1

J Physiol 000.0 (2016) pp 1-19

SYMPOSIUM REVIEW

Inositol 1,4,5-trisphosphate receptors and their protein partners as signalling hubs

David L. Prole and Colin W. Taylor

Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK

Abstract Inositol 1,4,5-trisphosphate receptors (IP₃Rs) are expressed in nearly all animal cells, where they mediate the release of Ca²⁺ from intracellular stores. The complex spatial and temporal organization of the ensuing intracellular Ca²⁺ signals allows selective regulation of diverse physiological responses. Interactions of IP3Rs with other proteins contribute to the specificity and speed of Ca²⁺ signalling pathways, and to their capacity to integrate information from other signalling pathways. In this review, we provide a comprehensive survey of the proteins proposed to interact with IP₃Rs and the functional effects that these interactions produce. Interacting proteins can determine the activity of IP₃Rs, facilitate

their regulation by multiple signalling pathways and direct the Ca^{2+} that they release to specific targets. We suggest that IP_3Rs function as signalling hubs through which diverse inputs are processed and then emerge as cytosolic Ca^{2+} signals.

(Received 31 July 2015; accepted after revision 6 November 2015; first published online 2 February 2016) **Corresponding author** D. L. Prole: Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK. Email: dp350@cam.ac.uk

Abstract figure legend IP₃Rs are hubs around which proteins assemble to orchestrate Ca²⁺ signalling.

Abbreviations AC, adenylyl cyclase; B_2R , type 2 bradykinin receptor; cAMP, cyclic adenosine monophosphate; CREB, cAMP response element-binding protein; EB3, end-binding protein 3; ER, endoplasmic reticulum; GPCR, G protein-coupled receptor; IBC, IP₃-binding core; IP₃, inositol 1,4,5-trisphosphate; IP₃R, IP₃ receptor; IRBIT, IP₃R-binding protein released with IP₃; M_1R , type 1 muscarinic acetylcholine receptor; PKA, protein kinase A; PLC, phospholipase C; SD, suppressor domain; TMD, transmembrane domain.

David Prole studied Natural Sciences at the University of Cambridge before exploring the structure and function of K⁺ channels during his PhD with Neil Marrion at the University of Bristol and HCN pacemaker channels during postdoctoral training with Gary Yellen at Harvard Medical School. After moving back to the University of Cambridge to work with Colin Taylor he held a Meres Research Associateship from St John's College and now explores the roles of ion channels in cell signalling. **Colin Taylor** began his career as an insect physiologist with Mike Berridge, before moving into phosphoinositide and Ca²⁺ signalling during a postdoc with Jim Putney in Virginia. He is presently Professor of Cellular Pharmacology and a Wellcome Trust Senior Investigator in the Department of Pharmacology in Cambridge, where he continues to explore the workings of IP₃ receptors.

This review was presented at the symposium "Molecular and Cellular Mechanisms in Health and Disease", which took place at the Gordon Research Conference on Calcium Signalling - Molecular and Cellular Mechanisms in Health and Disease in Maine, USA, 7–12 June, 2015.

© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society

DOI: 10.1113/JP271139

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Introduction

Ca²⁺ signals within cells are spatially and temporally intricate, allowing them to elicit a multitude of specific downstream effects (Berridge, 2009). Inositol 1,4,5-trisphosphate receptors (IP₃Rs), the most widely expressed class of intracellular Ca²⁺ channel, release Ca²⁺ from intracellular stores in response to binding of IP₃ and Ca²⁺ (Foskett *et al.* 2007; Taylor & Tovey, 2010). Dual regulation of IP₃Rs by two essential stimuli, IP₃ and Ca²⁺, is important because it endows IP₃Rs with a capacity to propagate Ca²⁺ signals regeneratively by Ca²⁺-induced Ca²⁺ release, as Ca²⁺ released by an active IP₃R ignites the activity of adjacent IP₃Rs that have bound IP₃ (Smith & Parker, 2009). This in turn plays a key role in defining the spatial organization of IP₃-evoked Ca²⁺ signals.

Activation of IP₃Rs is initiated by binding of IP₃ within a clam-like structure, the IP₃-binding core (IBC) (Bosanac *et al.* 2002), located near the N-terminus of each IP₃R subunit. Binding of IP₃ causes a conformational change that rearranges the association of the IBC with the N-terminal suppressor domain (SD). These changes are proposed to disrupt interactions between the N-terminal regions of the four subunits of the IP₃R, leading to opening of the channel. The latter is formed by transmembrane domains (TMDs) towards the C-terminus of each IP₃R subunit (Seo *et al.* 2012) (Fig. 1). It is not yet clear where binding of Ca²⁺ to the IP₃R lies within the sequence of events

Physiology

Figure 1. Association of proteins with IP_3Rs

Key functional domains of a single IP₃R subunit are shown: the suppressor domain (SD), IP₃-binding core (IBC), cytosolic regulatory domain, transmembrane domains (TMDs) and the cytosolic C-terminus (CT). The sites to which proteins are proposed to bind are shown. Many additional proteins are thought to associate with IP₃Rs, but the binding sites have not been identified. Abbreviations and references are provided in Tables 1–4.

linking binding of IP₃ to channel gating. One possibility is that the conformational changes evoked by binding of IP₃ expose a site to which Ca^{2+} must bind before the channel can open (Marchant & Taylor, 1997; Foskett *et al.* 2007). However, neither the structural identity of this stimulatory Ca^{2+} -binding site, nor that of the inhibitory site through which higher concentrations of Ca^{2+} inhibit IP₃Rs have been resolved. The inhibitory site may reside on an accessory protein associated with IP₃Rs.

IP₃Rs are present in almost all animal cells and some protozoa (Prole & Taylor, 2011), but there are no homologous proteins in plants (Wheeler & Brownlee, 2008) or fungi (Prole & Taylor, 2012). The genomes of vertebrates encode three subtypes of IP₃R subunit (IP₃R1-3), which can form homo-tetrameric or hetero-tetrameric channels (Joseph et al. 1995) with differing properties and distributions (Foskett et al. 2007; Mikoshiba, 2007). In mammalian cells, IP₃Rs have been reported to release Ca²⁺ mainly from the endoplasmic reticulum (ER) (Streb et al. 1984; Volpe et al. 1985), but the Golgi apparatus (Pinton et al. 1998) and secretory vesicles (Yoo, 2011) also respond to IP₃. Although IP₃ initiates Ca²⁺ signals by stimulating Ca²⁺ release from intracellular stores, the signals are sustained by Ca²⁺ entry across the plasma membrane. That too is indirectly regulated by IP₃, because store-operated Ca²⁺ entry is stimulated by loss of Ca²⁺ from the ER (Parekh & Putney, 2005; Lewis, 2012). Ca²⁺ signals initiated by IP₃Rs evoke a wide variety of cellular events, ranging from embryological development (Kume et al. 1997; Uchida et al. 2010) to cellular metabolism (Cardenas et al. 2010), gluconeogenesis (Wang et al. 2012), exocrine secretion (Futatsugi et al. 2005) and neuronal function (Matsumoto et al. 1996).

Specificity within Ca²⁺ signalling pathways, or indeed any signalling pathway (Scott & Pawson, 2009; Scott et al. 2013), is achieved, in part, by the formation of macromolecular signalling complexes. Within the signalling pathways that involve phospholipase C (PLC), these complexes regulate the activity of IP₃Rs, their distribution, and their association with both the plasma membrane receptors that evoke IP3 formation and the downstream targets of the Ca²⁺ released by IP₃Rs (Konieczny et al. 2012). The interactions of IP₃Rs with other proteins have been reviewed previously (Choe & Ehrlich, 2006; Foskett et al. 2007; Mikoshiba, 2007; Vanderheyden et al. 2009a), but continued progress and the advent of high-throughput proteomics methods (Havugimana et al. 2012; Rolland et al. 2014) suggest that an update is timely.

Searches of proteomic databases and published literature reveal a large number of proteins that form complexes with IP_3Rs (Tables 1–4). For some of these proteins, the regions within IP_3Rs that are important for the interaction have been mapped (Fig. 1). At the outset, it is worth sounding some notes of caution regarding

Table 1. Proteins that form complexes with IP₃Rs and enhance their activity

Protein	References	
Effective delivery of messengers		
Adenylyl cyclase 6 (AC6)	Tovey et al. 2008	
Bradykinin receptor B ₂ (B ₂ R)	Delmas et al. 2002; Jin et al. 2013	
Epidermal growth factor receptor (EGFR)	Hur <i>et al.</i> 2005	
Erythropoietin receptor (EPO-R)	Tong <i>et al.</i> 2004	
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	Patterson et al. 2005	
Metabotropic glutamate receptor 1 (mGluR1;GRM1)	Tu <i>et al.</i> 1998	
Phospholipase C- β 1 (PLC β 1)	Shin et al. 2000	
Phospholipase C- β 4 (PLC β 4)	Nakamura <i>et al.</i> 2004	
Phospholipase C- γ 1 (PLC γ 1)	Tong et al. 2004; Yuan et al. 2005	
Protease-activated receptor 2 (PAR-2)	Jin <i>et al.</i> 2013	
Sensitization to IP ₃ /Ca ²⁺		
Bcl-2 (B-cell lymphoma 2) ^a	Chen et al. 2004; Eckenrode et al. 2010; Monaco et al. 2012;	
	Chang e <i>t al.</i> 2014	
Bcl-X _L (B-cell lymphoma extra large)	White et al. 2005; Eckenrode et al. 2010; Monaco et al. 2012	
Chromogranin A (CGA)	Yoo & Lewis, 1998; Thrower <i>et al.</i> 2002	
Chromogranin B (CGB; secretogranin-1)	Yoo & Lewis, 2000; Thrower <i>et al.</i> 2003	
Cyclin-A	Soghoian <i>et al.</i> 2005	
Cyclin-B1 (CYB)	Malathi e <i>t al.</i> 2003; Malathi e <i>t al.</i> 2005	
Cyclin-dependent kinase 1 (CDK1)	Malathi e <i>t al.</i> 2003; Malathi e <i>t al.</i> 2005	
Cytochrome c ₁	Boehning <i>et al.</i> 2004	
Fyn (tyrosine-protein kinase)	Jayaraman <i>et al.</i> 1996; Cui <i>et al.</i> 2004	
Glucosidase 2 subunit β (80K-H)	Kawaai et al. 2009	
Glycogen synthase kinase-3 β (GSK3 β)	Gomez <i>et al.</i> 2016	
Huntingtin-associated protein 1 (HAP-1)	Tang et al. 2003b	
Huntingtin (HTT) (with poly-Q expansion, HTT ^{exp}) ^b	Tang et al. 2003b	
Lyn (tyrosine-protein kinase)	Yokoyama et al. 2002	
Mcl-1 (myeloid cell leukemia-1)	Eckenrode et al. 2010	
mTOR (mammalian target of rapamycin)	Fregeau <i>et al.</i> 2011	
Neuronal Ca ²⁺ sensor 1 (NCS-1)	Schlecker <i>et al.</i> 2006	
Polo-like kinase 1 (PLK1)	Ito et al. 2008; Vanderheyden et al. 2009b	
Presenilin-1/Presenilin-2 (PS-1/PS-2)	Cheung <i>et al.</i> 2008	
Protein kinase A (PKA; cAMP-dependent protein kinase)	Ferris et al. 1991; Bruce et al. 2002	
Receptor of activated protein kinase C1 (RACK1)	Patterson et al. 2004	
Rho-associated protein kinase (ROCK)	Singleton & Bourguignon, 2002	
TRISK 32 (cardiac triadin TRISK 32 isoform)	Olah <i>et al.</i> 2011	
Direct activation of IP ₃ Rs		
Ca ²⁺ -binding protein 1 (CaBP1) ^c	Yang e <i>t al.</i> 2002; Li <i>et al.</i> 2013	
CIB1 (Ca ²⁺ and integrin-binding protein 1; calmyrin) ^c	White <i>et al.</i> 2006	
$Geta_{\mathcal{Y}}$ complex	Shin et al. 2000; Zeng et al. 2003	
Other		
DARPP-32 (protein phosphatase 1 regulatory subunit 1B)	Chang et al. 2014	
DHHC6	Fredericks et al. 2014	
EB3 (end-binding protein 3)	Geyer et al. 2015	
GRP-78 (78 kDa glucose-regulated protein; BiP)	Higo et al. 2010	
Phosphatidylinositol trisphosphate 3-phosphatase (PTEN)	Bononi et al. 2013	
Selenoprotein K (SELK)	Fredericks <i>et al.</i> 2014	

