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Inositol 1,4,5-trisphosphate receptors and their protein
partners as signalling hubs
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Abstract Inositol 1,4,5-trisphosphate
receptors (IP3Rs) are expressed in nearly
all animal cells, where they mediate the
release of Ca2+ from intracellular stores. The
complex spatial and temporal organization
of the ensuing intracellular Ca2+ signals
allows selective regulation of diverse physio-
logical responses. Interactions of IP3Rs with
other proteins contribute to the specificity
and speed of Ca2+ signalling pathways, and
to their capacity to integrate information
from other signalling pathways. In this
review, we provide a comprehensive survey
of the proteins proposed to interact with
IP3Rs and the functional effects that these
interactions produce. Interacting proteins
can determine the activity of IP3Rs, facilitate

their regulation by multiple signalling pathways and direct the Ca2+ that they release to specific
targets. We suggest that IP3Rs function as signalling hubs through which diverse inputs are
processed and then emerge as cytosolic Ca2+ signals.
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Abstract figure legend IP3Rs are hubs around which proteins assemble to orchestrate Ca2+ signalling.

Abbreviations AC, adenylyl cyclase; B2R, type 2 bradykinin receptor; cAMP, cyclic adenosine monophosphate;
CREB, cAMP response element-binding protein; EB3, end-binding protein 3; ER, endoplasmic reticulum; GPCR,
G protein-coupled receptor; IBC, IP3-binding core; IP3, inositol 1,4,5-trisphosphate; IP3R, IP3 receptor; IRBIT,
IP3R-binding protein released with IP3; M1R, type 1 muscarinic acetylcholine receptor; PKA, protein kinase A; PLC,
phospholipase C; SD, suppressor domain; TMD, transmembrane domain.
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Introduction

Ca2+ signals within cells are spatially and temporally
intricate, allowing them to elicit a multitude of
specific downstream effects (Berridge, 2009). Inositol
1,4,5-trisphosphate receptors (IP3Rs), the most widely
expressed class of intracellular Ca2+ channel, release Ca2+
from intracellular stores in response to binding of IP3 and
Ca2+ (Foskett et al. 2007; Taylor & Tovey, 2010). Dual
regulation of IP3Rs by two essential stimuli, IP3 and Ca2+,
is important because it endows IP3Rs with a capacity to
propagate Ca2+ signals regeneratively by Ca2+-induced
Ca2+ release, as Ca2+ released by an active IP3R ignites the
activity of adjacent IP3Rs that have bound IP3 (Smith &
Parker, 2009). This in turn plays a key role in defining the
spatial organization of IP3-evoked Ca2+ signals.

Activation of IP3Rs is initiated by binding of IP3 within
a clam-like structure, the IP3-binding core (IBC) (Bosanac
et al. 2002), located near the N-terminus of each IP3R sub-
unit. Binding of IP3 causes a conformational change that
rearranges the association of the IBC with the N-terminal
suppressor domain (SD). These changes are proposed to
disrupt interactions between the N-terminal regions of
the four subunits of the IP3R, leading to opening of the
channel. The latter is formed by transmembrane domains
(TMDs) towards the C-terminus of each IP3R subunit
(Seo et al. 2012) (Fig. 1). It is not yet clear where binding
of Ca2+ to the IP3R lies within the sequence of events
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Figure 1. Association of proteins with IP3Rs
Key functional domains of a single IP3R subunit are shown: the
suppressor domain (SD), IP3-binding core (IBC), cytosolic regulatory
domain, transmembrane domains (TMDs) and the cytosolic
C-terminus (CT). The sites to which proteins are proposed to bind are
shown. Many additional proteins are thought to associate with
IP3Rs, but the binding sites have not been identified. Abbreviations
and references are provided in Tables 1–4.

linking binding of IP3 to channel gating. One possibility
is that the conformational changes evoked by binding of
IP3 expose a site to which Ca2+ must bind before the
channel can open (Marchant & Taylor, 1997; Foskett et al.
2007). However, neither the structural identity of this
stimulatory Ca2+-binding site, nor that of the inhibitory
site through which higher concentrations of Ca2+ inhibit
IP3Rs have been resolved. The inhibitory site may reside
on an accessory protein associated with IP3Rs.

IP3Rs are present in almost all animal cells and some
protozoa (Prole & Taylor, 2011), but there are no homo-
logous proteins in plants (Wheeler & Brownlee, 2008) or
fungi (Prole & Taylor, 2012). The genomes of vertebrates
encode three subtypes of IP3R subunit (IP3R1–3), which
can form homo-tetrameric or hetero-tetrameric channels
(Joseph et al. 1995) with differing properties and
distributions (Foskett et al. 2007; Mikoshiba, 2007). In
mammalian cells, IP3Rs have been reported to release
Ca2+ mainly from the endoplasmic reticulum (ER) (Streb
et al. 1984; Volpe et al. 1985), but the Golgi apparatus
(Pinton et al. 1998) and secretory vesicles (Yoo, 2011)
also respond to IP3. Although IP3 initiates Ca2+ signals
by stimulating Ca2+ release from intracellular stores, the
signals are sustained by Ca2+ entry across the plasma
membrane. That too is indirectly regulated by IP3, because
store-operated Ca2+ entry is stimulated by loss of Ca2+
from the ER (Parekh & Putney, 2005; Lewis, 2012). Ca2+
signals initiated by IP3Rs evoke a wide variety of cellular
events, ranging from embryological development (Kume
et al. 1997; Uchida et al. 2010) to cellular metabolism
(Cardenas et al. 2010), gluconeogenesis (Wang et al. 2012),
exocrine secretion (Futatsugi et al. 2005) and neuronal
function (Matsumoto et al. 1996).

