

33 (11)

and where

H = 2c44 + c12 − c11 (12)

is the anisotropy factor defined by Hirth and Lothe [27]. For cubic materials, where the
anisotropy ratio

A = 2c44

c11 − c12
= 2(s11 − s12)

s44
(13)

[7, 25, 27, 28] is >1, H > 0. If A = 1, H = 0 and if A < 1, H < 0. Likewise, along the
orthogonal unit direction [a21, a22, a23], we have the result

M[a21, a22, a23] = (c11 + 2c12)(2c44 + (R − Q)H)

c12 + 2c44 − QH
, (14)

where

R = a2
21a

2
31 + a2

22a
2
32 + a2

23a
2
33. (15)
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Inspection of Eqs. (10) and (14) shows that, for a given plane (hkl), the arithmetic mean
of two biaxial moduli defined along two orthogonal directions in (hkl) is independent of
the orientation of these two orthogonal directions with respect to the directions of principal
stress within (hkl), since we have the identity

P + Q + R = 1. (16)

Hence, the mean value of the biaxial modulus for a plane (hkl) of a cubic material sub-
jected to an equi-biaxial strain, M̄(hkl), is

M̄(hkl) = (c11 + 2c12)(4c44 + (1 − 3Q)H)

2(c12 + 2c44 − QH)
. (17)

The condition specified in Sect. 2 for the biaxial moduli along these two orthogonal
directions to be along directions of principal stress within (hkl) is that σ ′

12 = 0, i.e.,

C ′
1211ε

′
11 + C ′

1222ε
′
22 + C ′

1233ε
′
33 = 0. (18)

Using Eqs. (8) and (12) and making the substitution ε′
11 = ε′

22 = ε, this condition can first
be rewritten in the form

H
(
a11a21

(
a2

11 + a2
21

) + a12a22

(
a2

12 + a2
22

) + a13a23

(
a2

13 + a2
23

))
ε

+ H
(
a11a21a

2
31 + a12a22a

2
32 + a13a23a

2
33

)
ε′

33 = 0. (19)

Making use of the orthonormality properties of direction cosines and the orthogonality of
[a11, a12, a13] and [a21, a22, a23], so that a11a21 + a12a22 + a13a23 = 0, this simplifies to the
condition that

H
(
ε − ε′

33

)(
a11a21a

2
31 + a12a22a

2
32 + a13a23a

2
33

) = 0. (20)

Since (ε − ε′
33) �= 0 and in general H �= 0, this reduces to the condition on [a11, a12, a13] and

[a21, a22, a23] that

a11a21a
2
31 + a12a22a

2
32 + a13a23a

2
33 = 0. (21)

This is the same condition as Eq. (19) of Knowles and Howie [16] defining the axes of the
sextic equation describing the variation of the shear modulus as a function of shear direction
of a particular plane of shear (hkl); Knowles and Howie show how this equation can be
solved to determine these axes for a general (hkl). It is evident from Eqs. (8) and (21) that
the condition expressed by Eq. (21) is equivalent to the statement that C ′

1233 = C ′
3312 = 0. It

is also evident that equivalent descriptions of this condition can be derived by permuting 1,
2, 3 and 3 in Eq. (8), so that, for example, the condition C ′

1332 = 0 is also defined by Eq. (21).
It is further shown in Appendix A that the condition described by Eq. (21) is also equiv-

alent to the condition for the extreme values of shear modulus and Poisson’s ratio for a
particular (hkl) in a cubic material specified by Norris [12]. Hence, we have the interesting
result that, on a particular (hkl) for a cubic material used as a substrate, the biaxial moduli
defining the principal radii of curvature in an isotropic thin film/substrate assembly in which
a state of equi-biaxial strain has been induced in both the thin film and the substrate are
parallel to extrema in both the shear modulus and Poisson’s ratio on that plane.

4 Computation of Principal Biaxial Moduli for Various (hkl)

We are now in a position to consider both special and general results from this analysis.
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4.1 (001) Interface Orientation

For this interface, a31 = 0, a32 = 0 and a33 = 1. Hence, in Eq. (11), P = 0 and Q = 1 since
a13 = 0 because [a11, a12, a13] has to be orthogonal to [a31, a32, a33]. It follows from Eq. (10)
that

M[a11, a12,0] = (c11 + 2c12)(2c44 − H)

c12 + 2c44 − H
, (22)

i.e., using Eq. (12),

M[a11, a12,0] = (c11 + 2c12)(c11 − c12)

c11
≡ c11 + c12 − 2c2

12

c11
, (23)

as stated in [18–20, 22, 23]. It is evident that this expression for M is independent of a11

and a12, confirming the transverse isotropy of M in the (001) plane, so that this M can be
designated M (001). Using the equations in (7), an alternative expression for M (001) is

M(001) = 1

s11 + s12
(24)

[17, 21, 22].

4.2 (111) Interface Orientation

Here, a31 = a32 = a33 = 1/
√

3, and since a2
11 + a2

12 + a2
13 = 1, P = Q = 1/3 in Eq. (11).

Hence, M on this plane is also transversely isotropic and can be designated M (111). Using
Eqs. (7) and (10),

M(111) = 6c44(c11 + 2c12)

c11 + 2c12 + 4c44
≡ 6

4s11 + 8s12 + s44
(25)

[17–23].

4.3 (011) Interface Orientation

Here, a31 = 0 and a32 = a33 = 1/
√

2. Using Eq. (21), it is evident by inspection that direction
cosines defining the directions of principal stresses within (011) are [a11, a12, a13] = [1,0,0]
and [a21, a22, a23] = [0,1/

√
2,−1/

√
2]. Hence, P = 0 and Q = R = 1/2, and so using

conventional crystallographic nomenclature,

M[100] = (c11 + 2c12)(c11 − c12 + 2c44)

c11 + c12 + 2c44
= 2s11 − 2s12 + s44

s11s44 + 2(s11 − s12)(s11 + 2s12)
(26)

and

M[011̄] = 4c44(c11 + 2c12)

c11 + c12 + 2c44
= 4(s11 − s12)

s11s44 + 2(s11 − s12)(s11 + 2s12)
. (27)

Straightforward algebraic manipulation of the more complicated equations quoted by
Nix [19] for M[100] and M[011̄] in Section IV.B of his paper confirms that Eqs. (26) and
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(27) expressed in terms of c11, c12 and c44 are equivalent to the equations he has quoted. It
is also evident from these two equations that

M[011̄]
M[100] = 2A

1 + A
, (28)

so that for A > 1, M[011̄] > M[100] on (011), and for A < 1, M[011̄] < M[100] on (011).
Expressed in terms of s11, s12 and s44, the arithmetic mean of these two biaxial moduli

on (011), M̄(011), is

M̄(011) = 6(s11 − s12) + s44

2s11s44 + 4(s11 − s12)(s11 + 2s12)
, (29)

which is Eq. (42) quoted by Lee [21].