Data for Tables 1–4 were derived from manual searches of the literature, reviews (Choe & Ehrlich, 2006; Foskett *et al.* 2007; Mikoshiba, 2007; Vanderheyden *et al.* 2009a) and databases, including BioGRID (Chatr-Aryamontri *et al.* 2015) and IntAct (Orchard *et al.* 2013). The nomenclature of proteins shown is consistent with the human homologues, although some data are derived from interactions of IP₃Rs and proteins from other species. ^aSome studies report sensitization of IP₃Rs by Bcl-2, while others report inhibition. ^bHTT^{exp}, but not wild-type HTT, sensitizes IP₃Rs to IP₃/Ca²⁺. ^cCaBP1 and CIB1 are also reported to inhibit IP₃Rs (see Table 2); direct activation seems to occur only transiently, and is controversial.

|--|

Protein	References
Proteins that bind reversibly and disrupt activation by IP ₃ and/or Ca ²⁺	
Ankyrin-R (ANK1)	Bourguignon e <i>t al.</i> 1993; Joseph & Samanta, 1993
Bcl-2 (B-cell lymphoma 2)ª	Chen et al. 2004; Monaco et al. 2012; Chang et al. 2014
Ca ²⁺ -binding protein 1 (CaBP1) ^b	Yang e <i>t al.</i> 2002; Li <i>et al.</i> 2013
Calmodulin (CaM)	Maeda <i>et al.</i> 1991; Yamada <i>et al.</i> 1995
Carbonic anhydrase-related protein (CARP; CA8)	Hirota e <i>t al.</i> 2003
Caspase-3	Hirota e <i>t al.</i> 1999
CIB1 (Ca ²⁺ and integrin-binding protein 1; calmyrin) ^b	White <i>et al.</i> 2006
DANGER (IP ₃ R-interacting protein)	van Rossum et al. 2006
ERp44 (endoplasmic reticulum resident protein 44)	Higo et al. 2005
FKBP1A (FK506-binding protein 1A; FKBP12)	Cameron <i>et al.</i> 1995 <i>b</i>
GIT1/GIT2 (ARF GTPase-activating protein 1/2)	Zhang et al. 2009
IRBIT (IP ₃ -binding protein released with IP ₃)	Ando <i>et al.</i> 2003
K-Ras	Sung et al. 2013
MRVI1 (IRAG; IP ₃ R-associated cGMP kinase substrate)	Schlossman <i>et al.</i> 2000
Nuclear protein localization protein 4 homologue (NPL4)	Alzayady et al. 2005
Polycystin-1 (PC1; TRPP1)	Li e <i>t al.</i> 2005
Proteins that post-translationally modify IP ₃ Rs	
AKT1 (RAC- α serine/threonine protein kinase; PKB)	Khan e <i>t al.</i> 2006; Szado e <i>t al.</i> 2008
Ca ²⁺ /calmodulin-dependent protein kinase II (CaMKII)	Ferris e <i>t al.</i> 1991; Bare e <i>t al.</i> 2005
Calpain	Magnusson et al. 1993; Wojcikiewicz & Oberdorf, 1996
E3 ubiquitin ligase AMFR (GP78) ^c	Pearce et al. 2007
E3 ubiquitin ligase RNF170 ^c	Lu <i>et al.</i> 2011
Erlin-1/Erlin-2 (SPFH domain-containing protein 1/2) ^c	Pearce et al. 2007; Pearce et al. 2009
MAPK1/MAPK3 (mitogen-activated protein kinase 1/3)	Bai e <i>t al.</i> 2006
Protein phosphatase 1A (PP1A)	Tang et al. 2003a; Chang et al. 2014
Transglutaminase-2 (TGM2)	Hamada e <i>t al.</i> 2014
Transitional endoplasmic reticulum ATPase (p97) ^c	Alzayady et al. 2005
Ubiquitin ^c	Bokkala & Joseph, 1997; Oberdorf et al. 1999
Ubiquitin-conjugating enzyme E2 7 (UBC7) ^c	Webster et al. 2003
Ubiquitin conjugation factor E4A (UFD2) ^c	Alzayady et al. 2005
Ubiquitin fusion degradation 1 protein (UFD1) ^c	Alzayady et al. 2005

^aBcl-2 has also been reported to sensitize IP₃Rs to IP₃/Ca²⁺ (see Table 1). ^bCaBP1 and CIB1 may also cause transient activation of IP₃Rs, although this is controversial (see Table 1). ^cComponents of the proteasomal pathway.

the reported interactions. Firstly, it is often difficult to establish that two proteins interact directly, rather than via intermediate proteins. Many of these complexes may, therefore, be formed by direct or indirect interactions of IP₃Rs with other proteins. For example, association of protein phosphatase 1 with IP₃Rs may be mediated in part by IRBIT (IP₃R-binding protein released with IP₃), which binds directly to both proteins (Ando et al. 2014). Secondly, the interactions and their effects may depend on the cellular context, including such factors as the subtype of IP₃R, the physiological status of the IP₃R (e.g. phosphorylation), the cell type and the expression levels of the interacting proteins and IP₃Rs. Thirdly, interactions that occur in cellular lysates may be precluded within intact cells. For example, the interaction of two proteins may be prevented by their physical separation within the cell or by mutually exclusive binding of other proteins or ligands. IRBIT, for example, binds to IP₃R subunits only when they

have no IP_3 bound. Lastly, some forms of experimental evidence are more discriminating than others, and it will be necessary to verify the putative interactions indicated by methods such as yeast two-hybrid screening and mass spectrometry.

Although we focus on the ability of IP₃Rs to release Ca^{2+} from intracellular stores, IP₃Rs have additional roles. For example, binding of IP₃ is proposed to release IRBIT from the IP₃-binding site, freeing IRBIT to regulate additional targets that include ion channels, transporters and the enzyme ribonucleotide reductase (Ando *et al.* 2014; Arnaoutov & Dasso, 2014). IP₃Rs may also regulate associated proteins independently of their ability to release Ca^{2+} . For example, a direct interaction between IP₃Rs and TRPC (transient receptor potential canonical) channels is proposed to stimulate opening of the latter (Zhang *et al.* 2001). Hence, when reviewing the effects of proteins associated with IP₃Rs, we should look beyond

r	

Protein	References
Anoctamin-1 (ANO1, Ca ²⁺ -activated Cl ⁻ channel)	Jin <i>et al.</i> 2013
Calcineurin (CN; protein phosphatase 2B)	Cameron et al. 1995a; Chang et al. 2014
CASK (Ca ²⁺ /calmodulin-dependent serine protein kinase)	Maximov et al. 2003
CRTC2 (CREB-regulated transcription coactivator 2)	Wang <i>et al.</i> 2012
IRBIT (IP ₃ -binding protein released with IP ₃) ^a	Ando <i>et al.</i> 2003
KCa1.1 (BK _{Ca} ; large conductance Ca^{2+} -activated K ⁺ channel)	Zhao et al. 2010; Mound et al. 2013
Na ⁺ /Ca ²⁺ exchanger 1 (NCX1)	Lencesova et al. 2004; Mohler et al. 2005
Orai-1 (Ca ²⁺ release-activated Ca ²⁺ channel 1)	Woodard et al. 2010; Lur et al. 2011
Plasma membrane Ca ²⁺ ATPase (PMCA)	Shin et al. 2000; Huang et al. 2006
Protein kinase C (PKC)	Ferris et al. 1991; Rex et al. 2010
SERCA 2B/3 (sarco/endoplasmic reticulum Ca ²⁺ -ATPase)	Redondo <i>et al.</i> 2008
STIM1 (stromal interaction molecule 1)	Santoso et al. 2011
TRPC1-7 (transient receptor potential canonical channels)	Boulay et al. 1999; Mery et al. 2001; Tang et al. 2001; Yuan et al. 2003; Tong et al. 2004
VDAC1 (voltage-dependent anion channel 1)	Szabadkai <i>et al.</i> 2006

Table 3. Proteins that form complexes with IP₃Rs and act as downstream effectors

^aIRBIT also inhibits IP_3Rs by occluding the IP_3 -binding site (Table 2).

the effects of IP₃ on cytosolic Ca²⁺ signals, to consider also consequences within the ER lumen, effects on Ca²⁺ entry, and effects unrelated to Ca²⁺ signalling. That scope is too ambitious for this short review. Instead we provide a comprehensive summary of proteins suggested to interact with IP₃Rs (Tables 1–4, within which we provide most references) and then explore a few selected examples to illustrate some general features.

Signalling complexes containing IP₃Rs span entire signalling pathways

The sheer number of proteins reported to form complexes with IP₃Rs is striking and so too is their diversity, in terms of both cellular geography and function (Tables 1-4). IP₃Rs form complexes with many of the proteins that link extracellular stimuli to formation of IP₃, including G protein-coupled receptors (GPCRs), the epidermal growth factor receptor (EGFR), the erythropoietin receptor, the $G\beta\gamma$ complexes of G proteins, and some forms of PLC. IP₃Rs also associate with other signalling proteins linked to PLC signalling, including protein kinase C (PKC), RACK1 (receptor of activated PKC) and the phosphoinositide phosphatase PTEN. The interactions extend also to proteins from other signalling pathways, including adenvlyl cyclase (AC), the small G protein K-Ras, and the protein kinases AKT1 (RAC- α serine/threonine protein kinase), mTOR (mammalian target of rapamycin), c-Src and MAPK1/MAPK3 (mitogen-activated protein kinase 1/3) (Tables 1-4 and Fig. 1). Proteins that respond to the Ca²⁺ released by IP₃Rs also form complexes with IP₃Rs. These include ion channels, exchangers and pumps within the plasma membrane. It is clear that IP₃Rs reside within macromolecular complexes that both span entire signalling pathways from cell-surface receptors to the effectors that respond to Ca^{2+} , and include proteins that integrate signals from other signalling pathways.