Specificity within Ca2+ signalling pathways, or indeed
any signalling pathway (Scott & Pawson, 2009; Scott
et al. 2013), is achieved, in part, by the formation
of macromolecular signalling complexes. Within the
signalling pathways that involve phospholipase C (PLC),
these complexes regulate the activity of IP3Rs, their
distribution, and their association with both the plasma
membrane receptors that evoke IP3 formation and the
downstream targets of the Ca2+ released by IP3Rs
(Konieczny et al. 2012). The interactions of IP3Rs with
other proteins have been reviewed previously (Choe
& Ehrlich, 2006; Foskett et al. 2007; Mikoshiba, 2007;
Vanderheyden et al. 2009a), but continued progress
and the advent of high-throughput proteomics methods
(Havugimana et al. 2012; Rolland et al. 2014) suggest that
an update is timely.

Searches of proteomic databases and published
literature reveal a large number of proteins that form
complexes with IP3Rs (Tables 1–4). For some of these
proteins, the regions within IP3Rs that are important for
the interaction have been mapped (Fig. 1). At the outset,
it is worth sounding some notes of caution regarding
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Table 1. Proteins that form complexes with IP3Rs and enhance their activity

Protein References

Effective delivery of messengers
Adenylyl cyclase 6 (AC6) Tovey et al. 2008
Bradykinin receptor B2 (B2R) Delmas et al. 2002; Jin et al. 2013
Epidermal growth factor receptor (EGFR) Hur et al. 2005
Erythropoietin receptor (EPO-R) Tong et al. 2004
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Patterson et al. 2005
Metabotropic glutamate receptor 1 (mGluR1;GRM1) Tu et al. 1998
Phospholipase C-β1 (PLCβ1) Shin et al. 2000
Phospholipase C-β4 (PLCβ4) Nakamura et al. 2004
Phospholipase C-γ1 (PLCγ1) Tong et al. 2004; Yuan et al. 2005
Protease-activated receptor 2 (PAR-2) Jin et al. 2013

Sensitization to IP3/Ca2+

Bcl-2 (B-cell lymphoma 2)a Chen et al. 2004; Eckenrode et al. 2010; Monaco et al. 2012;
Chang et al. 2014

Bcl-XL (B-cell lymphoma extra large) White et al. 2005; Eckenrode et al. 2010; Monaco et al. 2012
Chromogranin A (CGA) Yoo & Lewis, 1998; Thrower et al. 2002
Chromogranin B (CGB; secretogranin-1) Yoo & Lewis, 2000; Thrower et al. 2003
Cyclin-A Soghoian et al. 2005
Cyclin-B1 (CYB) Malathi et al. 2003; Malathi et al. 2005
Cyclin-dependent kinase 1 (CDK1) Malathi et al. 2003; Malathi et al. 2005
Cytochrome c1 Boehning et al. 2004
Fyn (tyrosine-protein kinase) Jayaraman et al. 1996; Cui et al. 2004
Glucosidase 2 subunit β (80K-H) Kawaai et al. 2009
Glycogen synthase kinase-3β (GSK3β) Gomez et al. 2016
Huntingtin-associated protein 1 (HAP-1) Tang et al. 2003b
Huntingtin (HTT) (with poly-Q expansion, HTTexp)b Tang et al. 2003b
Lyn (tyrosine-protein kinase) Yokoyama et al. 2002
Mcl-1 (myeloid cell leukemia-1) Eckenrode et al. 2010
mTOR (mammalian target of rapamycin) Fregeau et al. 2011
Neuronal Ca2+ sensor 1 (NCS-1) Schlecker et al. 2006
Polo-like kinase 1 (PLK1) Ito et al. 2008; Vanderheyden et al. 2009b
Presenilin-1/Presenilin-2 (PS-1/PS-2) Cheung et al. 2008
Protein kinase A (PKA; cAMP-dependent protein kinase) Ferris et al. 1991; Bruce et al. 2002
Receptor of activated protein kinase C1 (RACK1) Patterson et al. 2004
Rho-associated protein kinase (ROCK) Singleton & Bourguignon, 2002
TRISK 32 (cardiac triadin TRISK 32 isoform) Olah et al. 2011

Direct activation of IP3Rs
Ca2+-binding protein 1 (CaBP1)c Yang et al. 2002; Li et al. 2013
CIB1 (Ca2+ and integrin-binding protein 1; calmyrin)c White et al. 2006
Gβγ complex Shin et al. 2000; Zeng et al. 2003

Other
DARPP-32 (protein phosphatase 1 regulatory subunit 1B) Chang et al. 2014
DHHC6 Fredericks et al. 2014
EB3 (end-binding protein 3) Geyer et al. 2015
GRP-78 (78 kDa glucose-regulated protein; BiP) Higo et al. 2010
Phosphatidylinositol trisphosphate 3-phosphatase (PTEN) Bononi et al. 2013
Selenoprotein K (SELK) Fredericks et al. 2014

Data for Tables 1–4 were derived from manual searches of the literature, reviews (Choe & Ehrlich, 2006; Foskett et al. 2007; Mikoshiba,
2007; Vanderheyden et al. 2009a) and databases, including BioGRID (Chatr-Aryamontri et al. 2015) and IntAct (Orchard et al. 2013).
The nomenclature of proteins shown is consistent with the human homologues, although some data are derived from interactions
of IP3Rs and proteins from other species. aSome studies report sensitization of IP3Rs by Bcl-2, while others report inhibition. bHTTexp,
but not wild-type HTT, sensitizes IP3Rs to IP3/Ca2+. cCaBP1 and CIB1 are also reported to inhibit IP3Rs (see Table 2); direct activation
seems to occur only transiently, and is controversial.