4.4 (0kl) Interface Orientation

For (0kl), i.e., a general plane on the great circle on which (001), (011) and (010) lie on a
stereographic representation of a cubic crystal [25], the table of direction cosines between
the axis set 1, 2 and 3 and the axis set 1′, 2′ and 3′ defining the directions of principal stress
within (0kl) can be chosen to be of the form

x1 x2 x3

x ′
1 1 0 0

x ′
2 0 a33 −a32

x ′
3 0 a32 a33

, (30)

with a2
32 + a2

33 = 1. Hence, for the direction [100], P = 0 and Q = a4
32 + a4

33, and so from
Eq. (10),

M[100] = (c11 + 2c12)(2c44 − (a4
32 + a4

33)H)

c12 + 2c44 − (a4
32 + a4

33)H
, (31)

or, equivalently,

M[100] = (c11 + 2c12)(c11 − c12 + 2a2
32a

2
33H)

c11 + 2a2
32a

2
33H

. (32)

Likewise, M[0lk̄] along the direction perpendicular to [100] within (0kl) is

M[0lk̄] = (c11 + 2c12)(2c44 + (2a2
32a

4
33 − a4

32 − a4
33)H)

c12 + 2c44 − (a4
32 + a4

33)H
, (33)

or, equivalently,

M[0lk̄] = (c11 + 2c12)(c11 − c12 + 4a2
32a

2
33H)

c11 + 2a2
32a

2
33H

. (34)

To show how M[100] and M[0lk̄] vary as a function of (0kl), it is convenient to examine
the portion of the great circle between (001) and (010), setting a32 = sin θ and a33 = cos θ

for 0 ≤ θ ≤ 90◦. Graphs of how these vary as a function of angle from (001) towards (010)
for Si (for which A = 1.56), Cu (A = 3.21), Nb (A = 0.55) and β-brass (A = 8.49) are
shown in Fig. 1. For these graphs, data for c11, c12 and c44 for Si, Cu and Nb were those
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Fig. 1 Principal biaxial moduli
for (0kl) interfaces as a function
of angle away from (001) towards
(010): (a) Si, (b) Cu, (c) β-brass
and (d) Nb. Both M[100] and
M[0lk̄] are symmetric about 0°,
45° and 90°, i.e., the (001), (011)
and (010) planes. Other low
index planes are (013) at 18.43°,
(012) at 26.57°, (021) at 63.43°
and (031) at 71.57°

quoted in Table 6.1 of [25], i.e., 165.7, 63.9 and 79.6 GPa respectively for Si, 168.4, 121.4
and 75.4 GPa respectively for Cu, and 245.6, 138.7 and 29.3 GPa respectively for Nb. The
corresponding data for β-brass were those quoted in Table III of [29], i.e., 129.1, 109.7 and
82.4 GPa respectively. The positions of a number of low index planes between (001) and
(010) are also indicated.

It is evident that the disparity between the values of M[100] and M[0lk̄] is greatest when
(0kl) is (011). Also noteworthy is the fact that for A > 1, both M[100] and M[0lk̄] increase
from minima at (001) and (010) to a maximum at (011). For A < 1, these trends in M[100]
and M[0lk̄] are reversed.

4.5 (hhl) Interface Orientation

For (hhl), i.e., a general plane on the great circle on which (001), (111) and (110) lie on a
stereographic representation of a cubic crystal [25], the table of direction cosines between
the axis set 1, 2 and 3 and the axis set 1′, 2′ and 3′ defining the directions of principal stress
within (hhl) can be chosen to be of the form

x1 x2 x3

x ′
1 1/

√
2 −1/

√
2 0

x ′
2 a33/

√
2 a33/

√
2 −√

2a31

x ′
3 a31 a31 a33

, (35)
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Fig. 1 (Continued)

with 2a2
31 + a2

33 = 1. Hence, for the direction [11̄0] defining one of the principal directions,
P = a2

31 and Q = 2a4
31 + a4

33, and so from Eq. (10),

M[11̄0] = (c11 + 2c12)(2c44 + (a2
31 − 2a4

31 − a4
33)H)

c12 + 2c44 − (2a4
31 + a4

33)H
, (36)

or, after some elementary mathematical manipulation to eliminate a31 from this expression,

M[11̄0] = (c11 + 2c12)(4c44 − a2
33(3a2

33 − 1)H)

c11 + c12 + 2c44 − a2
33(3a2

33 − 2)H
. (37)

Similarly, M[ll2h] along the direction perpendicular to [11̄0] within (hhl) is

M[ll2h] = (c11 + 2c12)(c11 − c12 + 2c44 − a2
33(6a2

33 − 5)H)

c11 + c12 + 2c44 − a2
33(3a2

33 − 2)H
. (38)

It is then straightforward to examine the portion of the great circle between (001) and (110)
for a33 = cos θ for 0 ≤ θ ≤ 90◦ to show how M[11̄0] and M[ll2h] vary as a function of θ .
Graphs of how these quantities vary for Si, Cu, Nb and β-brass as a function of θ are shown
in Fig. 2. The positions of a number of low index planes between (001) and (110) are also
indicated.
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Fig. 2 Principal biaxial moduli
for (hhl) interfaces as a function
of angle away from (001) towards
(110): (a) Si, (b) Cu, (c) β-brass
and (d) Nb. M[11̄0] and M[ll2h]
are identical at 0° (i.e., for a (001)
interface) and at 54.74° (for a
(111) interface). Other relatively
low index planes are (114) at
19.47°, (113) at 25.24°, (112) at
35.26°, (221) at 70.53°, (331) at
76.74° and (441) at 79.98°

For the three materials for which A > 1, the maximum in M[ll2h] occurs around a value
of θ of 46–47°, while M[11̄0] increases monotonically from its value at (001) to its value at
(110). For Nb, for which A < 1, there is a minimum in M[ll2h] at a slightly higher value of
θ of ≈ 49°, while for M[11̄0], its value appears to plateau above θ ≈ 63◦.