The advantages of these signalling complexes are clear. They allow information to be directed selectively from specific extracellular stimuli to specific intracellular targets through conserved signalling pathways. Furthermore, associated proteins can integrate signals from different signalling pathways and so modulate traffic through the complex. Hence, protein complexes confer both specificity and plasticity. A third advantage is speed. Signalling pathways must be able to turn on and off quickly. Fast activation benefits from high concentrations of reactants and fast on-rates (k_1) for association of messengers with their targets. Rapid de-activation requires rapid destruction or dissipation of the messenger and a fast dissociation rate (k_{-1}) . By facilitating delivery of messengers at high local concentrations to their targets (e.g. IP₃ to IP₃Rs), signalling complexes contribute to both rapid activation and de-activation, the latter because diffusion of messengers away from the site of delivery may be sufficient to allow their concentration to fall below that required for activation as soon as synthesis of the messenger ceases. Secondly, targets can have fast off-rates (k_{-1}) with a corresponding loss of affinity (equilibrium association constant, $K_A = k_1/k_{-1}$) that does not compromise their capacity to respond to high local concentrations of messenger. We suggest, then, that assembly of proteins around IP₃Rs contributes to fast and specific signalling, while providing opportunities for signal integration and plasticity.

For convenience, we consider the proteins that associate with IP₃Rs under four somewhat arbitrary (and overlapping) headings: proteins that enhance or inhibit the

Table 4. Other proteins that form complexes with IP₃Rs

Protein	References
Cytoskeletal, scaffolding and adaptor proteins	
14-3-3 protein zeta/delta (PKC inhibitor protein 1)	Angrand et al. 2006
α-Actin	Sugiyama et al. 2000
Ankyrin-B (ANK2)	Hayashi & Su, 2001; Mohler e <i>t al.</i> 2004; Kline e <i>t al.</i> 2008
AKAP9 (A-kinase anchor protein 9; Yotiao)	Tu <i>et al.</i> 2004
BANK1 (B-cell scaffold protein with ankyrin repeats)	Yokoyama <i>et al.</i> 2002
Caveolin-1	Murata et al. 2007; Sundivakkam et al. 2009; Jin et al. 2013
Coiled-coil domain-containing protein 8	Hanson et al. 2014
Homer 1/2/3	Tu <i>et al.</i> 1998
EB1 / EB3 (end-binding protein 1/3) ^a	Geyer <i>et al.</i> 2015
KRAP (K-Ras-induced actin-interacting protein)	Fujimoto e <i>t al.</i> 2011
LAT (linker of activated T-cells)	deSouza <i>et al.</i> 2007
Myosin-2A	Walker <i>et al.</i> 2002; Hours & Mery, 2010
Obscurin-like protein 1	Hanson et al. 2014
Protein 4.1N (band 4.1-like protein 1)	Maximov <i>et al.</i> 2003
SEC8 (exocyst complex component)	Shin e <i>t al.</i> 2000
SNAP-29 (synaptosomal-associated protein 29)	Huttlin <i>et al.</i> 2013
α -Spectrin/ β -spectrin (α / β -fodrin)	Lencesova et al. 2004
Syntaxin 1B	Tanaka <i>et al.</i> 2011
Talin	Sugiyama et al. 2000
Vimentin	Dingli <i>et al.</i> 2012
Vinculin	Sugiyama et al. 2000
Other proteins	
Anaplastic lymphoma kinase (ALK)	Crockett <i>et al.</i> 2004
ARHGAP1 (Rho GTPase-activating protein 1)	Nagaraja & Kandpal, 2004
γ -BBH (γ -butyrobetaine dioxygenase)	Huttlin <i>et al.</i> 2013
Beclin-1	Vicencio et al. 2009
BOK (Bcl-2-related ovarian killer protein)	Schulman et al. 2013
Calnexin	Joseph et al. 1999
CD44 antigen (heparin sulphate proteoglycan)	Singleton & Bourguignon, 2004
CEMIP (cell migration-inducing and hyaluronan-binding protein)	liwari et al. 2013
Cyclophilin D (peptidyl-prolyl cis-trans isomerase F)	Paillard et al. 2013
FAM19A4 (chemokine-like protein TAFA-4)	Huttlin et al. 2013
F-box and leucine-rich repeat protein 14	Huttlin et al. 2013
FGL2 (fibrinogen-like 2)	Huttlin et al. 2013
FERM domain-containing 1	Huttlin et al. 2013
Glukaz (ionotropic glutamate receptor az)	Nakamura et al. 2004
Golgi anti-apoptotic protein (GAAP; Lifeguard 4; TMBIM4)	de Mattia et al. 2009
GRP-75 (glucose-regulated protein 75; stress-70 protein)	Szabadkai et al. 2006
Heat shock protein 90 (HSP90)	Nguyen et al. 2009
	Ireves et al. 2004
Lethal(3)malignant brain tumor-like protein 2	Huttlin et al. 2013
Lymphoid-restricted membrane protein (LRMP; JAVVT)	
Na '/K' - transporting Al Pase	Monier et al. 2005; Yuan et al. 2005
Neuronal acetylcholine receptor α 3	
PASK (PAS domain-containing protein kinase)	Schlan et al. 2011
Phospholamban	
POlycyslin-z (PC2; IRPP2)	Li el di. 2005
PTDr. (protein turosing phosphatase a)	Wang at al. 2000
r_1r_{α} (protein tyrosine prospiratase- α) Rab20 (Ras-related protein Pab711)	Huttlin at al. 2003
Rap29 (Rds-Telated protein Rdb/LT) Pact (Pas related C2 botulinum toxin substrate 1, TC2E)	Natavlichvili at al. 2015
RhoA	Mehta et al. 2013
	(Continued)

Protein	References
Sigma 1 receptor (σ1R)	Hayashi & Su, 2001; Natsvlishvili et al. 2015
Sirtuin-7	Tsai <i>et al.</i> 2012
c-Src (proto-oncogene tyrosine-protein kinase Src)	Jayaraman e <i>t al.</i> 1996; Wang e <i>t al.</i> 2009
STARD13 (StAR-related lipid transfer protein 13; RhoGAP)	Nagaraja & Kandpal, 2004
Syndecan-1 (SYND1; CD138)	Maximov <i>et al.</i> 2003
TESPA1 (thymocyte-expressed positive selection-associated protein 1)	Matsuzaki et al. 2012

^aBoth EB1 and EB3 associate with IP₃Rs, but only EB3 has been shown to be required for effective Ca^{2+} signalling in endothelial cells (Table 1) (Gever *et al.* 2015).

activity of IP₃Rs (Tables 1 and 2); proteins that respond to Ca^{2+} released by IP₃Rs (Table 3); and proteins with more general roles, including those associated with movement of IP₃Rs (Table 4).

Proteins that enhance the function of IP₃Rs

Usually, IP₃Rs open only when they have bound both IP₃ and Ca²⁺ (Foskett *et al.* 2007; Taylor & Tovey, 2010). Unsurprisingly, therefore, most of the proteins that associate with IP₃Rs and enhance their activity do so either by allowing more effective delivery of IP₃ and/or Ca²⁺ to IP₃Rs, or by enhancing the responsiveness of IP₃Rs to IP₃ and/or Ca²⁺ (Table 1).

The association of IP₃Rs with GPCRs, EGFR and erythropoietin receptors, with the $\beta\gamma$ subunits of G proteins, with some isoforms of PLC, and with scaffold proteins, like Homer 1 that tethers IP₃Rs to metabotropic glutamate receptors and PLC (Tu et al. 1998), suggest mechanisms by which receptors may effectively deliver IP₃ to specific IP₃Rs. This targeted delivery of IP₃ provides two advantages: it allows rapid responses and it may allow spatially organized Ca²⁺ signals to retain an 'imprint' of the stimulus that evoked them. Bradykinin B₂ receptors (B₂Rs) are a well-defined example. In sympathetic neurons, both muscarinic M₁ receptors (M₁Rs) and B₂Rs activate PLC, but only activation of B_2Rs evokes Ca^{2+} release through IP₃Rs (Delmas et al. 2002). This selectivity arises because B₂Rs, but not M₁Rs, form complexes with IP₃Rs. Rapid generation of IP₃ in response to activation of B₂Rs thereby generates relatively high concentrations of IP₃ in the vicinity of IP₃Rs, which are not achieved by the more distant M₁Rs. In this case, selective coupling between plasma membrane receptors and IP₃Rs may allow sympathetic neurons to generate different intracellular responses to pro-inflammatory and cholinergic inputs.

Rather than enhancing the delivery of IP₃ to IP₃Rs, many other proteins sensitize IP₃Rs to prevailing concentrations of IP₃ and/or Ca²⁺ (Table 1). An example, which may play an important role in human disease, is the sensitization of IP₃Rs by mutant forms of presenilins (Cheung *et al.* 2008). Mutations in presenilin-1 (PS1) and presenilin-2 (PS2) are major causes of familial Alzheimer's disease. Although both wild-type and mutant presenilins associate with IP₃Rs, only the disease-causing mutant forms of PS1 and PS2 enhance the activity of IP₃Rs in response to IP₃ and Ca²⁺. The mechanism involved may be a change in the modal gating of IP₃Rs (Cheung *et al.* 2010). This increased activity of IP₃Rs results in enhanced release of Ca²⁺, which may lead to aberrant processing of β -amyloid (Cheung *et al.* 2008), constitutive activation of cyclic AMP response element binding protein (CREB)-mediated transcription (Muller *et al.* 2011), synaptic dysfunction and neuronal degeneration (Mattson, 2010).

Although activation of IP₃Rs normally requires binding of IP₃ and Ca²⁺, a few proteins have been reported to cause reversible activation of IP₃Rs directly, without the coincident presence of IP₃ and Ca^{2+} (Table 1). These include $G\beta\gamma$ (Zeng et al. 2003), CIB1 (White et al. 2006) and, more controversially, CaBP1 (Yang et al. 2002). The initial report on the actions of CaBP1 described an activation of Xenopus IP₃Rs in the absence of IP₃ in vitro. However, subsequent studies have demonstrated that CaBP1 inhibits Ca²⁺ release via mammalian and *Xenopus* IP₃Rs by stabilizing an inactive state of the IP₃R (Haynes et al. 2004; Nadif Kasri et al. 2004; White et al. 2006; Li et al. 2013). Similarly, CIB1 was reported to activate IP₃Rs in Xenopus oocytes and Sf9 insect cells in the absence of IP₃, but it too inhibits Ca²⁺ release via mammalian IP₃Rs (White *et al.* 2006). Uniquely, an irreversible activation of IP₃Rs appears to occur after proteolytic cleavage by caspase-3 (Assefa et al. 2004; Nakayama et al. 2004), a process that may play a prominent role in apoptosis.

Proteins that inhibit the function of IP₃Rs

Many proteins that interact with IP₃Rs inhibit their function (Table 2). These interactions may enable rapid feedback regulation of Ca^{2+} release and provide long-term attenuation of IP₃R activity by promoting degradation or irreversible inhibition of IP₃Rs. These mechanisms

contribute to the tight regulation of IP₃R activity needed to achieve spatial and temporal organization of Ca^{2+} signals (Konieczny *et al.* 2012). They also provide protection from the damaging consequences of excessive increases in cytosolic free Ca²⁺ concentration (Orrenius et al. 2015) and disturbance of the other essential roles of the ER while it fulfils its role in Ca²⁺ signalling (Berridge, 2002). Proteins that inhibit IP₃Rs in a Ca²⁺-dependent manner, like calmodulin, CaBP1, calcineurin, CaMKII and the unidentified protein(s) that may mediate the universal inhibition of IP₃Rs by Ca^{2+} , are prime candidates for mediating this negative feedback. Proteins that inhibit IP₃Rs fall into two broad categories: those that bind reversibly to interfere with binding of IP₃ and/or Ca²⁺ or their links to gating; and those that cause post-translational modifications of the IP₃R (Table 2).