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 2. Proteins that form complexes with IP3Rs and inhibit their activity

Protein References

Proteins that bind reversibly and disrupt activation by IP3 and/or Ca2+

Ankyrin-R (ANK1) Bourguignon et al. 1993; Joseph & Samanta, 1993
Bcl-2 (B-cell lymphoma 2)a Chen et al. 2004; Monaco et al. 2012; Chang et al. 2014
Ca2+-binding protein 1 (CaBP1)b Yang et al. 2002; Li et al. 2013
Calmodulin (CaM) Maeda et al. 1991; Yamada et al. 1995
Carbonic anhydrase-related protein (CARP; CA8) Hirota et al. 2003
Caspase-3 Hirota et al. 1999
CIB1 (Ca2+ and integrin-binding protein 1; calmyrin)b White et al. 2006
DANGER (IP3R-interacting protein) van Rossum et al. 2006
ERp44 (endoplasmic reticulum resident protein 44) Higo et al. 2005
FKBP1A (FK506-binding protein 1A; FKBP12) Cameron et al. 1995b
GIT1/GIT2 (ARF GTPase-activating protein 1/2) Zhang et al. 2009
IRBIT (IP3-binding protein released with IP3) Ando et al. 2003
K-Ras Sung et al. 2013
MRVI1 (IRAG; IP3R-associated cGMP kinase substrate) Schlossman et al. 2000
Nuclear protein localization protein 4 homologue (NPL4) Alzayady et al. 2005
Polycystin-1 (PC1; TRPP1) Li et al. 2005

Proteins that post-translationally modify IP3Rs
AKT1 (RAC-α serine/threonine protein kinase; PKB) Khan et al. 2006; Szado et al. 2008
Ca2+/calmodulin-dependent protein kinase II (CaMKII) Ferris et al. 1991; Bare et al. 2005
Calpain Magnusson et al. 1993; Wojcikiewicz & Oberdorf, 1996
E3 ubiquitin ligase AMFR (GP78)c Pearce et al. 2007
E3 ubiquitin ligase RNF170c Lu et al. 2011
Erlin-1/Erlin-2 (SPFH domain-containing protein 1/2)c Pearce et al. 2007; Pearce et al. 2009
MAPK1/MAPK3 (mitogen-activated protein kinase 1/3) Bai et al. 2006
Protein phosphatase 1A (PP1A) Tang et al. 2003a; Chang et al. 2014
Transglutaminase-2 (TGM2) Hamada et al. 2014
Transitional endoplasmic reticulum ATPase (p97)c Alzayady et al. 2005
Ubiquitinc Bokkala & Joseph, 1997; Oberdorf et al. 1999
Ubiquitin-conjugating enzyme E2 7 (UBC7)c Webster et al. 2003
Ubiquitin conjugation factor E4A (UFD2)c Alzayady et al. 2005
Ubiquitin fusion degradation 1 protein (UFD1)c Alzayady et al. 2005

aBcl-2 has also been reported to sensitize IP3Rs to IP3/Ca2+ (see Table 1). bCaBP1 and CIB1 may also cause transient activation of IP3Rs,
although this is controversial (see Table 1). cComponents of the proteasomal pathway.

the reported interactions. Firstly, it is often difficult to
establish that two proteins interact directly, rather than
via intermediate proteins. Many of these complexes may,
therefore, be formed by direct or indirect interactions of
IP3Rs with other proteins. For example, association of
protein phosphatase 1 with IP3Rs may be mediated in
part by IRBIT (IP3R-binding protein released with IP3),
which binds directly to both proteins (Ando et al. 2014).
Secondly, the interactions and their effects may depend
on the cellular context, including such factors as the sub-
type of IP3R, the physiological status of the IP3R (e.g.
phosphorylation), the cell type and the expression levels
of the interacting proteins and IP3Rs. Thirdly, interactions
that occur in cellular lysates may be precluded within intact
cells. For example, the interaction of two proteins may be
prevented by their physical separation within the cell or
by mutually exclusive binding of other proteins or ligands.
IRBIT, for example, binds to IP3R subunits only when they

have no IP3 bound. Lastly, some forms of experimental
evidence are more discriminating than others, and it will
be necessary to verify the putative interactions indicated
by methods such as yeast two-hybrid screening and mass
spectrometry.

Although we focus on the ability of IP3Rs to release
Ca2+ from intracellular stores, IP3Rs have additional
roles. For example, binding of IP3 is proposed to release
IRBIT from the IP3-binding site, freeing IRBIT to regulate
additional targets that include ion channels, transporters
and the enzyme ribonucleotide reductase (Ando et al.
2014; Arnaoutov & Dasso, 2014). IP3Rs may also regulate
associated proteins independently of their ability to
release Ca2+. For example, a direct interaction between
IP3Rs and TRPC (transient receptor potential canonical)
channels is proposed to stimulate opening of the latter
(Zhang et al. 2001). Hence, when reviewing the effects of
proteins associated with IP3Rs, we should look beyond

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 3. Proteins that form complexes with IP3Rs and act as downstream effectors

Protein References

Anoctamin-1 (ANO1, Ca2+-activated Cl− channel) Jin et al. 2013
Calcineurin (CN; protein phosphatase 2B) Cameron et al. 1995a; Chang et al. 2014
CASK (Ca2+/calmodulin-dependent serine protein kinase) Maximov et al. 2003
CRTC2 (CREB-regulated transcription coactivator 2) Wang et al. 2012
IRBIT (IP3-binding protein released with IP3)a Ando et al. 2003
KCa1.1 (BKCa; large conductance Ca2+-activated K+ channel) Zhao et al. 2010; Mound et al. 2013
Na+/Ca2+ exchanger 1 (NCX1) Lencesova et al. 2004; Mohler et al. 2005
Orai-1 (Ca2+ release-activated Ca2+ channel 1) Woodard et al. 2010; Lur et al. 2011
Plasma membrane Ca2+ ATPase (PMCA) Shin et al. 2000; Huang et al. 2006
Protein kinase C (PKC) Ferris et al. 1991; Rex et al. 2010
SERCA 2B/3 (sarco/endoplasmic reticulum Ca2+-ATPase) Redondo et al. 2008
STIM1 (stromal interaction molecule 1) Santoso et al. 2011
TRPC1-7 (transient receptor potential canonical channels) Boulay et al. 1999; Mery et al. 2001; Tang et al. 2001; Yuan

et al. 2003; Tong et al. 2004
VDAC1 (voltage-dependent anion channel 1) Szabadkai et al. 2006

aIRBIT also inhibits IP3Rs by occluding the IP3-binding site (Table 2).

