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Abstract: This paper presents an approach to optimise condition-based maintenance (CBM) of multi-

component systems where the state of certain components could affect the rate of degradation of other 

components, i.e., state-rate degradation interactions. We present a real example of an industrial cold 

box in a petrochemical plant, where data collected on fouling of its tubes show that the extent of fouling 

of one tube affects the rate of fouling of other tubes due to overloading. A regression model is used to 

characterise the state-rate degradation interactions for this example. Further, we optimise the condition-

based maintenance policy for this system using simulated annealing. The outcomes of the case study 

demonstrate that modelling degradation interactions between components in the system can have 

significant positive impact on CBM policy of the system. The paper therefore tackles a problem that has 

not been addressed in the literature, paving way for further developments in this important area of 

research with practical applications.  

Keywords: Maintenance, Degradation, Interactions, Multi-Component Systems, Regression, Simulated 

Annealing, Optimisation 

 

1 INTRODUCTION 

This paper presents an approach to model the degradation interactions that exist between states and 

rates of degradation of different components in a multi-component system and to optimise the condition-

based maintenance policy, i.e., their inspection timings and maintenance/replacement thresholds. The 

term “multi-component system” is most widely used in academic literature to refer to both a complex 

system consisting of more than one asset (i.e. multi-asset system) or an engineering asset consisting 

of more than one component (multi-component asset). Traditional research on maintenance 

optimisation considered a complex engineering system as a collection of individual (and independent) 

components, and maintenance models for such systems were devised with this independence in mind 

(Cho & Parlar, 1991). Research development in this area is often based on an extension of a single 

component (Barata, et al., 2001) into a maintenance model for independent multi-component systems 

(Barata, et al., 2002). However, considering the complexities involved in complex engineering systems 
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and the need to extract more value from maintenance activities, it is no longer sensible to treat each 

component in such systems as an independent individual component.  

There are usually dependencies between the components in a complex system and these dependencies 

lead to further complications in understanding the behaviour of the system. Of particular interest is a 

class of dependency that is commonly known as ‘stochastic dependence’, where failure or degradation 

of some components in the system could affect the failure or degradation of other components in the 

system (Nicolai & Dekker, 2008). This type of dependency is evident in different industries, especially 

in mechanical systems (Sun, et al., 2009). Literature in this area predominantly focus on the interactions 

which are triggered by failure of a component (failure interactions). Examples of such studies can be 

found in (Lai, 2007) and (Zhang et al., 2011).  

While failure interactions exhibit stochastic dependencies upon a complete failure of a component in the 

system, there is another type of stochastic dependence which is not necessarily triggered by a 

component failure. Such dependencies are also sometimes triggered by degradation of a component. 

Degradation processes of components in the system could actually be influenced by degradation of a 

component in a degraded state without having to completely fail. Such incidents are defined here as 

degradation interactions. There are few papers that study degradation interactions. Straub (2009) have 

applied Dynamic Bayesian Networks to characterise degradation interactions. The complexity of the 

algorithm would however make it computationally difficult for modelling the development of multi-

component system degradation over time due to the size of the networks required. Meanwhile, Bian and 

Gebraeel (2013) also did not account for the continuous degradation of the performance (states) of the 

system.  

Extensive review of the literature has revealed that research on degradation interactions has so far 

mainly been limited to reliability modelling of multi-component systems where the states of the 

components in a system are dependent. The degradation states of dependent components are 

characterised by a joint probability distribution, enabling the estimation of the reliability of the system. 

Multivariate normal distribution (Wang & Coit, 2004), Bayesian Networks (Hu, et al., 2012) or copula 

functions (Wang & Pham, 2012) have been used to represent such probability distributions. However, 

the interaction between states of degradation does not wholly represent the definition of the term 

‘degradation interactions’. This is because degradation process of a component is not only represented 

by its states of degradation but also its rate of degradation. It is evident from the review that there is a 

gap in the literature where degradation interactions involving degradation rates of the components are 

not addressed. 

In this paper, we use a real industrial example to motivate the need for further research in this area and 

addresses this challenge by developing an approach to improve predictability of the condition of the 

system through explicit consideration (and modelling) of interactions between states and rates of 

degradation between components in the system, thereby improving the maintenance policy for each 

component in the system. The optimal maintenance policy strikes the balance between maintenance 

investments and the benefits of improved operating conditions of the system.  