IRBIT inhibits all three IP₃R subtypes by competing with IP₃ for binding to the IBC (Ando *et al.* 2003). IRBIT binds only when it is phosphorylated at several sites, probably because the phosphorylated residues mimic the essential phosphate groups of IP₃ (Fig. 2*A*). Residue S68 is the 'master' phosphorylation site. When it is

Figure 2. IRBIT controls the sensitivity of IP₃Rs

A, the N-terminal region of IRBIT includes a serine-rich domain. Phosphorylation of S68, the 'master' phosphorylation site, allows sequential phosphorylation of the two residues, S71 and S74, that must be phosphorylated for IRBIT to bind to IP₃Rs. Protein phosphatase 1 (PP1) bound to IRBIT dephosphorylates S68. *B*, phosphorylation of IRBIT (1) allows it to bind to the IBC and so compete with IP₃ for binding to the IP₃R. Phospho-IRBIT thereby sets the sensitivity of the IP₃R to IP₃. IP₃ binding to the IBC (2) prevents IRBIT binding and initiates activation of the IP₃R. The displaced phospho-IRBIT can regulate many additional targets, including ion channels and transporters (3). The Ca²⁺ released by active IP₃Rs may control the phosphorylation state of IRBIT, and thereby complete a feedback loop that regulates IP₃R sensitivity (4). phosphorylated by a Ca²⁺-dependent kinase, perhaps a Ca²⁺/calmodulin-dependent protein kinase (CaMK), it allows casein kinase I-mediated phosphorylation of the two residues (S71 and S74, residue numbering relates to mouse IP₃R1) that are critical for binding of IRBIT to IP₃Rs (and its other targets) (Ando et al. 2014). Dephosphorylation of S68 is catalysed by protein phosphatase 1 (PP1), which also associates with IRBIT. The competition between phospho-IRBIT and IP₃ for occupancy of the IBC through which IP₃ initiates activation of IP₃Rs allows IRBIT to tune the sensitivity of IP₃Rs to IP₃. Hence, inhibiting expression of IRBIT, or expression of a dominant negative form (IRBIT-S68A), allows Ca²⁺ release at lower concentrations of IP₃ (Ando et al. 2014). This tuning of IP₃R sensitivity has been demonstrated in sympathetic neurons where, as discussed earlier, M1Rs do not associate with IP3Rs and do not normally generate sufficient IP₃ to activate more distant IP₃Rs (Delmas et al. 2002). However, expression of the dominant negative IRBIT allows M1Rs to evoke Ca2+ release through IP₃Rs (Zaika et al. 2011). Although the details are not fully resolved, the interplay between Ca²⁺ and the activation of IRBIT is intriguing because it suggests potential feedback loops that might control the sensitivity of IP₃Rs to IP₃ (Ando et al. 2014). The phosphorylation (of S68) that initiates activation of IRBIT is Ca^{2+} sensitive, deactivation of IRBIT by proteolytic cleavage within its N-terminal may be mediated by Ca²⁺-sensitive calpain, and IRBIT itself inhibits Ca2+/calmodulin-dependent protein kinase IIa (CaMKIIa) (Kawaai et al. 2015) (Fig. 2*B*).

Post-translational modification of IP₃Rs by associated proteins may be reversible (e.g. phosphorylation) (Betzenhauser & Yule, 2010) or irreversible (e.g. proteolysis and some covalent modifications). An example of the latter is the Ca²⁺-dependent enzyme transglutaminase type 2 (TGM2). By covalently modifying a glutamine residue within the C-terminal tail of IP₃R1, TGM2 causes irreversible cross-linking of adjacent IP₃R subunits via a lysine residue and the modified glutamine. This prevents the conformational changes required for activation of IP3Rs, and so inhibits IP3-evoked Ca2+ release (Hamada et al. 2014). The Ca²⁺ sensitivity of TGM2 may allow it to contribute to feedback control of Ca²⁺ release and to disruption of IP₃R function when dysregulation of Ca²⁺ signalling occurs in pathological conditions such as Huntington's disease (Hamada et al. 2014). Activation of IP₃Rs and the ensuing release of Ca^{2+} also trigger ubiquitination and proteasomal degradation of IP₃Rs (Pearce et al. 2009) and their cleavage by calpains (Magnusson et al. 1993; Wojcikiewicz & Oberdorf, 1996). Hence, proteins that associate with IP₃Rs provide mechanisms that allow both acute and long-term feedback regulation of IP₃R activity.

Downstream effectors

IP₃Rs also form complexes with proteins that are downstream effectors of IP₃R activation; most of these respond to the Ca²⁺ released by IP₃Rs (Table 3). Many of these proteins are cytosolic, but others reside within membranes that allow IP₃Rs within the ER to communicate with other intracellular organelles or the plasma membrane. The importance of this communication between organelles, mediated by junctional complexes between them, is increasingly recognized (Lam & Galione, 2013).

Hepatic gluconeogenesis, which is likely to play an important role in diabetes and obesity, is stimulated by glucagon released by the pancreas during fasting, and inhibited by insulin released when the plasma glucose concentration increases. A complex containing IP_3Rs , the Ca^{2+} -regulated protein phosphatase calcineurin, the transcriptional co-activator of CREB-regulated transcription CRTC2 (CREB-coactivator C2), PKA and AKT1 coordinates gluconeogenesis (Wang *et al.*

2012) (Fig. 3). De-phosphorylated CRTC2 binds to nuclear CREB and up-regulates genes that promote gluconeogenesis. This is repressed by SIK2, a kinase that phosphorvlates CRTC2. IP₃-evoked Ca^{2+} release activates calcineurin, which de-phosphorylates CRTC2. Glucagon receptors stimulate production of both cAMP and IP₃ (Wakelam et al. 1986; Wang et al. 2012). The cAMP activates PKA, which phosphorylates, and thereby inhibits, SIK2; and it phosphorylates IP₃Rs, sensitizing them to activation by IP₃ and Ca²⁺. IP₃Rs are also directly sensitized by cAMP (Tovey et al. 2008). Increased release of Ca²⁺ via IP₃Rs activates calcineurin, which dephosphorvlates CRTC2 (Vanderhevden et al. 2009a; Wang et al. 2012). Hence glucagon both inhibits the kinase (SIK2) and stimulates the phosphatase (calcineurin) that control phosphorylation of CRTC2. Glucagon also reduces binding of CRTC2 to IP₃Rs (Wang et al. 2012), further enhancing the nuclear translocation of dephosphorylated CRTC2. The signals evoked by insulin receptors also feed into this IP₃R complex.

Figure 3. A signalling complex assembled around IP₃Rs controls gluconeogenesis

Glucagon and insulin exert opposing effects on hepatic gluconeogenesis. Their signalling pathways converge to a protein complex assembled around IP₃Rs, the activity of which controls phosphorylation of the transcription factor CRTC2. Dephosphorylated CRTC2 translocates to the nucleus, where it associates with CREB and stimulates transcription of genes required for gluconeogenesis. SIK2 phosphorylates CRTC2, while calcineurin dephosphorylates it. Glucagon, via a GPCR, stimulates both PLC and AC. The IP₃ produced by PLC stimulates IP₃Rs. The cAMP generated by AC stimulates PKA and that promotes dephosphorylation of CRTC2 by phosphorylating both SIK2 (inhibiting its activity) and IP₃Rs, sensitizing the latter to IP₃. The larger Ca²⁺ signal then activates calcineurin. Insulin causes activation of AKT1, which phosphorylates IP₃Rs and inhibits their activity; it thereby opposes the effects of glucagon and attenuates calcineurin activity. Phosphorylation is indicated by red circles, black arrows denote stimulation and the red arrow denotes inhibition. Abbreviations and further details in the text and tables.

Insulin stimulates phosphatidylinositol 3-kinase (PI3K) and thereby AKT1. The latter phosphorylates IP₃Rs and attenuates their activity. Hence insulin, by inhibiting IP₃Rs, opposes the actions of glucagon by restraining the activation of calcineurin and so maintains CRTC2 in its inactive phosphorylated state (Wang *et al.* 2012). This example illustrates some of the intricate interactions that the assembly of proteins around IP₃Rs can allow: signals from a GPCR and a receptor tyrosine kinase converge at IP₃Rs, which then integrate the inputs and transduce them into a regulation of gene expression (Fig. 3).

Proteins that determine the distribution of IP₃Rs

The subcellular distribution of IP₃Rs is an important influence on their behaviour, not least because it defines the sites at which they will release Ca²⁺, and whether they will be exposed to effective concentrations of the stimuli that activate them, IP3 and Ca2+. Assembly of IP₃Rs with components of the PLC signalling pathway (see above) can ensure targeted delivery of IP₃, but Ca²⁺ is most often provided by neighbouring IP₃Rs. An important interaction, therefore, is that between IP₃Rs themselves, because their proximity to neighbours dictates whether Ca²⁺ released by an active IP₃R can ignite the activity of other IP₃Rs. Considerable evidence suggests that clustering of IP₃Rs within the plane of the ER membrane is dynamically regulated by IP₃ and/or Ca²⁺ (Tateishi et al. 2005; Rahman et al. 2009; and see references in Geyer et al. 2015), although the role of this process in shaping Ca²⁺ signals remains controversial (Smith *et al.* 2014). We have suggested that IP₃-evoked clustering of IP₃Rs may contribute to the coordinated openings of IP₃Rs that underlie the small Ca²⁺ signals ('Ca²⁺ puffs') evoked by low stimulus intensities, by both bringing IP₃Rs together and retuning their Ca²⁺ sensitivity (Rahman *et al.* 2009). Head-to-head interactions of IP₃Rs have also been observed in electron micrographs of purified IP₃Rs (Hamada *et al.* 2003), between opposing ER membranes within cells (Takei *et al.* 1994) and between the isolated N-terminal domains of IP₃Rs (Chavda *et al.* 2013). The functional significance of these interactions has not been established.

A recent study of the Ca^{2+} signals evoked by thrombin-mediated stimulation of the protease-activated receptor PAR-1 in endothelial cells provides evidence that microtubules may guide IP₃Rs into the clusters within which Ca²⁺ release can most effectively recruit neighbouring IP₃Rs (Gever et al. 2015). In lung microvascular endothelial cells, thrombin, which activates PAR-1 by cleaving its N-terminal, stimulates PLC and thereby evokes Ca²⁺ release through IP₃Rs. The resulting increase in cytosolic Ca²⁺ concentration contributes to disassembly of the adherens junctions that maintain the integrity of the endothelium (Komarova & Malik, 2010). These effects are attenuated when the interaction between type 3 IP₃Rs (IP₃R3) and end-binding protein 3 (EB3) are disrupted. EB3 belongs to a family of proteins that bind to the plus-end of growing microtubules and recruit other proteins, often via an S/TxIP motif (where x denotes

Figure 4. EB3 is required for effective signalling by IP₃Rs in endothelial cells

In endothelial cells, EB3 binds to a TxIP motif within the regulatory domain of IP₃R3, allowing IP₃Rs to associate with the plus-end of microtubules. Disrupting this interaction prevents clustering of IP₃Rs and attenuates the Ca²⁺ signals evoked by thrombin, which cleaves within the N-terminus of PAR-1 and allows it to stimulate PLC. The evidence (Geyer *et al.* 2015) suggests that the EB3-mediated interaction of IP₃R3 with microtubules is essential for the clustering of IP₃Rs that allows the Ca²⁺ released by one IP₃R to be amplified by recruitment of neighbouring IP₃Rs.