the effects of IP3 on cytosolic Ca2+ signals, to consider
also consequences within the ER lumen, effects on Ca2+
entry, and effects unrelated to Ca2+ signalling. That scope
is too ambitious for this short review. Instead we provide
a comprehensive summary of proteins suggested to inter-
act with IP3Rs (Tables 1–4, within which we provide most
references) and then explore a few selected examples to
illustrate some general features.

Signalling complexes containing IP3Rs span entire
signalling pathways

The sheer number of proteins reported to form complexes
with IP3Rs is striking and so too is their diversity, in terms
of both cellular geography and function (Tables 1–4).
IP3Rs form complexes with many of the proteins that
link extracellular stimuli to formation of IP3, including
G protein-coupled receptors (GPCRs), the epidermal
growth factor receptor (EGFR), the erythropoietin
receptor, the Gβγ complexes of G proteins, and some
forms of PLC. IP3Rs also associate with other signalling
proteins linked to PLC signalling, including protein kinase
C (PKC), RACK1 (receptor of activated PKC) and the
phosphoinositide phosphatase PTEN. The interactions
extend also to proteins from other signalling pathways,
including adenylyl cyclase (AC), the small G protein K-Ras,
and the protein kinases AKT1 (RAC-α serine/threonine
protein kinase), mTOR (mammalian target of rapamycin),
c-Src and MAPK1/MAPK3 (mitogen-activated protein
kinase 1/3) (Tables 1–4 and Fig. 1). Proteins that respond
to the Ca2+ released by IP3Rs also form complexes with
IP3Rs. These include ion channels, exchangers and pumps
within the plasma membrane. It is clear that IP3Rs reside
within macromolecular complexes that both span entire

signalling pathways from cell-surface receptors to the
effectors that respond to Ca2+, and include proteins that
integrate signals from other signalling pathways.

The advantages of these signalling complexes are clear.
They allow information to be directed selectively from
specific extracellular stimuli to specific intracellular targets
through conserved signalling pathways. Furthermore,
associated proteins can integrate signals from different
signalling pathways and so modulate traffic through
the complex. Hence, protein complexes confer both
specificity and plasticity. A third advantage is speed.
Signalling pathways must be able to turn on and off
quickly. Fast activation benefits from high concentrations
of reactants and fast on-rates (k1) for association of
messengers with their targets. Rapid de-activation requires
rapid destruction or dissipation of the messenger and
a fast dissociation rate (k−1). By facilitating delivery of
messengers at high local concentrations to their targets
(e.g. IP3 to IP3Rs), signalling complexes contribute to
both rapid activation and de-activation, the latter because
diffusion of messengers away from the site of delivery
may be sufficient to allow their concentration to fall
below that required for activation as soon as synthesis
of the messenger ceases. Secondly, targets can have fast
off-rates (k−1) with a corresponding loss of affinity
(equilibrium association constant, KA = k1/k−1) that
does not compromise their capacity to respond to high
local concentrations of messenger. We suggest, then, that
assembly of proteins around IP3Rs contributes to fast
and specific signalling, while providing opportunities for
signal integration and plasticity.

For convenience, we consider the proteins that associate
with IP3Rs under four somewhat arbitrary (and over-
lapping) headings: proteins that enhance or inhibit the

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 4. Other proteins that form complexes with IP3Rs

Protein References

Cytoskeletal, scaffolding and adaptor proteins
14-3-3 protein zeta/delta (PKC inhibitor protein 1) Angrand et al. 2006
α-Actin Sugiyama et al. 2000
Ankyrin-B (ANK2) Hayashi & Su, 2001; Mohler et al. 2004; Kline et al. 2008
AKAP9 (A-kinase anchor protein 9; Yotiao) Tu et al. 2004
BANK1 (B-cell scaffold protein with ankyrin repeats) Yokoyama et al. 2002
Caveolin-1 Murata et al. 2007; Sundivakkam et al. 2009; Jin et al. 2013
Coiled-coil domain-containing protein 8 Hanson et al. 2014
Homer 1/2/3 Tu et al. 1998
EB1 / EB3 (end-binding protein 1/3)a Geyer et al. 2015
KRAP (K-Ras-induced actin-interacting protein) Fujimoto et al. 2011
LAT (linker of activated T-cells) deSouza et al. 2007
Myosin-2A Walker et al. 2002; Hours & Mery, 2010
Obscurin-like protein 1 Hanson et al. 2014
Protein 4.1N (band 4.1-like protein 1) Maximov et al. 2003
SEC8 (exocyst complex component) Shin et al. 2000
SNAP-29 (synaptosomal-associated protein 29) Huttlin et al. 2013
α-Spectrin/β-spectrin (α/β-fodrin) Lencesova et al. 2004
Syntaxin 1B Tanaka et al. 2011
Talin Sugiyama et al. 2000
Vimentin Dingli et al. 2012
Vinculin Sugiyama et al. 2000