 

 

 

     

The structure of this paper is as follows. To start with, a description of the system is given in Section 2. 

A short summary of the modelling approach is outlined in Section 3. Section 4 and 5 describes the 

degradation models and the maintenance optimisation model respectively and discusses the results of 

the solution. Finally, suggested future work and a summary are then concluded in Section 6. 

2 SYSTEM DESCRIPTION 

The system under consideration is part of an industrial cold box unit in a petrochemical plant. We 

consider two components which are gas tubes, feeding excess-heated gas into the cold box unit. The 

excess heat would then be used by the cold box unit to heat up other ‘cold’ gas to be ready for further 

processes in the plant. The performance of the system depends on the amount of excess heat in which 

the cold box can obtain from the two gas tubes. More excess-heated gas delivered into the cold box unit 

via the gas tubes would lead to more energy savings. 

As the tubes are feeding the excess-heated gas into the cold box unit, fouling would occur within the 

tubes and consequently reducing the amount of heat which can be delivered into the cold box. Pressures 

in the tube are measured to act as surrogates to the degradation states of a component at a certain 

time. Lower pressure would indicate less amount of fouling and more effective heat transfer into the cold 

box. As fouling occur during operation, the pressure would be increased on the tube and hence result 

in decreasing performance of the system. 

Degradation interactions between the two components can occur as when one tube is already subject 

to a high fouling state, the excess-heated gas would then be forced to go through the other tube and 

hence overloading that other tube which then leads to accelerated fouling as a result. This scenario calls 

for the use of the degradation model for the components with degradation interactions as described 

earlier. 

Current maintenance policies of the system include a daily condition monitoring and the system is 

allowed to operate until the pressure of a gas tube exceeds the safety threshold level. The failed tube is 

then maintained, allowing the pressure level to reduce and increase the performance of the system. 

However, this may not be the optimal maintenance policy for the tubes because of the loss due to 

performance degradation of the system. By moving the maintenance threshold earlier than the safety 

threshold, the system would be reducing the loss due to performance degradation albeit with increased 

maintenance costs. This suggests that investments in more maintenance of the tubes may allow the 

system to reduce its average cost in the long term. 

It should be noted here that, due to confidentiality issues, the numerical figures used in this paper is 

masked (e.g., currency has been changed to GBP) and scaled to protect the identity of the source and 

to help visualise the results. The next section presents an approach to model the interaction between 

the state of one tube and the rate of degradation of the second tube. Following this, in section 5 we use 

simulated annealing to optimise the condition-based maintenance policy. In both sections, we first 

provide a general model followed by its application to the cold box example.  



 

 

 

     

3 MODELLING APPROACH 

Figure 1 demonstrates the structure of the modelling approach used in this paper, along with the 

techniques used for each phase of the approach. This approach consists of three main parts, namely, 

Independent Degradation Model, Interactive Degradation Rate Generic Path (IDRGP) Model and CBM 

Optimisation Model. 

	

Figure 1: Modelling Approach 

	

The Independent Degradation Model is developed using a General Degradation Path (GDP) model and 

is used to understand the underlying independent degradation of components in the system. This would 

form a basis for improved degradation predictions in the IDRGP Model where degradation interactions 

are included. CBM Optimisation Model is then used to optimise a maintenance policy based on the 

degradation model. 

4 DEGRADATION MODEL 

First, we consider a generic system consisting of N components. Each component is periodically 

inspected to reveal the degradation state of the component. The following assumptions are made in the 

development of this model: 

• The components are subject only to gradual degradation and not to sudden failures. 

• Only one condition or performance indicator is used to represent the degradation states of 

each component.  

• All components are non-repairable components whose degradation states monotonically 

increase with its age until its replacement. 

• Replacement will bring the component back to its brand new state. 

• A single inspection will reveal the states of all components in the system simultaneously. 

• The Degradation rate of Component #N is dependent on the states of Component #1 to #N-1. 

• Components #1 to #N-1 degrade independently. 
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Historical degradation data is used to build the degradation model. Each data point is denoted by 

(𝑇$ % , 𝑆$(%)) for i = 1,2,3,…,n. The degradation rate of Component #k at age 𝑇$, 𝑆$) (𝑇$) is defined as: 

𝑆$) (𝑇$) = ∆𝑆$ ∆𝑇$ where ∆𝑆$ = 𝑆$ − 𝑆$,- and ∆𝑇$ = 𝑇$ − 𝑇$,-.  