Ando H, Kawaai K & Mikoshiba K (2014). IRBIT: A regulator of ion channels and ion transporters. *Biochim Biophys Acta*

1843, 2195–2204. Ando H, Mizutani A, Matsu-ura T & Mikoshiba K (2003). IRBIT, a novel inositol 1,4,5-trisphosphate (IP₃) receptorbinding protein, is released from the IP₃ receptor upon IP₃ binding to the receptor. *J Biol Chem* **278**, 10602–10612.

Angrand PO, Segura I, Volkel P, Ghidelli S, Terry R, Brajenovic M, Vintersten K, Klein R, Superti-Furga G, Drewes G, Kuster B, Bouwmeester T & Acker-Palmer A (2006). Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. *Mol Cell Proteomics* 5, 2211–2227.

Arnaoutov A & Dasso M (2014). Enzyme regulation. IRBIT is a novel regulator of ribonucleotide reductase in higher eukaryotes. *Science* 345, 1512–1515.

Assefa Z, Bultynck G, Szlufcik K, Nadif Kasri N, Vermassen E, Goris J, Missiaen L, Callewaert G, Parys JB & De Smedt H (2004). Caspase-3-induced truncation of type 1 inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. *J Biol Chem* **279**, 43227–43236.

Bai GR, Yang LH, Huang XY & Sun FZ (2006). Inositol 1,4,5-trisphosphate receptor type 1 phosphorylation and regulation by extracellular signal-regulated kinase. *Biochem Biophys Res Commun* **348**, 1319–1327.

Bare DJ, Kettlun CS, Liang M, Bers DM & Mignery GA (2005). Cardiac type-2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by CaMKII. *J Biol Chem* **280**, 15912–15920.

Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V & Mootha VK (2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. *Nature* 476, 341–345.

Berridge MJ (2002). The endoplasmic reticulum: a multifunctional signaling organelle. *Cell Calcium* **32**, 235–249.

- Berridge MJ (2009). Inositol trisphosphate and calcium signalling mechanisms. *Biochim Biophys Acta* **1793**, 933–940.
- Betzenhauser MJ & Yule DI (2010). Regulation of inositol 1,4,5-trisphosphate receptors by phosphorylation and adenine nucleotides. *Curr Top Membr* **66**, 273–298.

Boehning D, Patterson RL & Snyder SH (2004). Apoptosis and calcium: new roles for cytochrome c and inositol 1,4,5-trisphosphate. *Cell Cycle* **3**, 252–254.

Bokkala S & Joseph SK (1997). Angiotensin II-induced down-regulation of inositol trisphosphate receptors in WB rat liver epithelial cells. Evidence for involvement of the proteasome pathway. *J Biol Chem* **272**, 12454–12461.

Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, Pandolfi PP & Pinton P (2013). Identification of PTEN at the ER and MAMs and its regulation of Ca²⁺ signaling and apoptosis in a protein phosphatase-dependent manner. *Cell Death Differ* **20**, 1631–1643.

Bosanac I, Alattia J-R, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K & Ikura M (2002). Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. *Nature* **420**, 696–700.

any residue) (Honnappa *et al.* 2009). Mutation of the TxIP motif within the regulatory domain of IP₃R3 prevents its binding to EB3, attenuates thrombin-evoked Ca²⁺ signals, and reduces both the basal clustering of IP₃R3 and the enhanced clustering evoked by thrombin. Hence, in endothelial cells, the association of IP₃R3 with EB3 and microtubules is required for both clustering of IP₃Rs and effective Ca²⁺ signalling. This suggests that clustering allows IP₃Rs to deliver Ca²⁺ more effectively to other IP₃Rs and so allows the amplification provided by Ca²⁺-induced Ca²⁺ release (Fig. 4). We conclude that association of IP₃Rs with other proteins, components of the PLC signalling pathway or EB3, contributes to effective delivery of the two essential regulators of IP₃Rs, IP₃ and Ca²⁺, respectively.

Conclusions

IP₃Rs and the Ca²⁺ they release are called upon to specifically regulate many physiological processes (Berridge, 2009), while neither perturbing the other essential roles of the ER (Berridge, 2002) nor subjecting the cell to the deleterious consequences of excessive increases in cytosolic Ca²⁺ concentration (Orrenius *et al.* 2015). These demands impose a need for complex regulation of IP₃Rs, much of which is achieved by assembling proteins around IP₃Rs to form signalling complexes (Konieczny *et al.* 2012). These complexes allow signals to be directed through conserved signalling pathways and endow the pathways with speed, integrative capacity and plasticity. The very large size of IP₃Rs relative to most other ion channels might be viewed as an evolutionary adaptation to meet this need for them to function as signalling hubs.

Advances in genomics, proteomics, antibody technologies and bioinformatics have transformed analyses of protein–protein interactions. It is now possible to interrogate these interactions on a whole-proteome scale (Havugimana *et al.* 2012; Rolland *et al.* 2014). Bioinformatic methods can predict protein–protein interactions (Baughman *et al.* 2011; Kotlyar *et al.* 2015) and even the regions of the proteins that are involved (Gavenonis *et al.* 2014). These powerful technologies, and the opportunities they provide to design new therapies (Wells & McClendon, 2007), cannot displace the need for direct confirmation of the interactions and their functional significance. Together, these approaches pave the way to defining the properties and functional importance of IP₃R signalling hubs in normal physiology and disease.

References

Alzayady KJ, Panning MM, Kelley GG & Wojcikiewicz RJ (2005). Involvement of the p97-Ufd1-Npl4 complex in the regulated endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors. *J Biol Chem* **280**, 34530–34537.

© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society

- Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K & Birnbaumer L (1999). Modulation of Ca²⁺ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP₃R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP₃R in store depletion-activated Ca²⁺ entry. *Proc Natl Acad Sci USA* **96**, 14955–14960.
- Bourguignon LYW, Jin H, Iida N, Brandt NR & Zhang SH (1993). The involvement of ankyrin in the regulation of inositol 1,4,5-trisphosphate receptor-mediated internal Ca²⁺ release from the Ca²⁺ storage vesicles of mouse T-lymphoma cells. *J Biol Chem* **268**, 7290–7297.
- Bruce JIE, Shuttleworth TJ, Giovannucci DR & Yule DI (2002). Phosphorylation of inositol 1,4,5-trisphosphate receptors in parotid acinar cells. A mechanism for the synergistic effects of cAMP on Ca²⁺ signaling. *J Biol Chem* **277**, 1340–1348.
- Cameron AM, Steiner JP, Roskams AJ, Ali SM, Ronnett GV & Snyder SH (1995*a*). Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca²⁺ flux. *Cell* **83**, 463–472.
- Cameron AM, Steiner JP, Sabatini DM, Kaplin AI, Walensky LD & Snyder SH (1995*b*). Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. *Proc Natl Acad Sci USA* **92**, 1784–1788.
- Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR & Foskett JK (2010). Essential regulation of cell bioenergetics by constitutive InsP₃ receptor Ca²⁺ transfer to mitochondria. *Cell* **142**, 270–283.
- Chang MJ, Zhong F, Lavik AR, Parys JB, Berridge MJ & Distelhorst CW (2014). Feedback regulation mediated by Bcl-2 and DARPP-32 regulates inositol 1,4,5-trisphosphate receptor phosphorylation and promotes cell survival. *Proc Natl Acad Sci USA* **111**, 1186–1191.
- Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A, Kolas N, O'Donnell L, Reguly T, Nixon J, Ramage L, Winter A, Sellam A, Chang C, Hirschman J, Theesfeld C, Rust J, Livstone MS, Dolinski K & Tyers M (2015). The BioGRID interaction database: 2015 update. *Nucleic Acids Res* **43**, D470–D478.
- Chavda AP, Prole DL & Taylor CW (2013). A bead aggregation assay for detection of low-affinity protein-protein interactions reveals interactions between N-terminal domains of inositol 1,4,5-trisphosphate receptors. *PLoS One* **8**, e60609.
- Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA, Velez P & Distelhorst CW (2004). Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. *J Cell Biol* **166**, 193–203.
- Cheung KH, Mei L, Mak DO, Hayashi I, Iwatsubo T, Kang DE & Foskett JK (2010). Gain-of-function enhancement of IP₃ receptor modal gating by familial Alzheimer's disease-linked presenilin mutants in human cells and mouse neurons. *Sci Signal* **3**, ra22.

- Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VM & Foskett JK (2008). Mechanism of Ca^{2+} disruption in Alzheimer's disease by presenilin regulation of InsP₃ receptor channel gating. *Neuron* **58**, 871–883.
- Choe C & Ehrlich BE (2006). The inositol 1,4,5-trisphosphate receptor (IP₃R) and its regulators: sometimes good and sometimes bad teamwork. *Science STKE* **2006**, re15.
- Crockett DK, Lin Z, Elenitoba-Johnson KS & Lim MS (2004). Identification of NPM-ALK interacting proteins by tandem mass spectrometry. *Oncogene* **23**, 2617–2629.
- Cui J, Matkovich SJ, deSouza N, Li S, Rosemblit N & Marks AR (2004). Regulation of the type 1 inositol 1,4,5-trisphosphate receptor by phosphorylation at tyrosine 353. *J Biol Chem* **279**, 16311–16316.
- Delmas P, Wanaverbecq N, Abogadie FC, Mistry M & Brown DA (2002). Signaling microdomains define the specificity of receptor-mediated InsP₃ pathways in neurons. *Neuron* **34**, 209–220.
- de Mattia F, Gubser C, van Dommelen MM, Visch HJ, Distelmaier F, Postigo A, Luyten T, Parys JB, de Smedt H, Smith GL, Willems PH & van Kuppeveld FJ (2009). Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. *Mol Biol Cell* **20**, 3638–3645.
- deSouza N, Cui J, Dura M, McDonald TV & Marks AR (2007). A function for tyrosine phosphorylation of type 1 inositol 1,4,5-trisphosphate receptor in lymphocyte activation. *J Cell Biol* **179**, 923–934.
- Dingli F, Parys JB, Loew D, Saule S & Mery L (2012). Vimentin and the K-Ras-induced actin-binding protein control inositol-(1,4,5)-trisphosphate receptor redistribution during MDCK cell differentiation. *J Cell Sci* **125**, 5428–5440.
- Eckenrode EF, Yang J, Velmurugan GV, Foskett JK & White C (2010). Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca²⁺ signaling. *J Biol Chem* **285**, 13678–13684.
- Ferris CD, Huganir RL, Bredt DS, Cameron AM & Snyder SH (1991). Inositol trisphosphate receptor: phosphorylation by protein kinase C and calcium calmodulin-dependent protein kinases in reconstituted lipid vesicles. *Proc Natl Acad Sci USA* 88, 2232–2235.
- Foskett JK, White C, Cheung KH & Mak DO (2007). Inositol trisphosphate receptor Ca²⁺ release channels. *Physiol Rev* **87**, 593–658.
- Fredericks GJ, Hoffmann FW, Rose AH, Osterheld HJ, Hess FM, Mercier F & Hoffmann PR (2014). Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. *Proc Natl Acad Sci USA* **111**, 16478–16483.
- Fregeau MO, Regimbald-Dumas Y & Guillemette G (2011). Positive regulation of inositol 1,4,5-trisphosphate-induced Ca²⁺ release by mammalian target of rapamycin (mTOR) in RINm5F cells. *J Cell Biochem* **112**, 723–733.
- Fujimoto T, Machida T, Tanaka Y, Tsunoda T, Doi K, Ota T, Okamura T, Kuroki M & Shirasawa S (2011). KRAS-induced actin-interacting protein is required for the proper localization of inositol 1,4,5-trisphosphate receptor in the epithelial cells. *Biochem Biophys Res Commun* **407**, 438–443.

Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, Kitaguchi T, Takahashi-Iwanaga H, Noda T, Aruga J & Mikoshiba K (2005). IP₃ receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. *Science* **309**, 2232–2234.

Gavenonis J, Sheneman BA, Siegert TR, Eshelman MR & Kritzer JA (2014). Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. *Nat Chem Biol* **10**, 716–722.

Geyer M, Huang F, Sun Y, Vogel SM, Malik AB, Taylor CW & Komarova YA (2015). Microtubule-associated protein EB3 regulates IP₃ receptor clustering and Ca²⁺ signaling in endothelial cells. *Cell Reports* **12**, 79–89.

Gomez L, Thiebaut PA, Paillard M, Ducreux S, Abrial M, Crola Da Silva C, Durand A, Alam MR, Van Coppenolle F, Sheu SS & Ovize M (2016). The SR/ER-mitochondria calcium crosstalk is regulated by GSK3 β during reperfusion injury. *Cell Death Differ* **23**, 313–322.

Hamada K, Terauchi A & Mikoshiba K (2003). Three-dimensional rearrangements with inositol 1,4,5-trisphosphate receptor by calcium. *J Biol Chem* **278**, 52881–52889.

Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N, Matsumoto N, Hisatsune C, Nakamura T & Mikoshiba K (2014). Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. *Proc Natl Acad Sci USA* **111**, E3966–E3975.

Hanson D, Stevens A, Murray PG, Black GC & Clayton PE (2014). Identifying biological pathways that underlie primordial short stature using network analysis. *J Mol Endocrinol* **52**, 333–344.

Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, Li Z, Wang PI, Boutz DR, Fong V, Phanse S, Babu M, Craig SA, Hu P, Wan C, Vlasblom J, Dar VU, Bezginov A, Clark GW, Wu GC, Wodak SJ, Tillier ER, Paccanaro A, Marcotte EM & Emili A (2012). A census of human soluble protein complexes. *Cell* 150, 1068–1081.

Hayashi T & Su T-P (2001). Regulating ankyrin dynamics: roles of sigma-1 receptors. *Proc Natl Acad Sci USA* **98**, 491–496.

Haynes LP, Tepikin AV & Burgoyne RD (2004). Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. *J Biol Chem* **279**, 547–555.

Higo T, Hamada K, Hisatsune C, Nukina N, Hashikawa T, Hattori M, Nakamura T & Mikoshiba K (2010). Mechanism of ER stress-induced brain damage by IP₃ receptor. *Neuron* **68**, 865–878.

Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T & Mikoshiba K (2005). Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. *Cell* **120**, 85–98.

Hirota J, Ando H, Hamada K & Mikoshiba K (2003). Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. *Biochem J* **372**, 435–441.

Hirota J, Furuichi T & Mikoshiba K (1999). Inositol 1,4,5trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. *J Biol Chem* **274**, 34433–34437. Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wuthrich K, Akhmanova A & Steinmetz MO (2009). An EB1-binding motif acts as a microtubule tip localization signal. *Cell* 138, 366–376.

Hours MC & Mery L (2010). The N-terminal domain of the type 1 Ins(1,4,5)P₃ receptor stably expressed in MDCK cells interacts with myosin IIA and alters epithelial cell morphology. *J Cell Sci* **123**, 1449–1459.

Huang G, Yao J, Zeng W, Mizuno Y, Kamm KE, Stull JT, Harding HP, Ron D & Muallem S (2006). ER stress disrupts Ca²⁺-signaling complexes and Ca²⁺ regulation in secretory and muscle cells from PERK-knockout mice. *J Cell Sci* **119**, 153–161.

Hur E-M, Park Y-S, Huh YH, Yoo SH, Woo K-C, Choi B-H & Kim K-T (2005). Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca²⁺ signaling. *J Cell Biol* **169**, 657–667.

Huttlin EL, Ting L, Bruckner R, Paulo JA, Gygi MP, Rad R, Kolippakkam D, Szpyt J, Zarraga G, Tam S, Gebreab F, Colby G, Pontano-Vaites L, Obar RA, Guarani-Pereira V, Harris T, Artavanis-Tsakonas S, Sowa ME, Harper JW & Gygi SP (2013). High-throughput proteomic mapping of human interaction networks via affinity-purification mass spectrometry (pre publication). *BioGRID* http://thebiogrid. org/166968/publication/high-throughput-proteomicmapping-of-human-interaction-networks-via-affinitypurification-mass-spectrometry.html

Ito J, Yoon SY, Lee B, Vanderheyden V, Vermassen E, Wojcikiewicz R, Alfandari D, De Smedt H, Parys JB & Fissore RA (2008). Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca²⁺ channel, is a novel substrate of polo-like kinase 1 in eggs. *Dev Biol* **320**, 402–413.

Jayaraman T, Ondrias K, Ondriasová E & Marks AR (1996). Regulation of the inositol 1,4,5-trisphosphate receptor by tyrosine phosphorylation. *Science* **272**, 1492–1494.

Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu Z, Lippiat JD, Beech DJ, Sivaprasadarao A, Baldwin SA & Gamper N (2013). Activation of the Cl⁻ channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP₃ receptor. *Sci Signal* **6**, ra73.

Joseph SK, Boehning D, Bokkala S, Watkins R & Widjaja J (1999). Biosynthesis of inositol trisphosphate receptors: selective association with the molecular chaperone calnexin. *Biochem J* **342**, 153–161.

Joseph SK, Lin C, Pierson S, Thomas AP & Maranto AR (1995). Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells. *J Biol Chem* **270**, 23310–23315.

Joseph SK & Samanta S (1993). Detergent solubility of the inositol trisphosphate receptor in rat brain membranes. Evidence for association of the receptor with ankyrin. *J Biol Chem* **268**, 6477–6486.

Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T & Mikoshiba K (2009). 80K-H interacts with inositol 1,4,5-trisphosphate (IP₃) receptors and regulates IP₃-induced calcium release activity. *J Biol Chem* 284, 372–380.

© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society

Kawaai K, Mizutani A, Shoji H, Ogawa N, Ebisui E, Kuroda Y, Wakana S, Miyakawa T, Hisatsune C & Mikoshiba K (2015). IRBIT regulates CaMKIIα activity and contributes to catecholamine homeostasis through tyrosine hydroxylase phosphorylation. *Proc Natl Acad Sci USA* **112**, 5515–5520.

Khan MT, Wagner L 2nd, Yule DI, Bhanumathy C & Joseph SK (2006). Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. *J Biol Chem* **281**, 3731–3737.

Kline CF, Cunha SR, Lowe JS, Hund TJ & Mohler PJ (2008). Revisiting ankyrin-InsP₃ receptor interactions: ankyrin-B associates with the cytoplasmic N-terminus of the InsP₃ receptor. *J Cell Biochem* **104**, 1244–1253.

Koller A, Schlossmann J, Ashman K, Uttenweiler-Joseph S, Ruth P & Hofmann F (2003). Association of phospholamban with a cGMP kinase signaling complex. *Biochem Biophys Res Commun* **300**, 155–160.

Komarova Y & Malik AB (2010). Regulation of endothelial permeability via paracellular and transcellular transport pathways. *Annu Rev Physiol* 72, 463–493.

Konieczny V, Keebler MV & Taylor CW (2012). Spatial organization of intracellular Ca²⁺ signals. *Semin Cell Dev Biol* **23**, 172–180.

Kotlyar M, Pastrello C, Pivetta F, Lo Sardo A, Cumbaa C, Li H, Naranian T, Niu Y, Ding Z, Vafaee F, Broackes-Carter F, Petschnigg J, Mills GB, Jurisicova A, Stagljar I, Maestro R & Jurisica I (2015). In silico prediction of physical protein interactions and characterization of interactome orphans. *Nat Methods* 12, 79–84.

Kume S, Muto A, Inoue T, Suga K, Okano H & Mikoshiba K (1997). Role of inositol 1,4,5-trisphosphate receptor in ventral signaling in *Xenopus* embryos. *Science* 278, 1940–1943.

Lam A & Galione A (2013). The endoplasmic reticulum and junctional membrane communication during calcium signaling. *Biochim Biophys Acta* **1833**, 2542–2559.

Lencesova L, O'Neill A, Resneck WG, Bloch RJ & Blaustein MP (2004). Plasma membrane-cytoskeleton-endoplasmic reticulum complexes in neurons and astrocytes. *J Biol Chem* **279**, 2885–2893.

Lewis RS (2012). Store-operated calcium channels: new perspectives on mechanism and function. *Cold Spring Harb Persp Biol* **3**, a003970.

Li C, Enomoto M, Rossi AM, Seo M-D, Rahman T, Stathopulos PB, Taylor CW, Ikura M & Ames JB (2013). CaBP1, a neuronal Ca²⁺ sensor protein, inhibits inositol trisphosphate receptors by clamping inter-subunit interactions. *Proc Natl Acad Sci USA* **110**, 8507–8512.

Li Y, Wright JM, Qian F, Germino GG & Guggino WB (2005). Polycystin 2 interacts with type I inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca²⁺ signaling. *J Biol Chem* **280**, 41298–41306.

Lu JP, Wang Y, Sliter DA, Pearce MM & Wojcikiewicz RJ (2011). RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. *J Biol Chem* **286**, 24426–24433.

Lur G, Sherwood MW, Ebisui E, Haynes L, Feske S, Sutton R, Burgoyne RD, Mikoshiba K, Petersen OH & Tepikin AV (2011). InsP₃ receptors and Orai channels in pancreatic acinar cells: co-localization and its consequences. *Biochem J* 436, 231–239. Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M & Mikoshiba K (1991). Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. *J Biol Chem* **266**, 1109–1116.

Magnusson A, Haug LS, Walaas I & Ostvold AC (1993). Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca²⁺ channel. *FEBS Lett* **323**, 229–232.

Malathi K, Kohyama S, Ho M, Soghoian D, Li X, Silane M, Berenstein A & Jayaraman T (2003). Inositol 1,4,5-trisphosphate receptor (type 1) phosphorylation and modulation by Cdc2. *J Cell Biochem* **90**, 1186–1196.

Malathi K, Li X, Krizanova O, Ondrias K, Sperber K, Ablamunits V & Jayaraman T (2005). Cdc2/cyclin B1 interacts with and modulates inositol 1,4,5-trisphosphate receptor (type 1) functions. *J Immunol* **175**, 6205–6210.

Marchant JS & Taylor CW (1997). Cooperative activation of IP₃ receptors by sequential binding of IP₃ and Ca²⁺ safeguards against spontaneous activity. *Curr Biol* **7**, 510–518.

Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, Yoneshima H, Miyawaki A, Fukuuchi Y, Furuichi T, Okano H, Mikoshiba K & Noda T (1996). Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. *Nature* **379**, 168–171.

Matsuzaki H, Fujimoto T, Ota T, Ogawa M, Tsunoda T, Doi K, Hamabashiri M, Tanaka M & Shirasawa S (2012). Tespa1 is a novel inositol 1,4,5-trisphosphate receptor binding protein in T and B lymphocytes. *FEBS Open Bio* **2**, 255–259.

Mattson MP (2010). ER calcium and Alzheimer's disease: in a state of flux. *Sci Signal* **3**, pe10.

Maximov A, Tang TS & Bezprozvanny I (2003). Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons. *Mol Cell Neurosci* **22**, 271–283.

Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD & Malik AB (2003). RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca²⁺ entry. Role in signaling increased endothelial permeability. *J Biol Chem* **278**, 33492–33500.