Inspection of the mathematics shows that stationary values occur for M[ll2h] at values
of θ of 0° and 90°, and where cos θ satisfies the equation

a cos4 θ + b cos2 θ + c = 0, (39)

where

a = 3(−c11 + c12 + 2c44),

b = −6(c11 + 3c12 + 2c44), (40)

c = 3c11 + 7c12 + 6c44.

Numerical computation shows that this quadratic for cos2 θ is satisfied for Si when θ =
46.66◦, for Cu when θ = 47.49◦, for β-brass when θ = 46.91◦, and for Nb when θ =
49.05◦.
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Fig. 2 (Continued)

For M[11̄0], stationary values occur at values of θ of 0° and 90° and where cos θ satisfies
Eq. (39) with

a = 3(−c11 + c12 + 2c44),

b = 6(c11 + c12 − 2c44), (41)

c = −c11 − c12 + 6c44.

Restrictions on c11, c12 and c44 from consideration of the strain energy per unit volume
require c11 + 2c12 > 0, c11 > |c12| and c44 > 0 [7]. For A > 1, a > 0, and for A < 1, a < 0.
For Si, Cu and β-brass, all of which have A > 1, b and c are both >0. Therefore, solutions
of Eq. (39) for cos2 θ are either imaginary, because b2 < 4ac, as in the case of β-brass with
its high value of anisotropy ratio A, or negative, as is the case for Si and Cu.

However, for Nb where A < 1, b > 0 and c < 0, one of the roots of Eq. (39) lies within
the range 0 ≤ cos2 θ ≤ 1, giving a minimum of 136.9 GPa at a value of θ = 70.86◦, very
close to (221) at θ = 70.54◦. By comparison, the value of M[11̄0] at θ = 63◦ is 138.2 GPa
and that at θ = 90◦, when the interface plane is (110), is 138.4 GPa.

Further consideration of Eq. (39) shows that for b > 0, a condition which applies to every
cubic crystal tabulated in Table 6.1 of [25] and Appendix 1 of [27], the additional constraint
that one of the real roots of Eq. (39) lies within the range 0 ≤ cos2 θ ≤ 1 is satisfied only
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Fig. 3 M[11̄0] principal biaxial
moduli for (hhl) interfaces as a
function of angle away from
(001) towards (110) for six cubic
materials with A < 1. Data for
c11, c12 and c44 are from
Table 6.1 of [25] for TiC, NaCl
and Nb, from Appendix 1 of [27]
for Mo and PbS, and from [29]
for KCl

Fig. 4 Detail of the normalised
M[11̄0] principal biaxial moduli
for (hhl) interfaces of KCl, PbS
and Nb as a function of angle
away from (001) relative to the
magnitude of M[11̄0] at θ = 90◦

when a < 0 and c < 0. The condition that a < 0 requires A < 1; the condition that c < 0
requires

6c44

(c11 + c12)
< 1. (42)

This is a significantly more restrictive condition than A < 1. Plots of M[11̄0] on (hhl) as a
function of θ are shown in Fig. 3 for six cubic materials for which A < 1. Each material has
a value of M[11̄0] at θ = 0◦ higher than that at θ = 90◦, with a general levelling off of the
curves after θ ≈ 60◦. However, for Nb, KCl (A = 0.372) and PbS (A = 0.510), for which
Eq. (42) is satisfied, there are formal minima at angles less than θ = 90◦, whereas for NaCl
(A = 0.694), Mo (A = 0.775) and TiC (A = 0.904), for which Eq. (42) is not satisfied, the
formal minima are all at θ = 90◦. These trends are emphasised most easily by normalising
the plots of M[11̄0] on (hhl) to the value at θ = 90◦ and examining θ in the range 60–90°, as
shown in Figs. 4 and 5. The minima for Nb and KCl at θ = 70.86◦ and 77.25◦ respectively
are readily apparent in Fig. 4, whereas the minimum for PbS at θ = 83.59◦ is not; this is
because it is only 0.01 % less than M[11̄0] at θ = 90◦.

It is evident that the results for the principal values of M for (hll) planes on the boundary
of the standard 001–011–111 stereographic triangle are equivalent by symmetry to those
principal values for (hhl) for 54.74◦ ≤ θ ≤ 90◦: the relevant values of the biaxial moduli
along the directions of principal stress are then M[011̄] and M[2lhh]. Thus, for example,
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Fig. 5 Detail of the normalised
M[11̄0] principal biaxial moduli
for (hhl) interfaces of NaCl, Mo
and TiC as a function of angle
away from (001) relative to the
magnitude of M[11̄0] at θ = 90◦

Table 1 Direction cosines
defining the directions of
principal stress η1 and η2 for
various (hkl) within the standard
001–011–111 stereographic
triangle subjected to an
equi-biaxial strain. The planes
(011), (156), (134), (123), (235)
and (112) all lie on the same
great circle whose pole is [111̄]
and share the same value of Q

defined in Eq. (11) of 0.5

hkl η1 η2

(159) [0.0622 0.8695 0.4900] [0.9934 0.1015 0.0540]

(125) [0.2294 0.8870 0.4007] [0.9561 0.2826 0.0782]

(234) [0.1763 0.7431 0.6455] [0.9116 0.3707 0.1778]

(245) [0.0884 0.7603 0.6436] [0.9504 0.2577 0.1740]

(367) [0.0643 0.7439 0.6652] [0.9487 0.2522 0.1904]

(156) [0.0243 0.7660 0.6424] [0.9916 0.1001 0.0818]

(134) [0.0639 0.7906 0.6090] [0.9785 0.1696 0.1174]

(123) [0.1410 0.8014 0.5813] [0.9532 0.2684 0.1388]

(235) [0.2569 0.7799 0.5707] [0.9104 0.3935 0.1280]

for (122), these values can be obtained from Fig. 2 for Si, Cu, β-brass and Nb by reading
the results for M[11̄0] and M[ll2h] for (hhl) at 70.53°.

4.6 (hkl) Interface Orientation

For a general (hkl), the orthonormal directions defining the directions of principal stress
within (hkl) to an equi-biaxial strain in this plane can be determined either by solving
Eq. (21) or by using the method of Norris [12], as discussed in Sect. 3. Equation (10) can
then be used to determine the corresponding values of M for these two orthogonal direc-
tions. Orthonormal directions for M for selected (hkl) within the standard 001–011–111
stereographic triangle are shown in Table 1. Calculated principal values for M for these
(hkl) are shown in Table 2 for Si, Cu, β-brass and Nb. Additional (hkl) on the edges and at
the corners of the standard 001–011–111 stereographic triangle are also included in Table 2
for comparison purposes.