Other proteins
Anaplastic lymphoma kinase (ALK) Crockett et al. 2004
ARHGAP1 (Rho GTPase-activating protein 1) Nagaraja & Kandpal, 2004
γ-BBH (γ-butyrobetaine dioxygenase) Huttlin et al. 2013
Beclin-1 Vicencio et al. 2009
BOK (Bcl-2-related ovarian killer protein) Schulman et al. 2013
Calnexin Joseph et al. 1999
CD44 antigen (heparin sulphate proteoglycan) Singleton & Bourguignon, 2004
CEMIP (cell migration-inducing and hyaluronan-binding protein) Tiwari et al. 2013
Cyclophilin D (peptidyl-prolyl cis-trans isomerase F) Paillard et al. 2013
FAM19A4 (chemokine-like protein TAFA-4) Huttlin et al. 2013
F-box and leucine-rich repeat protein 14 Huttlin et al. 2013
FGL2 (fibrinogen-like 2) Huttlin et al. 2013
FERM domain-containing 1 Huttlin et al. 2013
GluRδ2 (ionotropic glutamate receptor δ2) Nakamura et al. 2004
Golgi anti-apoptotic protein (GAAP; Lifeguard 4; TMBIM4) de Mattia et al. 2009
GRP-75 (glucose-regulated protein 75; stress-70 protein) Szabadkai et al. 2006
Heat shock protein 90 (HSP90) Nguyen et al. 2009
Junctate Treves et al. 2004
Lethal(3)malignant brain tumor-like protein 2 Huttlin et al. 2013
Lymphoid-restricted membrane protein (LRMP; JAW1) Shindo et al. 2010
Na+/K+-transporting ATPase Mohler et al. 2005; Yuan et al. 2005
Neuronal acetylcholine receptor α3 Huttlin et al. 2013
PASK (PAS domain-containing protein kinase) Schlafli et al. 2011
Phospholamban Koller et al. 2003
Polycystin-2 (PC2; TRPP2) Li et al. 2005
Protein kinase G1 (PKG1; cGMP-dependent protein kinase 1) Schlossman et al. 2000
PTPα (protein tyrosine phosphatase-α) Wang et al. 2009
Rab29 (Ras-related protein Rab7L1) Huttlin et al. 2013
Rac1 (Ras-related C3 botulinum toxin substrate 1; TC25) Natsvlishvili et al. 2015
RhoA Mehta et al. 2003

(Continued)

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Table 4. Continued

Protein References

Sigma 1 receptor (σ1R) Hayashi & Su, 2001; Natsvlishvili et al. 2015
Sirtuin-7 Tsai et al. 2012
c-Src (proto-oncogene tyrosine-protein kinase Src) Jayaraman et al. 1996; Wang et al. 2009
STARD13 (StAR-related lipid transfer protein 13; RhoGAP) Nagaraja & Kandpal, 2004
Syndecan-1 (SYND1; CD138) Maximov et al. 2003
TESPA1 (thymocyte-expressed positive selection-associated protein 1) Matsuzaki et al. 2012

aBoth EB1 and EB3 associate with IP3Rs, but only EB3 has been shown to be required for effective Ca2+ signalling in endothelial cells
(Table 1) (Geyer et al. 2015).

activity of IP3Rs (Tables 1 and 2); proteins that respond to
Ca2+ released by IP3Rs (Table 3); and proteins with more
general roles, including those associated with movement
of IP3Rs (Table 4).

Proteins that enhance the function of IP3Rs

Usually, IP3Rs open only when they have bound both
IP3 and Ca2+ (Foskett et al. 2007; Taylor & Tovey,
2010). Unsurprisingly, therefore, most of the proteins that
associate with IP3Rs and enhance their activity do so either
by allowing more effective delivery of IP3 and/or Ca2+ to
IP3Rs, or by enhancing the responsiveness of IP3Rs to IP3

and/or Ca2+ (Table 1).
The association of IP3Rs with GPCRs, EGFR and

erythropoietin receptors, with the βγ subunits of G
proteins, with some isoforms of PLC, and with scaffold
proteins, like Homer 1 that tethers IP3Rs to metabotropic
glutamate receptors and PLC (Tu et al. 1998), suggest
mechanisms by which receptors may effectively deliver
IP3 to specific IP3Rs. This targeted delivery of IP3 provides
two advantages: it allows rapid responses and it may allow
spatially organized Ca2+ signals to retain an ‘imprint’ of
the stimulus that evoked them. Bradykinin B2 receptors
(B2Rs) are a well-defined example. In sympathetic
neurons, both muscarinic M1 receptors (M1Rs) and B2Rs
activate PLC, but only activation of B2Rs evokes Ca2+
release through IP3Rs (Delmas et al. 2002). This selectivity
arises because B2Rs, but not M1Rs, form complexes with
IP3Rs. Rapid generation of IP3 in response to activation
of B2Rs thereby generates relatively high concentrations
of IP3 in the vicinity of IP3Rs, which are not achieved by
the more distant M1Rs. In this case, selective coupling
between plasma membrane receptors and IP3Rs may
allow sympathetic neurons to generate different intra-
cellular responses to pro-inflammatory and cholinergic
inputs.

Rather than enhancing the delivery of IP3 to IP3Rs,
many other proteins sensitize IP3Rs to prevailing
concentrations of IP3 and/or Ca2+ (Table 1). An example,
which may play an important role in human disease, is
the sensitization of IP3Rs by mutant forms of presenilins

(Cheung et al. 2008). Mutations in presenilin-1 (PS1) and
presenilin-2 (PS2) are major causes of familial Alzheimer’s
disease. Although both wild-type and mutant presenilins
associate with IP3Rs, only the disease-causing mutant
forms of PS1 and PS2 enhance the activity of IP3Rs
in response to IP3 and Ca2+. The mechanism involved
may be a change in the modal gating of IP3Rs (Cheung
et al. 2010). This increased activity of IP3Rs results in
enhanced release of Ca2+, which may lead to aberrant
processing of β-amyloid (Cheung et al. 2008), constitutive
activation of cyclic AMP response element binding
protein (CREB)-mediated transcription (Muller et al.
2011), synaptic dysfunction and neuronal degeneration
(Mattson, 2010).