Mery L, Magnino F, Schmidt K, Krause KH & Dufour JF (2001). Alternative splice variants of hTrp4 differentially interact with the C-terminal portion of the inositol 1,4,5-trisphosphate receptors. *FEBS J* **487**, 377–383.

Mikoshiba K (2007). IP₃ receptor/Ca²⁺ channel: from discovery to new signaling concepts. *J Neurochem* **102**, 1426–1446.

Mohler PJ, Davis JQ & Bennett V (2005). Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP₃ receptor in a cardiac T-tubule/SR microdomain. *PLoS Biol* **3**, e423.

Mohler PJ, Davis JQ, Davis LH, Hoffman JA, Michaely P & Bennett V (2004). Inositol 1,4,5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with ankyrin-B. *J Biol Chem* **279**, 12980–12987.

Monaco G, Beckers M, Ivanova H, Missiaen L, Parys JB, De Smedt H & Bultynck G (2012). Profiling of the Bcl-2/Bcl-X(L)-binding sites on type 1 IP₃ receptor. *Biochem Biophys Res Commun* **428**, 31–35. Mound A, Rodat-Despoix L, Bougarn S, Ouadid-Ahidouch H & Matifat F (2013). Molecular interaction and functional coupling between type 3 inositol 1,4,5-trisphosphate receptor and BKCa channel stimulate breast cancer cell proliferation. *Eur J Cancer* **49**, 3738–3751.

Muller M, Cardenas C, Mei L, Cheung KH & Foskett JK (2011). Constitutive cAMP response element binding protein (CREB) activation by Alzheimer's disease presenilin-driven inositol trisphosphate receptor (InsP₃R) Ca²⁺ signaling. *Proc Natl Acad Sci USA* **108**, 13293–13298.

Murata T, Lin MI, Stan RV, Bauer PM, Yu J & Sessa WC (2007). Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. *J Biol Chem* **282**, 16631–16643.

Nadif Kasri N, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K, Missiaen L, McDonald F, De Smedt H, Conway SJ, Holmes AB, Berridge MJ & Roderick HL (2004). Regulation of $InsP_3$ receptor activity by neuronal Ca^{2+} -binding proteins. *EMBO J* **23**, 312–321.

Nagaraja GM & Kandpal RP (2004). Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. *Biochem Biophys Res Commun* **313**, 654–665.

Nakamura M, Sato K, Fukaya M, Araishi K, Aiba A, Kano M & Watanabe M (2004). Signaling complex formation of phospholipase $C\beta4$ with metabotropic glutamate receptor type 1 α and 1,4,5-trisphosphate receptor at the perisynapse and endoplasmic reticulum in the mouse brain. *Eur J Neurosci* **20**, 2929–2944.

Nakayama T, Hattori M, Uchida K, Nakamura T, Tateishi Y, Bannai H, Iwai M, Michikawa T, Inoue T & Mikoshiba K (2004). The regulatory domain of the inositol 1,4,5-trisphosphate receptor is necessary to maintain the channel domain closed: possible physiological significance of specific cleavage by caspase. *Biochem J* **377**, 299–307.

Natsvlishvili N, Goguadze N, Zhuravliova E & Mikeladze D (2015). Sigma-1 receptor directly interacts with Rac1-GTPase in the brain mitochondria. *BMC Biochem* **16**, 11.

Nguyen N, Francoeur N, Chartrand V, Klarskov K, Guillemette G & Boulay G (2009). Insulin promotes the association of heat shock protein 90 with the inositol 1,4,5-trisphosphate receptor to dampen its Ca²⁺ release activity. *Endocrinology* **150**, 2190–2196.

Oberdorf J, Webster JM, Zhu CC, Luo SG & Wojcikiewicz RJ (1999). Down-regulation of types I, II and III inositol 1,4,5-trisphosphate receptors is mediated by the ubiquitin/proteasome pathway. *Biochem J* **339**, 453–461.

Olah T, Fodor J, Oddoux S, Ruzsnavszky O, Marty I & Csernoch L (2011). Trisk 32 regulates IP₃ receptors in rat skeletal myoblasts. *Pflugers Arch* **462**, 599–610.

Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell NH, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering RC, Meldal B, Melidoni AN, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G & Hermjakob H (2013). The MIntAct project– IntAct as a common curation platform for 11 molecular interaction databases. *Nucleic Acids Res* **42**, D358–D363.

Orrenius S, Gogvadze V & Zhivotovsky B (2015). Calcium and mitochondria in the regulation of cell death. *Biochem Biophys Res Commun* **460**, 72–81.

Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, Teixeira G, Mewton N, Belaidi E, Durand A, Abrial M, Lacampagne A, Rieusset J & Ovize M (2013). Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. *Circulation* 128, 1555–1565.

Parekh AB & Putney JW (2005). Store-operated calcium channels. *Physiol Rev* **85**, 757–810.

Patterson RL, van Rossum DB, Barrow RK & Snyder SH (2004). RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca²⁺ release. *Proc Natl Acad Sci USA* **101**, 2328–2332.

Patterson RL, van Rossum DB, Kaplin AI, Barrow RK & Snyder SH (2005). Inositol 1,4,5-trisphosphate receptor/GAPDH complex augments Ca²⁺ release via locally derived NADH. *Proc Natl Acad Sci USA* **102**, 1357–1259.

Pearce MM, Wang Y, Kelley GG & Wojcikiewicz RJ (2007). SPFH2 mediates the endoplasmic reticulum-associated degradation of inositol 1,4,5-trisphosphate receptors and other substrates in mammalian cells. *J Biol Chem* **282**, 20104–20115.

Pearce MM, Wormer DB, Wilkens S & Wojcikiewicz RJ (2009). An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors. *J Biol Chem* **284**, 10433–10445.

Pinton P, Pozzan T & Rizzuto R (1998). The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca²⁺ store, with functional properties distinct from those of the endoplasmic reticulum. *EMBO J* **17**, 5298–5308.

Prole DL & Taylor CW (2011). Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. *PLoS One* **6**, e26218.

Prole DL & Taylor CW (2012). Identification and analysis of cation channel homologues in human pathogenic fungi. *PLoS One* **7**, e42404.

Rahman TU, Skupin A, Falcke M & Taylor CW (2009). Clustering of IP₃ receptors by IP₃ retunes their regulation by IP₃ and Ca²⁺. *Nature* **458**, 655–659.

Redondo PC, Jardin I, Lopez JJ, Salido GM & Rosado JA (2008). Intracellular Ca²⁺ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP₃ receptor and SERCA3 in human platelets. *Biochim Biophys Acta* **1783**, 1163–1176.

Rex EB, Rankin ML, Yang Y, Lu Q, Gerfen CR, Jose PA & Sibley DR (2010). Identification of RanBP 9/10 as interacting partners for protein kinase C (PKC) γ/δ and the D₁ dopamine receptor: regulation of PKC-mediated receptor phosphorylation. *Mol Pharmacol* **78**, 69–80.

Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, Yi S, Lemmens I, Fontanillo C, Mosca R, Kamburov A, Ghiassian SD, Yang X, Ghamsari L, Balcha D, Begg BE, Braun P, Brehme M, Broly MP, Carvunis AR,

- Convery-Zupan D, Corominas R, Coulombe-Huntington J, Dann E, Dreze M, Dricot A, Fan C, Franzosa E, Gebreab F, Gutierrez BJ, Hardy MF, Jin M, Kang S, Kiros R, Lin GN, Luck K, MacWilliams A, Menche J, Murray RR, Palagi A, Poulin MM, Rambout X, Rasla J, Reichert P, Romero V, Ruyssinck E, Sahalie JM, Scholz A, Shah AA, Sharma A, Shen Y, Spirohn K, Tam S, Tejeda AO, Trigg SA, Twizere JC, Vega K, Walsh J, Cusick ME, Xia Y, Barabasi AL, Iakoucheva LM, Aloy P, De Las Rivas J, Tavernier J, Calderwood MA, Hill DE, Hao T, Roth FP & Vidal M (2014). A proteome-scale map of the human interactome network. *Cell* **159**, 1212–1226.
- Santoso NG, Cebotaru L & Guggino WB (2011). Polycystin-1, 2, and STIM1 interact with IP₃R to modulate ER Ca release through the PI3K/Akt pathway. *Cell Physiol Biochem* **27**, 715–726.
- Schlafli P, Troger J, Eckhardt K, Borter E, Spielmann P & Wenger RH (2011). Substrate preference and phosphatidylinositol monophosphate inhibition of the catalytic domain of the Per-Arnt-Sim domain kinase PASKIN. *FEBS J* **278**, 1757–1768.
- Schlecker C, Boehmerle W, Jeromin A, DeGray B, Varshney A, Sharma Y, Szigeti-Buck K & Ehrlich BE (2006). Neuronal calcium sensor-1 enhancement of InsP₃ receptor activity is inhibited by therapeutic levels of lithium. *J Clin Invest* **116**, 1668–1674.
- Schlossmann J, Mendola A, Ashman K, Zong X, Huber A, Neubauer G, Ang G-X, Allescher H-D, Korth M, Wilm M, Hofmann F & Ruth P (2000). Regulation of intracellular calcium by a signalling complex of IRAG, IP₃ receptor and cGMP kinase Ib. *Nature* **404**, 197–201.
- Schulman JJ, Wright FA, Kaufmann T & Wojcikiewicz RJ (2013). The Bcl-2 family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J Biol Chem 288, 25340–25349.
- Scott JD, Dessauer CW & Tasken K (2013). Creating order from chaos: cellular regulation by kinase anchoring. *Annu Rev Pharmacol Toxicol* **53**, 187–210.
- Scott JD & Pawson T (2009). Cell signaling in space and time: where proteins come together and when they're apart. *Science* **326**, 1220–1224.
- Seo M-D, Velamakanni S, Ishiyama N, Stathopulos PB, Rossi AM, Khan SA, Dale P, Li C, Ames JB, Ikura M & Taylor CW (2012). Structural and functional conservation of key domains in InsP₃ and ryanodine receptors. *Nature* **483**, 108–112.
- Shin DM, Zhao X-S, Zeng W, Mozhayeva M & Muallem S (2000). The mammalian Sec 6/8 complex interacts with Ca²⁺ signaling complexes and regulates their activity. *J Cell Biol* **150**, 1101–1112.
- Shindo Y, Kim MR, Miura H, Yuuki T, Kanda T, Hino A & Kusakabe Y (2010). Lrmp/Jaw1 is expressed in sweet, bitter, and umami receptor-expressing cells. *Chem Senses* **35**, 171–177.
- Singleton PA & Bourguignon LY (2002). CD44v10 interaction with Rho-kinase (ROK) activates inositol 1,4,5-triphosphate (IP₃) receptor-mediated Ca²⁺ signaling during hyaluronan (HA)-induced endothelial cell migration. *Cell Motil Cytoskeleton* 53, 293–316.