The degradation data for the cold box tubes was collected in three different scenarios. First, the 

individual degradation processes were recorded. Then, the effect of the states of Tube#1 (𝑆.) on the 

degradation rates of Tube#2 (𝑆/) ), were recorded using a valve in the cold box to shift gas load in the 

direction from Tube#1 to Tube#2 only. Similarly, the final scenario collected the degradation data to see 

the effects of 𝑆/ on 𝑆.).  

The historical degradation data for the two tubes under consideration in the cold box example is shown 

in Figure 2. Since both of the gas tubes are regularly monitored, the historical degradation states (S1 

and S2) are recorded daily i.e. ∆𝑇 = 1. The sudden changes in the degradation states of the components 

result from the effects of replacement actions. After each replacement of a tube, the degradation state 

of the tube is reduced to zero.  

 

	

Figure 2 

The rest of this section is dedicated to finding an expression for the state and rate of degradation of 

Component #k (k = 1,2,3,…,N) at age 𝑇$, given by 𝑆$(𝑇$) and 𝑆$) (𝑇$), based on such data.  

In section 4.1 we present a model to represent the independent degradation processes of the 

components in the system. Following this, in section 4.2, degradation interactions are introduced to the 

model. 

4.1 Independent Degradation Model 

In order to determine an expression for 𝑆$) (𝑇$) as well as 𝑆$(𝑇$), an expression for ∆𝑆$ is required. Let 

∆𝑆$ be a function 𝑓 of both ∆𝑇$ and 𝑇$, i.e., the amount of degradation can depend not only on time, but 

also on the age of the component. For instance, if a component has an increasing degradation rate, 



 

 

 

     

∆𝑆$(%) measured at an earlier working age would be smaller than at a later working age even if ∆𝑇$(%) 

remained the same. Hence, 

 

∆𝑆$(%) = 𝑓(∆𝑇$ % , 𝑇$ %2. )	 (1)	

	

In order to estimate the function 𝑓, we can use Multiple Linear Regression, which is a technique that 

aims to estimate a functional relationship between multiple independent variables and a dependent 

variable (Golberg, 2004). Traditionally, GDP models would have defined 𝑆$ as a function of 𝑇$. This 

adaptation from is key to explicitly model degradation rates of the component. 

Now, let us apply this to our cold box example. The first step to modelling the independent degradation 

process of the gas tubes is to define ∆𝑆$ as a function of ∆𝑇 and 𝑇$ for k = 1,2. In the cold box system, 

both tubes are regularly inspected at a constant ∆𝑇 = 1. 𝑆$′  as a function of 𝑇$ is shown in Figure 3 and  

Figure 4. 

 

Figure 3: Estimated Rate of Pressure Change from the historical data on Tube 1 (𝑆.′) 
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Figure 4: Estimated Rate of Pressure Change from the historical data on Tube 2 (𝑆/′) 

Using multiple linear regression, the independent degradation model of the components can be found 

as follows: 

𝑆.)~𝒩 2.26,0.22 	 (2)	

𝑆. 𝑇. = 2.26𝑇.	 (3)	

𝑆/)~𝒩 1.86,0.34 	 (4)	

𝑆/ 𝑇/ = 1.86𝑇/	 (5)	

4.2 Interactive degradation model 

Degradation interactions are now introduced to model the degradation process of components in the 

system case where the degradation rate of Component #N is influenced by the states of 𝑁 − 1 

components i.e. 𝑆?) (𝑇?) is also a function of 𝑆@,- for l = 1,2,…,	𝑁 − 1.  

Since 𝑆?) (𝑇?) = ∆𝑆? ∆𝑇? and ∆𝑇? is an independent variable, 𝑆@ could only affect 𝑆?) (𝑇?) through ∆𝑆?. 

Hence, 

∆𝑆? = 𝑔(∆𝑇?, 𝑇?, 𝑆.,-, 𝑆/,-, … 𝑆?2.,-)	 (6)	

Again, regression can be used to estimate the function g in a similar approach to that shown in the 

previous section. 