The data in Table 2 confirm that the differences between the principal values of M for
a particular (hkl) are greatest when (hkl) = {011}. In this context, the data for the planes
(011), (156), (134), (123), (235) and (112) are relevant, because for these planes Q = a4

31 +
a4

32 + a4
33 is constant, and so the denominators of Eqs. (10) and (14) are fixed while their

numerators vary.
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Table 2 Principal values of M in GPa for various (hkl) within the standard 001–011–111 stereographic
triangle and at its corners and on its edges for planes parallel to (hkl) subjected to an equi-biaxial strain.
Directions η1 and η2 are specified in Table 1 for (hkl) within this stereographic triangle. For (hkl) at the
corners and on the edge of this stereographic triangle, η1 and η2 and the values of M are those determined
by the relevant equations in Sects. 4.1–4.5. (001) and (111) are isotropic in their biaxial modulus and so for
these planes a single value of M is given

Material Si Cu β-brass Nb

hkl M(η1) M(η2) M(η1) M(η2) M(η1) M(η2) M(η1) M(η2)

(001) 180.3 114.8 52.4 227.6

(111) 229.1 261.0 254.1 143.6

(159) 225.5 194.5 244.0 172.9 239.0 143.7 164.5 202.8

(125) 212.8 194.8 211.1 169.2 196.0 138.4 183.8 205.0

(234) 233.6 214.0 268.6 225.5 265.7 210.9 142.5 169.3

(245) 235.8 208.9 272.9 213.3 271.8 195.6 140.9 177.4

(367) 236.6 210.0 275.1 216.3 274.2 199.3 138.8 175.2

(122) 237.1 212.1 276.6 221.6 275.5 205.8 136.9 171.4

(011) 240.4 197.0 281.5 184.6 284.6 159.1 138.4 195.4

(156) 238.3 199.1 276.9 189.2 278.6 165.0 141.1 192.7

(134) 235.6 201.8 270.8 195.3 270.7 172.9 144.7 189.1

(123) 231.9 205.5 262.5 203.6 260.0 183.6 149.6 184.3

(112) 225.9 211.5 249.2 216.9 242.8 200.9 157.4 176.4

4.7 Global Extrema of M and M̄

For the three materials discussed in Sects. 4.4–4.6 for which A > 1, the global maxima
in M occur for {011} planes in 〈011̄〉 directions, and the global minima occur for {001}
planes. For A < 1, the global maxima in M occur for {001} planes, whereas the global
minima occur for {hhl} planes in 〈11̄0〉 directions. If Eq. (42) is not satisfied, these {hhl}
will be {110}. If Eq. (42) is satisfied, as for Nb, these planes are very close to being {122}.
Moving away from (122) towards (125) on the great circle whose pole is 21̄0, i.e., through
(367), (245) and (123), is consistent with the statement that the global minima in M occur
for {hhl} ≈ {122} for Nb (Table 2). For KCl, for which Eq. (42) is also satisfied, the {hhl}
planes with the global minima for M are close to being {133}.

These results can be confirmed using the formalism established by Norris [11] when
determining the conditions for the global extrema of Poisson’s ratio for cubic materials,
suitably adapted for biaxial moduli. The formalism, which makes use of expressions for
stationary values of engineering moduli in general in anisotropic materials, is used in Ap-
pendix B to validate the results quoted in this Section for stationary conditions and global
extrema.

It is also useful to describe these results for the magnitudes of the biaxial moduli in the
(X,Y ) space defined by Brańka et al. [15] in which at zero hydrostatic pressure, X and Y

are ratios of elastic moduli defined as

X = 3(c11 − c12)

2(c11 + 2c12)
, Y = (c11 − c12)

8c44
. (43)
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In this parameter space, X and Y must both be positive because of the stability condi-
tions noted in Sect. 4.5. Brańka et al. then used this parameter space for the descrip-
tion of global maximum and global minimum surfaces for Poisson’s ratio in cubic ma-
terials. In their nomenclature, the directional dependence of Poisson’s ratio in unit di-
rection m for uniaxial loading along a unit direction n is described by two functions
D(n,m) = n2

1m
2
1 + n2

2m
2
2 + n2

3m
2
3 and p(n) = n4

1 + n4
2 + n4

3.
In the nomenclature of Brańka et al., Eq. (10) becomes

M(n,m;X,Y ) = 9G
1 + (D(n,m) − p(n)(1 − 4Y ))

6Y − 4XY + 3X − 3Xp(n)(1 − 4Y )
, (44)

for the biaxial modulus in the unit direction m within the plane whose normal is the unit
vector n, where G = (c11 − c12)/2. Thus, for example,

M
(
(110), [11̄0];X,Y

) = 9G
2

12Y + 4XY + 3X
, (45)

since, for the biaxial modulus on (110) along [11̄0], D(n,m) = p(n) = 0.5.
It is apparent that in the formalism of Brańka et al., the three materials with A < 1 for

which there is a global minimum in M along [11̄0] on (hhl) interfaces away from (110) are
at the positions of (0.924, 0.673), (0.781, 0.490) and (0.307, 0.456) within (X,Y ) space for
KCl, PbS and Nb respectively. These regions in (X,Y ) space are some way from the very
limited domain in (X,Y ) space near X = 0 and Y = 0, i.e., for materials for which A � 1,
where there are the most extreme maxima and minima in Poisson’s ratio, as documented by
Brańka et al.

More interestingly, (X,Y ) space can be used to explore the possibility for A > 1, or
equivalently, Y < 0.25, that the local maxima in M along [ll2h] on (hhl) interfaces away
from (110) can be greater than the value of M along [11̄0] on (110). It is evident from Fig. 2
that, for Si, Cu and β-brass these local maxima have values which are a significant fraction
of M[11̄0] on (110): 0.965, 0.947 and 0.919 for Si, Cu and β-brass respectively, the (X,Y )
values of which are (0.520, 0.160), (0.171, 0.078) and (0.084, 0.029) respectively.