Although activation of IP3Rs normally requires binding
of IP3 and Ca2+, a few proteins have been reported to
cause reversible activation of IP3Rs directly, without the
coincident presence of IP3 and Ca2+ (Table 1). These
include Gβγ (Zeng et al. 2003), CIB1 (White et al. 2006)
and, more controversially, CaBP1 (Yang et al. 2002).
The initial report on the actions of CaBP1 described an
activation of Xenopus IP3Rs in the absence of IP3 in vitro.
However, subsequent studies have demonstrated that
CaBP1 inhibits Ca2+ release via mammalian and Xenopus
IP3Rs by stabilizing an inactive state of the IP3R (Haynes
et al. 2004; Nadif Kasri et al. 2004; White et al. 2006; Li
et al. 2013). Similarly, CIB1 was reported to activate IP3Rs
in Xenopus oocytes and Sf9 insect cells in the absence
of IP3, but it too inhibits Ca2+ release via mammalian
IP3Rs (White et al. 2006). Uniquely, an irreversible
activation of IP3Rs appears to occur after proteolytic
cleavage by caspase-3 (Assefa et al. 2004; Nakayama et al.
2004), a process that may play a prominent role in
apoptosis.

Proteins that inhibit the function of IP3Rs

Many proteins that interact with IP3Rs inhibit their
function (Table 2). These interactions may enable rapid
feedback regulation of Ca2+ release and provide long-term
attenuation of IP3R activity by promoting degradation
or irreversible inhibition of IP3Rs. These mechanisms

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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contribute to the tight regulation of IP3R activity
needed to achieve spatial and temporal organization
of Ca2+ signals (Konieczny et al. 2012). They also
provide protection from the damaging consequences of
excessive increases in cytosolic free Ca2+ concentration
(Orrenius et al. 2015) and disturbance of the other
essential roles of the ER while it fulfils its role in Ca2+
signalling (Berridge, 2002). Proteins that inhibit IP3Rs
in a Ca2+-dependent manner, like calmodulin, CaBP1,
calcineurin, CaMKII and the unidentified protein(s) that
may mediate the universal inhibition of IP3Rs by Ca2+,
are prime candidates for mediating this negative feedback.
Proteins that inhibit IP3Rs fall into two broad categories:
those that bind reversibly to interfere with binding of
IP3 and/or Ca2+ or their links to gating; and those
that cause post-translational modifications of the IP3R
(Table 2).

IRBIT inhibits all three IP3R subtypes by competing
with IP3 for binding to the IBC (Ando et al. 2003).
IRBIT binds only when it is phosphorylated at several
sites, probably because the phosphorylated residues mimic
the essential phosphate groups of IP3 (Fig. 2A). Residue
S68 is the ‘master’ phosphorylation site. When it is

Ca2+

1 530

S68-P 

S71-P 

S74-P

Ser-rich domain 

Mediates oligomerization  

Allow binding to IP3Rs 

IP3

Targets

1

2

4

3

IRBIT

PP1

A

B

Figure 2. IRBIT controls the sensitivity of IP3Rs
A, the N-terminal region of IRBIT includes a serine-rich domain.
Phosphorylation of S68, the ‘master’ phosphorylation site, allows
sequential phosphorylation of the two residues, S71 and S74, that
must be phosphorylated for IRBIT to bind to IP3Rs. Protein
phosphatase 1 (PP1) bound to IRBIT dephosphorylates S68. B,
phosphorylation of IRBIT (1) allows it to bind to the IBC and so
compete with IP3 for binding to the IP3R. Phospho-IRBIT thereby sets
the sensitivity of the IP3R to IP3. IP3 binding to the IBC (2) prevents
IRBIT binding and initiates activation of the IP3R. The displaced
phospho-IRBIT can regulate many additional targets, including ion
channels and transporters (3). The Ca2+ released by active IP3Rs may
control the phosphorylation state of IRBIT, and thereby complete a
feedback loop that regulates IP3R sensitivity (4).

phosphorylated by a Ca2+-dependent kinase, perhaps
a Ca2+/calmodulin-dependent protein kinase (CaMK),
it allows casein kinase I-mediated phosphorylation of
the two residues (S71 and S74, residue numbering
relates to mouse IP3R1) that are critical for binding
of IRBIT to IP3Rs (and its other targets) (Ando et al.
2014). Dephosphorylation of S68 is catalysed by protein
phosphatase 1 (PP1), which also associates with IRBIT.
The competition between phospho-IRBIT and IP3 for
occupancy of the IBC through which IP3 initiates
activation of IP3Rs allows IRBIT to tune the sensitivity
of IP3Rs to IP3. Hence, inhibiting expression of IRBIT, or
expression of a dominant negative form (IRBIT-S68A),
allows Ca2+ release at lower concentrations of IP3 (Ando
et al. 2014). This tuning of IP3R sensitivity has been
demonstrated in sympathetic neurons where, as discussed
earlier, M1Rs do not associate with IP3Rs and do not
normally generate sufficient IP3 to activate more distant
IP3Rs (Delmas et al. 2002). However, expression of the
dominant negative IRBIT allows M1Rs to evoke Ca2+
release through IP3Rs (Zaika et al. 2011). Although the
details are not fully resolved, the interplay between Ca2+
and the activation of IRBIT is intriguing because it suggests
potential feedback loops that might control the sensitivity
of IP3Rs to IP3 (Ando et al. 2014). The phosphorylation
(of S68) that initiates activation of IRBIT is Ca2+ sensitive,
deactivation of IRBIT by proteolytic cleavage within its
N-terminal may be mediated by Ca2+-sensitive calpain,
and IRBIT itself inhibits Ca2+/calmodulin-dependent
protein kinase IIα (CaMKIIα) (Kawaai et al. 2015)
(Fig. 2B).