Now, for the cold box example, based on the historical data with ∆𝑇 = 1, we have 𝑆$) = ∆𝑆$. From 

equations (2)-(5), the model for each of the two tubes can be defined as; 

𝑆.) = ∆𝑆. = 2.26 + 𝑓.(𝑆/)	 (7)	

𝑆/) = ∆𝑆/ = 1.86 + 𝑓/(𝑆.)	 (8)	
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Gaussian Process Regression (GPR) is used for estimating the functions here because of its ability to 

allow the observed data to influence the shape of the regression function. This feature is particularly 

helpful in this case since the types of relationships between the parameters were not explicit. For further 

details on GPR techniques, please refer to (Ebden, 2008). This would then lead to the expressions for 

the states of the tubes as a function of its working age as; 

𝑆$ 𝑇$ = ∆𝑆$ + 𝑆$,-	𝑓𝑜𝑟	𝑘 = 1,2	 (9)	

Figure 5 and Figure 6 show the estimated functions for 𝑓.(𝑆/) and 𝑓/(𝑆.) respectively. 

 

 

Figure 5 
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Figure 6 

 

 

The next section presents the CBM Optimisation Model based on the degradation models developed in 

this section. 

5 CBM OPTIMISATION MODEL 

The performance of the system at a certain time is a function of the condition of the components. The 

goal of this optimisation is to minimise the average cost of the system over time, which accounts for the 

performance of the system and maintenance costs, by finding an optimal maintenance threshold for 

each component. An adaptation of the Simulated Annealing Algorithm is implemented to search for an 

optimal CBM policy for the system. This section provides the necessary steps to achieving this. 

5.1 Problem Formulation 

The reliability of the system (𝑅(𝑇)) acts as a trigger for an inspection action. Once this reliability level 

fall below an inspection threshold value (𝑟), an inspection action is performed on all components in the 

system simultaneously. 

𝑅 𝑇  is defined as: 

𝑅 𝑇 ≡ 𝑃(𝑆.(𝑇.) ≤ 𝑊., 𝑆/(𝑇/) ≤ 𝑊/, … , 𝑆N(𝑇N) ≤ 𝑊N) (10) 
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Upon inspection of each component, possible scenarios which trigger replacement actions on the 

components are listed as follows. First, in cases where the state of a component is found to be in excess 

of its forced replacement threshold W, the component is correctively replaced and hence the state of 

the component and its working age are set to 0. If the state of the component is still found to be below 

the forced replacement threshold but in excess of the preventive replacement threshold (𝑫𝒑𝒓), where 

𝐷ST$ ≤ 𝑊$ for k = 1,…,M, the component is preventively replaced. Finally, if the component is found in a 

state which is not in excess of any of these thresholds, the component is then allowed to operate in the 

system until the next inspection. 

5.2 Objective Function 

The average cost function is used as an objective function for the optimisation. Two main factors 

contributing to this cost function are maintenance costs and the loss due to performance degradation of 

the system. 

The average cost function of the system over the length of a finite-time planning horizon 𝜏 (𝐵(𝜏, 𝑫)) is 

defined as: 

𝐵(𝜏, 𝑫) =
𝐺 𝜏, 𝑫 + 𝐻 𝜏, 𝑫

𝜏
 

(11) 

	

where 

𝐺(𝜏, 𝑫) is an accumulated cost of maintenance of the system from time 0 to 𝜏, given by: 

𝐺(𝜏, 𝑫) = 𝑛%Z ∗ 𝑐%Z + 𝒏𝒄𝒓 ∙ 𝒄𝒄𝒓 + 𝒏𝒑𝒓 ∙ 𝒄𝒑𝒓 where 

𝑛%Z is the expected total number of inspection actions performed on the system up to time 𝜏. 

𝒏𝒄𝒓 = 𝑛`T. 𝑛`T/ ⋯ 𝑛`TN , when 𝑛`T$  (k=1,2,…,M) is the expected number of corrective replacement 

actions performed on Component #k up to time 𝜏. 

𝒏𝒑𝒓 = 𝑛ST. 𝑛ST/ ⋯ 𝑛STN , when 𝑛ST$  (k=1,2,…,M) is the expected number of preventive replacement 

actions performed on Component #k up to time 𝜏. 

𝐻(𝜏, 𝑫) is an accumulated loss due to performance degradation of the system from time 0 to 𝜏, given 

by: 

𝐻(𝜏, 𝑫) = ℎ(𝑆.(𝑇), 𝑆/(𝑇), … , 𝑆N(𝑇))
c

de-

 
(12) 

where ℎ ∙  is the performance of the system as a function of the state of the different components. 