Returning to Eqs. (39) and (40), it is apparent that the value of cos θ at which there is
maximum value of M[ll2h] on (hhl) for materials with A > 1 satisfies the equation

a cos4 θ + b cos2 θ + c = 0,

where, in (X,Y ) space,

a = 9X(1 − 4Y ),

b = −6(24Y + 3X − 4XY), (46)

c = 60Y + 9X − 4XY.

As X → 0, it is evident that cos2 θ → 5/12, so that θ → 49.80◦. At this limiting value
of θ , D(n,m) = 105/288 and p(n) = 99/288, so that the ratio of M((hhl), [ll2h];X,Y ) to
M((110), [11̄0]; X,Y ) as X → 0 is simply

M((hhl), [ll2h];X,Y )

M((110), [11̄0];X,Y )
= 1 + 1

48
(1 − 4Y ), (47)
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Hence, as both X and Y → 0, it is evident that this ratio takes a limiting value of 49/48,
confirming that for A > 1 there can be values of M along [ll2h] on (hhl) interfaces away
from (110) which can be slightly greater than the value of M along [11̄0] on (110).

Numerical calculations show that for materials with Y < 0.25, there will be a restricted
range of orientations within limits of θ = 45◦ and θ = 54.74◦ for which

M((hhl), [ll2h];X,Y )

M((110), [11̄0];X,Y )
> 1 (48)

if, to a good approximation, X < 0.29Y . To satisfy both Y < 0.25 and X < 0.29Y , we
therefore need to satisfy the inequality

6c11 − 6c12 < 12c44 < 0.29(c11 + 2c12). (49)

This inequality produces a very restrictive set of conditions to be satisfied in real anisotropic
cubic materials: c12/c11 > 0.868 with 12c44 < 0.29(c11 + 2c12). A search of the Landolt-
Börnstein compendium of elastic constants of cubic materials [30] and other informa-
tion sources shows that there are materials for which c12/c11 > 0.868 is satisfied, such
as certain In−Tl alloys [31], certain compositions of β-brass [32] and nickel hexam-
ine nitrate, Ni(NH3)6(NO3)2 [33]. However, the criterion 12c44 < 0.29(c11 + 2c12) is not
met in any of these materials. It is most close to being met in nickel hexamine nitrate
at −34°C, for which c11 = 9.275 GPa, c12 = 8.77 GPa and c44 = 0.699 GPa [33]; were
0.253 GPa < c44 < 0.648 GPa in this Fm3̄m material, Eq. (48) would be satisfied.

By comparison with the global extrema for M , global extrema for M̄ are easier to specify.
Q has limiting values of 1 at {001} orientations and 1/3 at {111} orientations. An exami-
nation of Eq. (17) shows that for A > 1, M̄ has maxima at {111} orientations and minima
at {001} orientations; for A < 1, M̄ has maxima at {001} orientations and minima at {111}
orientations.

5 Stresses σ ′
13 and σ ′

23

So far in this analysis we have only considered the stresses σ ′
11, σ ′

22 and σ ′
12 within (hkl) and

the stress σ ′
33 normal to (hkl) arising from an equi-biaxial strain within (hkl). The constraint

that σ ′
33 = 0 enables a relationship between the principal strains ε′

11 = ε′
22 = ε and ε′

33 to be
established. We have yet to examine the stresses σ ′

13 and σ ′
23.

Using Eq. (1) it is evident that

σ ′
13 = C ′

1311ε
′
11 + C ′

1322ε
′
22 + C ′

1333ε
′
33. (50)

Using Eq. (8) and making use of the orthogonality relationships of direction cosines,

σ ′
13 = H

(
a11a

3
31 + a12a

3
32 + a13a

3
33

)(
ε − ε′

33

)
. (51)

Similarly,

σ ′
23 = H

(
a21a

3
31 + a22a

3
32 + a23a

3
33

)(
ε − ε′

33

)
. (52)

For a plane such as (001), it follows that the terms involving directions cosines in Eqs. (51)
and (52) are zero, and so σ ′

13 = σ ′
23 = 0. Likewise, for (111), we require a11 + a12 + a13 = 0

and since for (111) a31 = a32 = a33, σ ′
13 = σ ′

23 = 0 when (hkl) is (111).
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For (0kl) planes, with k, l both �= 0, using Eq. (30) we can choose 1′ to be [100] and 2′
to be [0 a33 a32]. While σ ′

13 = 0, σ ′
23 = 0 only when a32 = a33, i.e., only for (011). For all

other (0kl) planes apart from the special cases of (010) and (001), σ ′
23 �= 0. For (hhl) planes

σ ′
13 = 0 for 1′ parallel to [11̄0], but σ ′

23 = 0 along [ll2h] only if l = 0, h = 0 or h2 = l2, e.g.,
for (001), (111) and (110).

Hence, for a general (hkl), both σ ′
13 �= 0 and σ ′

23 �= 0. These stresses can be argued to
be small relative to σ ′

11 and σ ′
22, even for highly anisotropic cubic materials, since they

both depend on H modulated by a direction cosine expression which, from the form of this
expression, is small. Even so, it is important to recognise that, for interface planes other than
{001}, {111} and {011}, shear stresses out of the plane will arise naturally in cubic materials
as a consequence of a state of equi-biaxial strain within the plane and a zero normal stress
to the plane. It also follows that any calculation of elastic strain energy per unit volume for
a (hkl) oriented cubic single crystal subjected to an equi-biaxial strain must include these
terms.

6 Discussion and Conclusions

The main results of this paper are Eqs. (10) and (21). Equation (10) specifies the biaxial
modulus along a particular direction of choice in a (hkl) plane of a cubic crystal subjected
to an equi-biaxial strain in the plane, with the additional constraint that the stress normal to
(hkl) is zero. In this context, (hkl) could either be a plane of a cubic crystal substrate or the
orientation of planes parallel to the substrate of a single cubic crystal deposited on a suitable
substrate, such as a glass slide which would be isotropic, or another cubic crystal with which
it has a cube-cube orientation relationship. For two orthogonal directions within a general
(hkl) plane, the biaxial moduli will be parallel to the directions of principal stress within the
(hkl) plane. These directions of principal stress are specified by Eq. (21) and are parallel to
extrema in both the shear modulus and Poisson’s ratio on that plane. They are necessarily
extrema of the biaxial moduli on that plane simply because they are principal stresses.