Post-translational modification of IP3Rs by associated
proteins may be reversible (e.g. phosphorylation)
(Betzenhauser & Yule, 2010) or irreversible (e.g.
proteolysis and some covalent modifications). An example
of the latter is the Ca2+-dependent enzyme trans-
glutaminase type 2 (TGM2). By covalently modifying a
glutamine residue within the C-terminal tail of IP3R1,
TGM2 causes irreversible cross-linking of adjacent IP3R
subunits via a lysine residue and the modified glutamine.
This prevents the conformational changes required for
activation of IP3Rs, and so inhibits IP3-evoked Ca2+
release (Hamada et al. 2014). The Ca2+ sensitivity of
TGM2 may allow it to contribute to feedback control of
Ca2+ release and to disruption of IP3R function when
dysregulation of Ca2+ signalling occurs in pathological
conditions such as Huntington’s disease (Hamada et al.
2014). Activation of IP3Rs and the ensuing release of Ca2+
also trigger ubiquitination and proteasomal degradation
of IP3Rs (Pearce et al. 2009) and their cleavage by calpains
(Magnusson et al. 1993; Wojcikiewicz & Oberdorf,
1996). Hence, proteins that associate with IP3Rs provide
mechanisms that allow both acute and long-term feedback
regulation of IP3R activity.

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Downstream effectors

IP3Rs also form complexes with proteins that are down-
stream effectors of IP3R activation; most of these respond
to the Ca2+ released by IP3Rs (Table 3). Many of these
proteins are cytosolic, but others reside within membranes
that allow IP3Rs within the ER to communicate with other
intracellular organelles or the plasma membrane. The
importance of this communication between organelles,
mediated by junctional complexes between them, is
increasingly recognized (Lam & Galione, 2013).

Hepatic gluconeogenesis, which is likely to play an
important role in diabetes and obesity, is stimulated by
glucagon released by the pancreas during fasting, and
inhibited by insulin released when the plasma glucose
concentration increases. A complex containing IP3Rs,
the Ca2+-regulated protein phosphatase calcineurin,
the transcriptional co-activator of CREB-regulated
transcription CRTC2 (CREB-coactivator C2), PKA
and AKT1 coordinates gluconeogenesis (Wang et al.

2012) (Fig. 3). De-phosphorylated CRTC2 binds to
nuclear CREB and up-regulates genes that promote
gluconeogenesis. This is repressed by SIK2, a kinase
that phosphorylates CRTC2. IP3-evoked Ca2+ release
activates calcineurin, which de-phosphorylates CRTC2.
Glucagon receptors stimulate production of both cAMP
and IP3 (Wakelam et al. 1986; Wang et al. 2012).
The cAMP activates PKA, which phosphorylates, and
thereby inhibits, SIK2; and it phosphorylates IP3Rs,
sensitizing them to activation by IP3 and Ca2+. IP3Rs
are also directly sensitized by cAMP (Tovey et al. 2008).
Increased release of Ca2+ via IP3Rs activates calcineurin,
which dephosphorylates CRTC2 (Vanderheyden et al.
2009a; Wang et al. 2012). Hence glucagon both inhibits
the kinase (SIK2) and stimulates the phosphatase
(calcineurin) that control phosphorylation of CRTC2.
Glucagon also reduces binding of CRTC2 to IP3Rs
(Wang et al. 2012), further enhancing the nuclear trans-
location of dephosphorylated CRTC2. The signals evoked
by insulin receptors also feed into this IP3R complex.

PI3K

Fasting

PKA

PM

ER  membrane

CN

AKT1

CRTC2

cAMP
AC

CRTC2 CREB

Transcription

Nucleus

Feeding Insulin

PLC PDK1

Glucagon

Ca2+

P

IP3

SIK2

P

P

P

Figure 3. A signalling complex assembled around IP3Rs controls gluconeogenesis
Glucagon and insulin exert opposing effects on hepatic gluconeogenesis. Their signalling pathways converge to
a protein complex assembled around IP3Rs, the activity of which controls phosphorylation of the transcription
factor CRTC2. Dephosphorylated CRTC2 translocates to the nucleus, where it associates with CREB and
stimulates transcription of genes required for gluconeogenesis. SIK2 phosphorylates CRTC2, while calcineurin
dephosphorylates it. Glucagon, via a GPCR, stimulates both PLC and AC. The IP3 produced by PLC stimulates IP3Rs.
The cAMP generated by AC stimulates PKA and that promotes dephosphorylation of CRTC2 by phosphorylating
both SIK2 (inhibiting its activity) and IP3Rs, sensitizing the latter to IP3. The larger Ca2+ signal then activates
calcineurin. Insulin causes activation of AKT1, which phosphorylates IP3Rs and inhibits their activity; it thereby
opposes the effects of glucagon and attenuates calcineurin activity. Phosphorylation is indicated by red circles,
black arrows denote stimulation and the red arrow denotes inhibition. Abbreviations and further details in the text
and tables.
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Insulin stimulates phosphatidylinositol 3-kinase (PI3K)
and thereby AKT1. The latter phosphorylates IP3Rs and
attenuates their activity. Hence insulin, by inhibiting
IP3Rs, opposes the actions of glucagon by restraining the
activation of calcineurin and so maintains CRTC2 in its
inactive phosphorylated state (Wang et al. 2012). This
example illustrates some of the intricate interactions that
the assembly of proteins around IP3Rs can allow: signals
from a GPCR and a receptor tyrosine kinase converge at
IP3Rs, which then integrate the inputs and transduce them
into a regulation of gene expression (Fig. 3).