5.3 Decision variables 

The decision variables for the CBM Optimisation Model are as follows: 



 

 

 

     

• Inspection Threshold (r) - The inspection threshold is defined as a reliability level below which 

inspection actions are required to be performed on all components in the system. This level is 

decided based on the cost of inspection (𝑐%Z) and the risk of leaving the components operating in 

poor conditions and crossing the forced replacement threshold. A higher inspection threshold leads 

to more frequent inspection, incurring more inspection costs. A lower inspection threshold leads to 

less inspection costs but more risk of leaving the components operating in poor conditions and 

crossing the forced replacement threshold. 

• Preventive Replacement Thresholds (𝑫𝒑𝒓) - The preventive replacement threshold of a component 

is defined as the component’s degradation state beyond which the component is preventively 

replaced. These thresholds indicate whether a preventive replacement action is required upon 

realising the degradation state of a component through an inspection. A Preventive Replacement 

Threshold is decided based on the cost of preventive replacement and risk of leaving the 

components operating in poor conditions and crossing the forced replacement threshold. Higher 

preventive replacement thresholds lead to less preventive replacement costs but more risk of 

leaving the components operating in poor conditions and crossing the forced replacement threshold. 

Lower preventive replacement thresholds lead to more preventive replacement actions, incurring 

more preventive replacement costs, but the component will be operating in better conditions. 

𝑫 = 𝐷ST. 𝐷ST/ ⋯ 𝐷STN 𝑟  is then the CBM policy for the system. This policy then determines when 

inspection and replacement actions are performed. 

The aim of this model is to find an optimal maintenance policy 𝑫∗ which minimise the expected average 

cost function of the system over the planning horizon from time 0 to 𝜏. 

𝑫∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑫

𝐵(𝜏, 𝑫) 

5.4 Maintenance Optimisation using Simulated Annealing 

As 𝐵(𝜏, 𝑫) is a nondifferentiable/nonsmooth function of D, limited techniques are applicable to finding 

an optimal maintenance policy 𝑫∗ which minimise the average cost function 𝐵(𝜏, 𝑫). A complete search 

would guarantee optimality for the maintenance policy and provide an absolute minimum average cost 

of the system. However, the amount of execution time it takes for the complete search algorithm to 

perform on multi-component systems is usually too long. In practice, there are usually limits on the 

amount of feasible execution time required of an optimisation algorithm. A compromise can be found in 

heuristic search algorithms when limited execution time is allowed for optimising larger systems. An 

optimised maintenance plan through these techniques is an approximation of the solution to the 

optimisation problem. Although heuristic search algorithms do not necessarily provide an absolute 

minimum average cost of the system, execution time of these techniques are usually much shorter 

compared to a complete search algorithm. 

A heuristic search technique called Simulated Annealing algorithm is used to find an optimal 

maintenance plan for the multi-component system in this paper. Simulated Annealing is often used to 



 

 

 

     

address combinatorial problems due to the presence of discrete variables (Saraiva, Pereira, Mendes, & 

Sousa, 2011). It draws an analogy between the cooling process of a solid material and the solving of an 

optimisation problem (Glover & Greenberg, 1989). A flow chart (Satoh & Nara, 1991) is shown in Figure 

7 to summarise the Simulated Annealing Algorithm, which is applied to the context of CBM optimisation 

in this paper. 

The simulated annealing algorithm starts with an initial guess policy for the problem at a high initial 

temperature. The initial average cost is then determined at this temperature. A cooling schedule is used 

to determine the next temperature in the process. The next trial policy is then created via a perturbation 

function. This perturbation shifts the trial policy from the previous policy, depending on the current 

temperature. At high temperature, this shift is more significant and, as the temperature reduces, smaller 

shifts are applied. The average cost is then calculated for this new trial policy. If this new average cost 

is lower than the previous average cost, the new policy is accepted. Otherwise, the probability that the 

new policy is accepted is 𝑒
jklmnopqroqstulvroqs

wlxylkzspkl . Once the criterion on the number of accepted policies is 

satisfied, the temperature is reduced further and the process is repeated until it reaches the final 

temperature where the algorithm is terminated. The simulated annealing algorithm for this problem is 

shown in Appendix A. 

	

Figure 7 

The Perturbation function is a function used to diversify the trial maintenance policy based on the 

previous trial. The Perturbation function also depends on the temperature as a high temperature causes 

stronger shifts between the trial maintenance policies. As the temperature decreases, the shifts between 

the trial maintenance policies are reduced as the average cost function or the energy level settles. The 

initial and final temperature is chosen to reflect this accordingly. A wide range between the initial and 
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final temperature leads to a more complete search, albeit with a longer execution time compared to a 

smaller range between the initial and final temperatures. 