Examination of the biaxial moduli as a function of (hkl) shows that for cubic crystals
for which the anisotropy ratio A > 1, the minimum value of the biaxial modulus occurs
when (hkl) is {001}, in which case the biaxial modulus is isotropic in the plane. Apart
from specific unusual sets of circumstances discussed in Sect. 4.7, the maximum value of
the biaxial modulus occurs on {011} along 〈011̄〉. The maximum difference between the
principal biaxial moduli on (hkl) occurs on {011} for all cubic crystals for which A > 1.

For A < 1, the formal minimum value of the biaxial modulus occurs when (hkl) is a
plane of the form {hhl} where h and l are determined by Eqs. (39), (41) and (42) and the
direction is 〈11̄0〉. However, in practice, the value of the 〈11̄0〉 biaxial modulus on the (110)
plane for a material with A < 1 will have a value sufficiently close to any formal minimum
away from (110) that it can be regarded from an engineering point of view as being a plane
with the minimum value of the biaxial modulus, as the calculations for Nb, KCl and PbS
have shown. The maximum value of the biaxial modulus occurs on {001}, in which case
the biaxial modulus is isotropic in the plane. As for materials with A > 1, the maximum
difference between the principal biaxial moduli on (hkl) occurs on {011}.

The most obvious context in which to use equations for biaxial moduli is in the deposition
of thin films on substrates [19, 20, 22]. While most single crystal silicon substrates used for
thin film deposition are (001) and (111), a number of other possible substrate orientations
are now offered by manufacturers such as (011), (112) and even (531) (e.g., [34, 35]). For
(011) silicon substrates, the elastic biaxial moduli differ by 22 % along [011̄] and [100], and
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so any computations of elastic responses of microelectromechanical systems must take this
into account, as Hopcroft et al. have recently discussed [23].

A second practical application is in the evaluation of residual stress levels in relatively
thick coatings deposited on substrates, where the thickness of the coating is not necessarily
small in comparison with the thickness of the substrate [20, 36]. Thus, for example, in the
deposition of plasma electrolytic oxidation coatings on metallic substrates, the coatings can
be ∼100 µm thick and the substrates 300–500 µm thick [36]. In such a situation, the misfit
strains generate significant levels of stress in both the coating and the substrate. Although
it is usual for such substrates to be polycrystalline, and therefore isotropic in their elastic
response, such substrates could in principle be (hkl) planes of cubic single crystals.
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Appendix A: Directions of Principal Stress Within a Plane (hkl)
Subjected to Equi-biaxial Strain

From Sect. 3, the condition on the unit vectors with direction cosines [a11, a12, a13] and
[a21, a22, a23] lying in the plane (hkl) of the cubic single crystal defining the principal
stresses when the plane is subjected to an equi-biaxial strain is

a11a21a
2
31 + a12a22a

2
32 + a13a23a

2
33 = 0,

Eq. (21), where [a31, a32, a33] is the unit vector normal to (hkl). From Norris [12], the ex-
treme values of the shear modulus and Poisson’s ratio for a fixed plane n defined by the unit
vector [n1, n2, n3] are defined by unit vectors m− and m+ lying in n, where

m± = ρ±
[

n1

n2
1 − λ±

,
n2

n2
2 − λ±

,
n3

n2
3 − λ±

]
, (53)

ρ± =
[

n2
1

(n2
1 − λ±)2

+ n2
2

(n2
2 − λ±)2

+ n2
3

(n2
3 − λ±)2

]−1/2

, (54)

λ± = (
n2

1n
2
2 + n2

2n
2
3 + n2

3n
2
1

) ±
√(

n2
1n

2
2 + n2

2n
2
3 + n2

3n
2
1

)2 − 3n2
1n

2
2n

2
3, (55)

and where the λ± are the roots of the quadratic equation

λ2 − 2λ
(
n2

1n
2
2 + n2

2n
2
3 + n2

3n
2
1

) + 3n2
1n

2
2n

2
3 = 0. (56)
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Expressed in terms of the nomenclature used by Norris, Eq. (21) becomes the condition

n4
1

(n2
1 − λ+)(n2

1 − λ−)
+ n4

2

(n2
2 − λ+)(n2

2 − λ−)
+ n4

3

(n2
3 − λ+)(n2

3 − λ−)
= 0. (57)

Noting the identities

(
n2

1 − λ+
)(

n2
1 − λ−

) = n2
1

(
n2

1 − n2
2

)(
n2

1 − n2
3

)
,

(
n2

2 − λ+
)(

n2
2 − λ−

) = n2
2

(
n2

2 − n2
3

)(
n2

2 − n2
1

)
, (58)

(
n2

3 − λ+
)(

n2
3 − λ−

) = n2
3

(
n2

3 − n2
1

)(
n2

3 − n2
2

)
,

Eq. (57) becomes the condition

n2
1

(n2
1 − n2

2)(n
2
1 − n2

3)
+ n2

2

(n2
2 − n2

3)(n
2
2 − n2

1)
+ n2

3

(n2
3 − n2

1)(n
2
3 − n2

2)
= 0. (59)

Since the first two terms sum to the negative of the third term, the result is shown, as long as
(n2

1 − n2
2)(n

2
2 − n2

3)(n
2
3 − n2

1) �= 0. However, as Norris explains, suitable values of m can be
identified where (hkl) is of the form (1p0) and (11p); (11p) is directly equivalent to (hhl)
considered here in Sect. 4.5, while (1p0) is equivalent by symmetry to (0kl) considered here
in Sect. 4.4. It is straightforward to verify that these suitable forms of m satisfy Eq. (21)
when expressed as unit vectors with direction cosines [a11, a12, a13] and [a21, a22, a23].

Appendix B: Stationary Values and Global Extrema for Biaxial Moduli

Norris [11] derives conditions for stationary values of engineering moduli in anisotropic
triclinic materials, applying these conditions to the consideration of Poisson’s ratio, Young’s
modulus and the shear modulus. His approach provides a general framework for finding
stationary values of any engineering modulus, f . The analysis in [11] uses the connection
between the fourth order elasticity tensors in 3 dimensions and their corresponding second
order symmetric tensors in 6 dimensional space derived by Mehrabadi and Cowin [37] and
also expressions derived by Mehrabadi et al. [38] for the representation in a space of six
dimensions of a three-dimensional rotation by an angle θ about a specific axis.

Consideration of the formalism of the fourth order compliance and stiffness tensors
shows that the conditions for the rotational derivatives for the elements of the compliance
tensor sij in Voigt notation derived by Norris and presented on page 798 of [11] are also
valid for the stiffness tensor cij by the simple substitution of c for s. Hence, the approach in
Sect. 3 of Norris can be readily adapted for the biaxial modulus, M , of cubic materials.