Proteins that determine the distribution of IP3Rs

The subcellular distribution of IP3Rs is an important
influence on their behaviour, not least because it defines
the sites at which they will release Ca2+, and whether
they will be exposed to effective concentrations of the
stimuli that activate them, IP3 and Ca2+. Assembly of
IP3Rs with components of the PLC signalling pathway
(see above) can ensure targeted delivery of IP3, but
Ca2+ is most often provided by neighbouring IP3Rs. An
important interaction, therefore, is that between IP3Rs
themselves, because their proximity to neighbours dictates
whether Ca2+ released by an active IP3R can ignite the
activity of other IP3Rs. Considerable evidence suggests
that clustering of IP3Rs within the plane of the ER
membrane is dynamically regulated by IP3 and/or Ca2+
(Tateishi et al. 2005; Rahman et al. 2009; and see references
in Geyer et al. 2015), although the role of this process in

shaping Ca2+ signals remains controversial (Smith et al.
2014). We have suggested that IP3-evoked clustering of
IP3Rs may contribute to the coordinated openings of
IP3Rs that underlie the small Ca2+ signals (‘Ca2+ puffs’)
evoked by low stimulus intensities, by both bringing IP3Rs
together and retuning their Ca2+ sensitivity (Rahman
et al. 2009). Head-to-head interactions of IP3Rs have also
been observed in electron micrographs of purified IP3Rs
(Hamada et al. 2003), between opposing ER membranes
within cells (Takei et al. 1994) and between the isolated
N-terminal domains of IP3Rs (Chavda et al. 2013). The
functional significance of these interactions has not been
established.

A recent study of the Ca2+ signals evoked by
thrombin-mediated stimulation of the protease-activated
receptor PAR-1 in endothelial cells provides evidence
that microtubules may guide IP3Rs into the clusters
within which Ca2+ release can most effectively recruit
neighbouring IP3Rs (Geyer et al. 2015). In lung micro-
vascular endothelial cells, thrombin, which activates
PAR-1 by cleaving its N-terminal, stimulates PLC and
thereby evokes Ca2+ release through IP3Rs. The resulting
increase in cytosolic Ca2+ concentration contributes to
disassembly of the adherens junctions that maintain the
integrity of the endothelium (Komarova & Malik, 2010).
These effects are attenuated when the interaction between
type 3 IP3Rs (IP3R3) and end-binding protein 3 (EB3)
are disrupted. EB3 belongs to a family of proteins that
bind to the plus-end of growing microtubules and recruit
other proteins, often via an S/TxIP motif (where x denotes

Ca2+

Ca2+-induced Ca2+ release 

Plasma membrane

ER  membrane

IP3

IP3R3

PLC

EB3

EB3

EB3

Thrombin

Microtubule

PAR-1

Figure 4. EB3 is required for effective signalling by IP3Rs in endothelial cells
In endothelial cells, EB3 binds to a TxIP motif within the regulatory domain of IP3R3, allowing IP3Rs to associate
with the plus-end of microtubules. Disrupting this interaction prevents clustering of IP3Rs and attenuates the
Ca2+ signals evoked by thrombin, which cleaves within the N-terminus of PAR-1 and allows it to stimulate
PLC. The evidence (Geyer et al. 2015) suggests that the EB3-mediated interaction of IP3R3 with microtubules is
essential for the clustering of IP3Rs that allows the Ca2+ released by one IP3R to be amplified by recruitment of
neighbouring IP3Rs.
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any residue) (Honnappa et al. 2009). Mutation of the
TxIP motif within the regulatory domain of IP3R3 pre-
vents its binding to EB3, attenuates thrombin-evoked Ca2+
signals, and reduces both the basal clustering of IP3R3
and the enhanced clustering evoked by thrombin. Hence,
in endothelial cells, the association of IP3R3 with EB3
and microtubules is required for both clustering of IP3Rs
and effective Ca2+ signalling. This suggests that clustering
allows IP3Rs to deliver Ca2+ more effectively to other IP3Rs
and so allows the amplification provided by Ca2+-induced
Ca2+ release (Fig. 4). We conclude that association of IP3Rs
with other proteins, components of the PLC signalling
pathway or EB3, contributes to effective delivery of the two
essential regulators of IP3Rs, IP3 and Ca2+, respectively.

Conclusions

IP3Rs and the Ca2+ they release are called upon to speci-
fically regulate many physiological processes (Berridge,
2009), while neither perturbing the other essential roles
of the ER (Berridge, 2002) nor subjecting the cell to the
deleterious consequences of excessive increases in cytosolic
Ca2+ concentration (Orrenius et al. 2015). These demands
impose a need for complex regulation of IP3Rs, much of
which is achieved by assembling proteins around IP3Rs to
form signalling complexes (Konieczny et al. 2012). These
complexes allow signals to be directed through conserved
signalling pathways and endow the pathways with speed,
integrative capacity and plasticity. The very large size of
IP3Rs relative to most other ion channels might be viewed
as an evolutionary adaptation to meet this need for them
to function as signalling hubs.

Advances in genomics, proteomics, antibody techno-
logies and bioinformatics have transformed analyses
of protein–protein interactions. It is now possible to
interrogate these interactions on a whole-proteome
scale (Havugimana et al. 2012; Rolland et al. 2014).
Bioinformatic methods can predict protein–protein inter-
actions (Baughman et al. 2011; Kotlyar et al. 2015)
and even the regions of the proteins that are involved
(Gavenonis et al. 2014). These powerful technologies, and
the opportunities they provide to design new therapies
(Wells & McClendon, 2007), cannot displace the need for
direct confirmation of the interactions and their functional
significance. Together, these approaches pave the way to
defining the properties and functional importance of IP3R
signalling hubs in normal physiology and disease.
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