- Singleton PA & Bourguignon LY (2004). CD44 interaction with ankyrin and IP₃ receptor in lipid rafts promotes hyaluronan-mediated Ca²⁺ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. *Exp Cell Res* **295**, 102–118.
- Smith IF & Parker I (2009). Imaging the quantal substructure of single IP₃R channel activity during Ca²⁺ puffs in intact mammalian cells. *Proc Natl Acad Sci USA* **106**, 6404–6409.
- Smith IF, Swaminathan D, Dickinson GD & Parker I (2014). Single-molecule tracking of inositol trisphosphate receptors reveals different motilities and distributions. *Biophys J* **107**, 834–45.
- Soghoian D, Jayaraman V, Silane M, Berenstein A & Jayaraman T (2005). Inositol 1,4,5-trisphosphate receptor phosphorylation in breast cancer. *Tumour Biol* **26**, 207–212.
- Streb H, Bayerdörffer E, Haase W, Irvine RF & Schulz I (1984). Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. *J Membr Biol* **81**, 241–253.
- Sugiyama T, Matsuda Y & Mikoshiba K (2000). Inositol 1,4,5-trisphosphate receptor associated with focal contact cytoskeletal proteins. *FEBS Lett* **466**, 29–34.
- Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB & Tiruppathi C (2009). Caveolin-1 scaffold domain interacts with TRPC1 and IP₃R3 to regulate Ca²⁺ store release-induced Ca²⁺ entry in endothelial cells. *Am J Physiol Cell Physiol* **296**, C403–C413.
- Sung PJ, Tsai FD, Vais H, Court H, Yang J, Fehrenbacher N, Foskett JK & Philips MR (2013). Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. *Proc Natl Acad Sci USA* **110**, 20593–20598.
- Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T & Rizzuto R (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca²⁺ channels. *J Cell Biol* **175**, 901–911.
- Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Soderberg O, Bootman MD & Roderick HL (2008). Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca²⁺ release and apoptosis. *Proc Natl Acad Sci* USA 105, 2427–2432.
- Takei K, Mignery GA, Mugnaini E, Südhof TC & De Camilli P (1994). Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. *Neuron* **12**, 327–342.
- Tanaka S, Kabayama H, Enomoto M, Saito N & Mikoshiba K (2011). Inositol 1, 4, 5-trisphosphate receptor interacts with the SNARE domain of syntaxin 1B. *J Physiol Sci* **61**, 221–229.
- Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L & Zhu MX (2001). Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. *J Biol Chem* **276**, 21303–21310.
- Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR & Bezprozvanny I (2003*b*). Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. *Neuron* **39**, 227–239.

Tang T-S, Tu H, Wang Z & Bezprozvanny I (2003*a*). Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase A and protein phosphatase 1*α*. *J Neurosci* **23**, 403–415.

Tateishi Y, Hattori M, Nakayama T, Iwai M, Bannai H, Nakamura T, Michikawa T, Inoue T & Mikoshiba K (2005). Cluster formation of inositol 1,4,5-trisphosphate receptor requires its transition to open state. *J Biol Chem* 280, 6816–6822.

Taylor CW & Tovey SC (2010). IP₃ receptors: toward understanding their activation. *Cold Spring Harb Persp Biol* **2**, a004010.

Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE & Yoo SH (2003). A functional interaction between chromogranin B and inositol 1,4,5-trisphosphate receptor/Ca²⁺ channel. *J Biol Chem* **278**, 49699–49708.

Thrower EC, Park HY, So SH, Yoo SH & Ehrlich BE (2002). Activation of inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A. *J Biol Chem* 277, 15801–15806.

- Tiwari A, Schneider M, Fiorino A, Haider R, Okoniewski MJ, Roschitzki B, Uzozie A, Menigatti M, Jiricny J & Marra G (2013). Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors. *PLoS One* **8**, e69473.
- Tong Q, Chu X, Cheung JY, Conrad K, Stahl R, Barber DL, Mignery G & Miller BA (2004). Erythropoietin-modulated calcium influx through TRPC2 is mediated by phospholipase C γ and IP₃R. *Am J Physiol Cell Physiol* **287**, C1667–C1678.

Tovey SC, Dedos SG, Taylor EJA, Church JE & Taylor CW (2008). Selective coupling of type 6 adenylyl cyclase with type 2 IP₃ receptors mediates a direct sensitization of IP₃ receptors by cAMP. *J Cell Biol* **183**, 297–311.

Treves S, Franzini-Armstrong C, Moccagatta L, Arnoult C, Grasso C, Schrum A, Ducreux S, Zhu MX, Mikoshiba K, Girard T, Smida-Rezgui S, Ronjat M & Zorzato F (2004). Junctate is a key element in calcium entry induced by activation of InsP₃ receptors and/or calcium store depletion. *J Cell Biol* **166**, 537–548.

Tsai YC, Greco TM, Boonmee A, Miteva Y & Cristea IM (2012). Functional proteomics establishes the interaction of SIRT7 with chromatin remodeling complexes and expands its role in regulation of RNA polymerase I transcription. *Mol Cell Proteomics* **11**, 60–76.

Tu H, Tang T-S, Wang Z & Bezprozvanny I (2004). Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. *J Biol Chem* **279**, 19375–19382.

Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ & Worley PF (1998). Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP₃ receptors. *Neuron* **21**, 717–726.

Uchida K, Aramaki M, Nakazawa M, Yamagishi C, Makino S, Fukuda K, Nakamura T, Takahashi T, Mikoshiba K & Yamagishi H (2010). Gene knock-outs of inositol 1,4,5-trisphosphate receptors types 1 and 2 result in perturbation of cardiogenesis. *PLoS One* **5**, e12500.

- Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G & Parys JB (2009*a*). Regulation of inositol 1,4,5-trisphosphate-induced Ca²⁺ release by reversible phosphorylation and dephosphorylation. *Biochim Biophys Acta* **1793**, 959–970.
- Vanderheyden V, Wakai T, Bultynck G, De Smedt H, Parys JB & Fissore RA (2009*b*). Regulation of inositol 1,4,5-trisphosphate receptor type 1 function during oocyte maturation by MPM-2 phosphorylation. *Cell Calcium* **46**, 56–64.

van Rossum DB, Patterson RL, Cheung KH, Barrow RK, Syrovatkina V, Gessell GS, Burkholder SG, Watkins DN, Foskett JK & Snyder SH (2006). DANGER: A novel regulatory protein of IP₃-receptor activity. *J Biol Chem* **281**, 37111–37116.

Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, Castedo M, Maiuri MC, Molgo J, Szabadkai G, Lavandero S & Kroemer G (2009). The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. *Cell Death Differ* **16**, 1006–1017.

Volpe P, Salviati G, Di Virgilio F & Pozzan T (1985). Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. *Nature* **316**, 347–349.

Wakelam MJO, Murphy GJ, Hruby VJ & Houslay MD (1986). Activation of two signal-transduction cascades in hepatocytes by glucagon. *Nature* **323**, 68–71.

Walker DS, Ly S, Lockwood KC & Baylis HA (2002). A direct interaction between IP₃ receptors and myosin II regulates IP₃ signaling in *C. elegans. Curr Biol* **12**, 951–956.

Wang Q, Rajshankar D, Branch DR, Siminovitch KA, Herrera Abreu MT, Downey GP & McCulloch CA (2009).
Protein-tyrosine phosphatase-alpha and Src functionally link focal adhesions to the endoplasmic reticulum to mediate interleukin-1-induced Ca²⁺ signaling. *J Biol Chem* 284, 20763–20772.

Wang Y, Li G, Goode J, Paz JC, Ouyang K, Screaton R, Fischer WH, Chen J, Tabas I & Montminy M (2012).
Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. *Nature* 485, 128–132.

Webster JM, Tiwari S, Weissman AM & Wojcikiewicz RJH (2003). Inositol 1,4,5-trisphosphate receptor ubiquitination is mediated by mammalian Ubc7, a component of the endoplasmic reticulum-associated degradation pathway, and is inhibited by chelation of intracellular Zn²⁺. *J Biol Chem* **278**, 38238–38246.

Wells JA & McClendon CL (2007). Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. *Nature* **450**, 1001–1009.

Wheeler GL & Brownlee C (2008). Ca²⁺ signalling in plants and green algae – changing channels. *Trends Plant Sci* 13, 506–514.

White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB & Foskett JK (2005). The endoplasmic reticulum gateway to apoptosis by $Bcl-X_L$ modulation of $InsP_3R$. *Nat Cell Biol* 7, 1022–1028.

White C, Yang J, Monteiro MJ & Foskett JK (2006). CIB1, a ubiquitously expressed Ca²⁺-binding protein ligand of the InsP₃ receptor Ca²⁺ release channel. *J Biol Chem* **281**, 20825–20833.

Wojcikiewicz RJH & Oberdorf JA (1996). Degradation of inositol 1,4,5-trisphosphate receptors during cell stimulation is a specific process mediated by a cysteine protease activity. *J Biol Chem* **271**, 16652–16655.

Woodard GE, Lopez JJ, Jardin I, Salido GM & Rosado JA (2010). TRPC3 regulates agonist-stimulated Ca²⁺ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. *J Biol Chem* **285**, 8045–8053.

Yamada M, Miyawaki A, Saito K, Yamamoto-Hino M, Ryo Y, Furuichi T & Mikoshiba K (1995). The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. *Biochem J* **308**, 83–88.

Yang J, McBride S, Mak D-O, Vardi, N, Palczewski K, Haeseleer F & Foskett JK (2002). Identification of a family of calcium sensors as protein ligands of the inositol trisphosphate receptor Ca²⁺ release channels. *Proc Natl Acad Sci USA* **99**, 7711–7716.

Yokoyama K, Su I, Tezuka T, Yasuda T, Mikoshiba K, Tarakhovsky A & Yamamoto T (2002). BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP₃ receptor. *EMBO J* **21**, 83–92.

Yoo SH (2011). Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca²⁺ signaling: From phytoplankton to mammals. *Cell Calcium* **50**, 175–183.

- Yoo SH & Lewis MS (1998). Interaction between an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor and the near N-teminal peptide of chromogranin A. *FEBS Lett* **427**, 55–58.
- Yoo SH & Lewis MS (2000). Interaction of chromogranin B and the near N-terminal region of chromogranin B with an intraluminal loop peptide of the inositol 1,4,5-trisphosphate receptor. *J Biol Chem* **275**, 30293–30300.
- Yuan JP, Kiselyov K, Shin DM, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S & Worley PF (2003). Homer binds TRPC family channels and is required for gating of TRPC1 by IP₃ receptors. *Cell* **114**, 777–789.
- Yuan Z, Cai T, Tian J, Ivanov AV, Giovannucci DR & Xie Z (2005). Na/K-ATPase tethers phospholipase C and IP₃ receptor into a calcium-regulatory complex. *Mol Biol Cell* **16**, 4034–4045.

Zaika O, Zhang J & Shapiro MS (2011). Combined phosphoinositide and Ca²⁺ signals mediating receptor specificity toward neuronal Ca²⁺ channels. *J Biol Chem* **286**, 830–841.

Zeng W, Mak DD, Li Q, Shin DM, Foskett JK & Muallem S (2003). A new mode of Ca^{2+} signaling by G protein-coupled receptors: gating of IP₃ receptor Ca^{2+} release channels by $G\beta\gamma$. *Curr Biol* **13**, 872–876.

Zhang S, Hisatsune C, Matsu-Ura T & Mikoshiba K (2009). G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1,4,5-triphosphate receptor-mediated Ca²⁺ signal regulation. *J Biol Chem* **284**, 29158–29169.

- Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L & Zhu MX (2001). Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. *Proc Natl Acad Sci USA* **98**, 3168–3173.
- Zhao G, Neeb ZP, Leo MD, Pachuau J, Adebiyi A, Ouyang K, Chen J & Jaggar JH (2010). Type 1 IP₃ receptors activate BK_{Ca} channels via local molecular coupling in arterial smooth muscle cells. *J Gen Physiol* **136**, 283–291.

Additional information

Competing interests

None declared.

Author contributions

All authors have approved the final version of the manuscript and agree to be accountable for all aspects of the work. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Funding

This work was supported by the Biotechnology and Biological Sciences Research Council (L0000075) and the Wellcome Trust (101844).