From Sect. 2, the equation for M to use for determining the extremal conditions for M

for cubic materials is

M = σ ′
1

ε
= c′

11 + c′
12 − 1

c′
33

(
c′

13
2 + c′

13c
′
23

)
,

(Eq. (5)), noting that in his analysis, Norris dropped the primes when defining a set of
orthonormal directions relative to the crystal axes. Norris reserved the use of primes to
denote rotational derivatives with respect to an angle of rotation, θ about a unit vector
q = q1e1′ + q2e2′ + q3e3′ , defined in the formalism here relative to the orthonormal set of
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axes 1′, 2′ and 3′, in which the unit vectors along these three axes are e1′ , e2′ , and e3′ ,
respectively.

The condition derived by Norris for a stationary value to be obtained of an engineering
modulus f for a triclinic material is that a vector d(f ) = 0 at a stationary point of f for a
suitable vector d(f ) independent of the three-dimensional vector q about which the rotation
takes place. This then leads to three conditions for stationary values of f , one from each
component of d(f ) along the axes 1′, 2′ and 3′ respectively. The analysis requires differ-
entiation of f with respect to θ for a general q, evaluated at θ = 0; this in turn requires
differentiation of the c′

ij in Eq. (5) with respect to θ for a general q, also evaluated at θ = 0.
The vector d(f ) is defined by the condition

∂f (q)

∂θ
= d(f ) · q. (60)

It follows from the equivalence of the conditions for the rotational derivatives for the
elements of the compliance tensor sij and cij that

∂c′
11(q)

∂θ
= 4c′

15q2 − 4c′
16q3,

∂c′
33(q)

∂θ
= 4c′

34q1 − 4c′
35q2,

∂c′
12(q)

∂θ
= −2c′

14q1 + 2c′
25q2 + (

2c′
16 − 2c′

26

)
q3, (61)

∂c′
23(q)

∂θ
= (

2c′
24 − 2c′

34

)
q1 − 2c′

25q2 + 2c′
36q3,

∂c′
13(q)

∂θ
= 2c′

14q1 + (
2c′

35 − 2c′
15

)
q2 − 2c′

36q3,

where the c′
ij are the values at θ = 0, i.e., the values with respect to the 1′, 2′ and 3′ or-

thonormal set of axes.
Differentiating M with respect to respect to θ for a general q, we have

∂M(q)

∂θ
= ∂c′

11(q)

∂θ
+ ∂c′

12(q)

∂θ
− 1

c′
33

((
2c′

13 + c′
23

)∂c′
13(q)

∂θ
+ c′

13

∂c′
23(q)

∂θ

)

+ (c′
13

2 + c′
13c

′
23)

c′
33

2

∂c′
33(q)

∂θ
. (62)

Hence, from Eqs. (60) and (61),

d(M) =
(

−2(2c′
13 + c′

23 + c′
33)

c′
33

c′
14 − 2c′

13

c′
33

c′
24 +

(
2c′

13

c′
33

+ 4c′
13(c

′
13 + c′

23)

c′
33

2

)
c′

34

)
e1′

+
(

2(2c′
13 + c′

23 + 2c′
33)

c′
33

c′
15 + 2(c′

13 + c′
33)

c′
33

c′
25

−
(

2(2c′
13 + c′

23)

c′
33

+ 4c′
13(c

′
13 + c′

23)

c′
33

2

)
c′

35

)
e2′

+
(

−2c′
16 − 2c′

26 + 2(c′
13 + c′

23)

c′
33

c′
36

)
e3′ . (63)
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The three conditions for the stationary values of M are that each of the coefficients of e1′ ,
e2′ , and e3′ is zero.

These three conditions valid for triclinic materials can be simplified considerably for
cubic materials, making use of the three identities

c′
14 + c′

24 + c′
34 = 0,

c′
15 + c′

25 + c′
35 = 0, (64)

c′
16 + c′

26 + c′
36 = 0.

which follow from a consideration of Eq. (8), and the identity

c′
13 + c′

23 + c′
33 = c11 + 2c12 > 0, (65)

which also follows from Eq. (8), together with recognition that the bulk modulus of a cubic
material is independent of the choice of axes [7]. Hence, we find for a cubic material that
the conditions that the coefficient the coefficients of e1′ , e2′ , and e3′ are zero become

2c′
34c

′
13 − c′

14c
′
33 = 0, (66)

2c′
35c

′
13 + (

c′
35 − c′

15

)
c′

33 = 0, (67)

c′
36 = 0. (68)

It is immediately apparent that these conditions for the stationary values of M are satisfied
for isotropic materials because each of the individual terms in the three identities in Eq. (64)
is zero.

Since c′
36 ≡ C ′

3312 in full tensor notation, Eq. (68) is equivalent to Eq. (21), i.e., Eq. (68)
is satisfied when 1′ and 2′ are along directions of principal stress within the plane whose
normal is parallel to 3′. Without loss of generality we can examine Eqs. (66) and (67) for a
general (hkl) within the standard 001–011–111 stereographic triangle for a cubic material
by choosing axis 1′ to be parallel to m− and axis 2′ to be parallel to m+. Under these cir-
cumstances, using the nomenclature in Appendix A and other results in Eqs. (3.4) and (3.5)
of [12],

c′
34 = −Hρ+, c′

35 = −Hρ−,

c′
14 = −H

ρ+λ−
λ− − λ+

, c′
15 = −Hρ−

(
λ−

λ− − λ+
− 2

)
.