The Perturbation function used in this research is tailored according to the need to reflect the boundaries 

of the search space (i.e., maintenance thresholds) and the suitable execution time. This adaptation of 

the Perturbation function is key to applying the Simulated Annealing Algorithm to optimise CBM policy 

of multi-component systems. The algorithm used for the perturbation function is shown in Appendix B. 

A linear or exponential cooling schedule can be used depending on the requirements. A linear cooling 

schedule distributes the range of temperatures among the iterations equally. This is particularly useful 

when there are a lot of local minimum values around the initial guess. By going through more iterations 

at higher temperatures, there is a better chance of finding the area where the absolute minimum value 

is located before moving the refined search at lower temperature to that area. However, it should also 

be noted that, by using a linear cooling schedule, the quality of the final solution may be affected since 

the refined search at lower temperatures would have gone through less cooling iterations (Ledesma, 

Aviña, & Sanchez, 2008). In contrast to the linear cooling schedule, an exponential cooling schedule 

presents sharp decreases in temperature in the early iterations where the temperatures are high. This 

way the algorithm can search quickly through large sections of the search space and go through more 

iterations at lower temperatures for a refined search. The choice of cooling schedule is dependent on 

the nature of the problem and the knowledge of the energy function (average cost function). Alternative 

cooling schedules have also received the attention of researchers in this area (Nourani & Andresen, 

1998). 

Finally, the initial guess (policy) is chosen by using an optimal policy made up from individually optimised 

decision variables, which are determined by a complete search for each optimal value individually, 

where each component is assumed to be subject to independent degradation. The guess policy may 

also be decided based on engineering knowledge of the system. Similar to setting the initial and final 

temperatures, the number of accepted policies required at each temperature of the Simulated Annealing 

Algorithm can be adjusted to suit the amount of affordable execution time. Large numbers of required 

accepted policies could lead to an improvement in the final result as the search is more complete, albeit 

with a longer execution time. A small number of required accepted policies reduces the execution time 

but may jeopardise the quality of the final result.  

The algorithm that calculates the average cost as well as the inspection and replacement times is shown 

in Appendix C. Note that the calculation of 𝑛ST$  is included in this algorithm. Essentially, these parameters 

are incremented if on inspection, the state is found to be worse than the preventive maintenance 

threshold. Similarly, 𝑛`T$  is incremented if the state is found to be worse than the safety threshold. 

5.5 CBM Optimisation for the cold box example 



 

 

 

     

For the cold box example, the objective function of the optimisation is the average cost over time of the 

system at different maintenance thresholds D1 and D2. The key decision variables for this model are 

optimal maintenance thresholds for each gas tube. 

The average cost function of the system is defined by the sum of the accumulated maintenance costs 

and the accumulated loss due to performance degradation of the system over a 5-year planning horizon. 

The accumulated maintenance cost is given by: 

𝐺(𝜏, 𝑫)	 = 𝑛ST. ∙ 𝑐ST. + 𝑛ST/ ∙ 𝑐ST/ 	

Where, 

𝜏 = the length of the planning horizon = 5 years = 1826 days 

𝑫 = (𝐷., 𝐷/) = the maintenance threshold for Tube#1 and Tube#2 

𝑛ST.  = the expected number maintenance actions performed on Tube#1 

𝑛ST/  = the expected number maintenance actions performed on Tube#2 

𝑐ST.  = the cost of a maintenance action performed on Tube#1 = £1645 

𝑐ST/  = the cost of a maintenance action performed on Tube#2 = £1837 

The loss due to performance degradation of the system at a certain time is measured by the loss of 

energy which is affected by the reduced heat transfer through the tubes. This loss is calculated via a 

function of the state of the two components. The loss function of the system is presented in Figure 8 

based on the states of the components. 

	

Figure 8 

The accumulated loss due to performance degradation of the system over the planning horizon (𝐻(𝜏, 𝑫)) 

is then given by: 

𝐻(𝜏, 𝑫) = ℎ(𝑆.(𝑇), 𝑆/(𝑇))c
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The input parameters required for optimising the maintenance policy using the Simulated Annealing 

Algorithm are summarised in Table 1.   