(69)

Rewriting Eqs. (66) and (67) in the form
(

2c′
34 −c′

14

2c′
35 c′

35 − c′
15

)(
c′

13

c′
33

)

=
(

0
0

)
, (70)

it is evident that the determinant of the 2× 2 matrix in Eq. (70) is

2c′
34

(
c′

35 − c′
15

) + 2c′
35c

′
14 = 6H 2ρ+ρ−, (71)

which is non-zero for a general (hkl) within the standard 001–011–111 stereographic trian-
gle. Hence, as for Poisson’s ratio for cubic materials [12], the important result is obtained
that there are no stationary values of M inside the standard stereographic triangle. The only
possible stationary values are on the edges of this stereographic triangle. By symmetry, we
need only examine planes of the form (0kl) and (hhl), as in Sects. 4.4 and 4.5.
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B.1 (0kl) Interface Orientation

If, as in Sect. 4.4, we choose the table of direction cosines between the axis set 1, 2 and 3
and the axis set 1′, 2′ and 3′ defining the directions of principal stress within (0kl) to be

x1 x2 x3

x ′
1 1 0 0

x ′
2 0 a33 −a32

x ′
3 0 a32 a33

, (72)

with a2
32 + a2

33 = 1, Eq. (68) is automatically satisfied. Using Eq. (8),

c′
34 ≡ C ′

3323 = −Ha32a33

(
a2

32 − a2
33

)
, c′

14 ≡ C ′
1123 = 0,

c′
15 ≡ C ′

1131 = 0, c′
35 ≡ C ′

3331 = 0,
(73)

and so Eq. (67) is also automatically satisfied. Equation (66) is satisfied if a32a33(a
2
32 −

a2
33) = 0. Hence, stationary values of M occur at (001), (011) and (010), and orientations

related by symmetry to these three planes, and so these are candidates for global extrema
for M . This conclusion is unchanged if we interchange axes 1′ and 2′, so that, for a right-
handed axis set, we were to have chosen the table of direction cosines to be

x1 x2 x3

x ′
1 0 a33 −a32

x ′
2 −1 0 0

x ′
3 0 a32 a33

(74)

instead.

B.2 (hhl) Interface Orientation

If, as in Sect. 4.5, we choose the table of direction cosines between the axis set 1, 2 and 3
and the axis set 1′, 2′ and 3′ defining the directions of principal stress within (0kl) to be

x1 x2 x3

x ′
1 1/

√
2 −1/

√
2 0

x ′
2 a33/

√
2 a33/

√
2 −√

2a31

x ′
3 a31 a31 a33

, (75)

with 2a2
31 + a2

33 = 1, Eq. (68) is automatically satisfied. Using Eq. (8),

c′
34 ≡ C ′

3323 = −√
2Ha31a33

(
a2

31 − a2
33

)
, c′

14 ≡ C ′
1123 = − H√

2
a31a33,

c′
15 ≡ C ′

1131 = 0, c′
35 ≡ C ′

3331 = 0, (76)

c′
13 ≡ C ′

1133 = c12 − Ha2
31; c′

33 ≡ C ′
3333 = c12 + 2c44 − H

(
2a4

31 + a4
33

)
.

Since c′
15 ≡ c′

35 = 0, Eq. (67) is also automatically satisfied. Equation (66) is satisfied if

Ha31a33√
2

{
c12 + 2c44 − H

(
2a4

31 + a4
33

) − 4
(
a2

31 − a2
33

)(
c12 − a2

31H
)} = 0. (77)



The Biaxial Moduli of Cubic Materials

Hence stationary values of M occur when a31 = 0, i.e., for (001), when a33 = 0, i.e., for
(110), and when the term inside the curly bracket is set to zero. If we let a33 = cos θ , and
substitute for H using Eq. (10), this term becomes the condition

a cos4 θ + b cos2 θ + c = 0, (78)

where

a = 3(−c11 + c12 + 2c44),

b = 6(c11 + c12 − 2c44), (79)

c = −c11 − c12 + 6c44,

i.e., Eq. (39) with the coefficients a, b and c defined by Eq. (41). This analysis therefore
confirms the conditions for stationary values for M[11̄0] in Sect. 4.5.

If we interchange axes 1′ and 2′, we can choose the table of direction cosines to be

x1 x2 x3

x ′
1 a33/

√
2 a33/

√
2 −√

2a31

x ′
2 −1/

√
2 1/

√
2 0

x ′
3 a31 a31 a33

(80)

for a right-handed set of axes, with 2a2
31 + a2

33 = 1. Equation (68) is still automatically
satisfied. Using Eq. (8),

c′
34 ≡ C ′

3323 = 0, c′
14 ≡ C ′

1123 = 0,

c′
15 ≡ C ′

1131 = −Ha31a33√
2

(
a2

33 − 4a2
31

)
, c′

35 ≡ C ′
3331 = −Ha31a33√

2

(
2a2

31 − 2a2
33

)
, (81)

c′
13 ≡ C ′

1133 = c12 − 3Ha2
31a

2
33, c′

33 ≡ C ′
3333 = c12 + 2c44 − H

(
2a4

31 + a4
33

)
.

Since c′
34 ≡ c′

14 = 0, Eq. (66) is also automatically satisfied. Equation (67) is satisfied if

Ha31a33√
2

{
4
(
a2

31 − a2
33

)(
c12 − 3Ha2

31a
2
33

)− 3
(
2a2

31 − a2
33

)(
c12 + 2c44 −H

(
2a4

31 + a4
33

))} = 0.

(82)
Hence, stationary values of this M occur for (001), (011) and (010), and orientations related
by symmetry to these three planes, and also when the term inside the curly bracket is set to
zero. If we let a33 = cos θ , and substitute for H using Eq. (12), this term can be rearranged
into the condition

a cos4 θ + b cos2 θ + c = 0, (83)

where the coefficients a, b and c are now defined by Eq. (40). This therefore confirms the
conditions for stationary values for M[ll2h] in Sect. 4.5.

Overall, therefore, this analysis gives a total of four candidates for global extrema for M

on the edges of the 001–011–111 standard stereographic triangle for cubic materials: (001),
(011), and the two (lhh) orientations related by symmetry to the (hhl) orientations defined by
Eq. (39), with a, b and c given either by Eq. (40) or Eq. (41). As discussed in Sects. 4.4–4.6,
examination of each of these stationary conditions shows that for the overwhelming majority
of cubic materials with anisotropy ratios A > 1, the minimum value of M occurs for {001}
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and the maximum value of M occurs on {011} along 〈011̄〉. For A < 1, the maximum value
of M occurs on {001} and the formal minimum value of M occurs when (hkl) is a plane of
the form {hhl} where h and l are determined by Eqs. (39), (41) and (42) and the direction
is 〈11̄0〉. For a significant number of cubic materials with A < 1, this formal minimum will
actually be at {110}, because Eq. (42) is not satisfied. Even if Eq. (42) is satisfied, this
formal minimum is likely to have a value sufficiently close to the value of M〈11̄0〉 at {110}
that for all practical purposes, {110} can be regarded as being planes with the minimum
values of M along their 〈11̄0〉 directions.
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