Table 1: Input parameters 

Parameters Value 

𝜏 1826 days 

𝑊. 140 Pa 

𝑊/ 110 Pa 

𝑐ST.  £1645 

𝑐ST/  £1837 

𝑐`T.  £1645 

𝑐`T/  £1837 

InitialTemp 1 

FinalTemp 0.0001 

InitialGuess (140,110) 

Required_Accepted 20 

Cool(Temp) 0.9*Temp 

 

The average cost function of the system, 𝐵 𝜏, 𝑫 , calculated at different iterations of D, is shown in 

Figure 9. Different colours in the figure represent the different level of cost. A search for the optimal 

maintenance policy for the system, which minimises the average cost function of the system, is found 

at D* = (D1*,D2*) = (127,105). With these thresholds, the expected average cost function of the system 

would be -£124/day. This represents an improvement of £10/day compared to when using only safety 

pressure level thresholds for maintenance of the tubes at -£114/day. 

 



 

 

 

     

	

Figure 9: Average cost function of the system at different iterations of D 

Simulated Annealing Algorithm is used to search for the optimal maintenance policy for the system, 

which minimises the average cost function of the system. At D* = (D1*,D2*) = (127,105), the expected 

average cost function of the system is minimised at -£124/day. This represents an improvement from 

£10/day compared to when using only safety pressure level thresholds for maintenance of the tubes at 

-£114/day. 

5.6 Discussion 

By using independent degradation to optimise maintenance of the cold-box unit system, the influence 

of the component’s degradation states on the other component’s degradation rates is neglected. With 

the rest of the parameters remain the same, the search for the optimal maintenance policy for the system 

would suggest a maintenance policy for the system as (120,100). 

In the case that this maintenance policy is implemented for this system, the average cost of the system 

would be -£117/day instead (see Figure 9). Although this already represents an improvement of £3/day 

from the current maintenance policy of using the safety thresholds as maintenance thresholds, it is still 

not able to match the level of improvements provided by the CBM policy derived in Section 6.4 at 

£10/day when the maintenance policy of (127,105) is implemented. This means that by modelling 

degradation interactions, the company have more than tripled the improvements on the average cost of 

the cold box unit system compared to using independent individual degradation models. 

6 CONCLUSIONS 

This paper has proposed an approach to modelling degradation interactions and maintenance 

optimisation for multi-component systems where degradation rate of a component is affected by states 
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of other components in the system. An industrial case study is also provided to support that degradation 

interactions can affect maintenance of the systems. By introducing degradation interactions in the 

model, improved degradation predictions of components would lead to improved CBM policy for the 

system. It should also be noted here that it is possible for the model to handle a repair action, instead 

of a replacement action, through the variables ξ| and ξ} in the cost calculation algorithm. For perfect 

replacement, both variables are reset to 0. For corrective repair and/or preventive repair, appropriate 

positive values are assigned to ξ| and ξ} respectively to reflect the state to which the components will 

return to due to imperfect repair. Suggested lines of future work can be done on addressing assumptions 

such as imperfect or non-instantaneous inspection and maintenance actions. 

  



 

 

 

     

7 Appendix A 

Simulated Annealing Algorithm 
Input: 𝜏, W, 𝑐%Z, 𝒄𝒄𝒓, 𝒄𝒑𝒓, ℎ(𝑆.(𝑇.), 𝑆/(𝑇/), … , 𝑆N(𝑇N)) and Degradation Model Parameters  
Perturbation Function (Perturb), Cooling Schedule (Cool), InitialTemp, FinalTemp, InitialGuess, 
Required_Accepted 
Output: 𝑫∗ 
begin  

  

Accepted ← 0 
Finished ← 0 
Temp ← InitialTemp 
𝑫 ← InitialGuess 
Execute Algorithm 1 
Oldcost ← 𝐵(𝜏, 𝑫) 
while Finished = 0 do 

  

Currentpolicy	← 𝑫 
if Accepted ≥ Required_Accepted do 

 

if Temp < FinalTemp  do 

 Finished ← 1 
BREAK 

else  

 Temp ← Cool(Temp) 
Accepted ← 1 

end  
end  
𝑫 ← Perturb (Currentpolicy,Temp) 
Execute Algorithm 1 
Newcost ← 𝐵(𝜏, 𝑫) 
if Oldcost < Newccost do 

 

if 𝛿 ≤ 𝑒
�@�`���2?��`���

d��S  do 

 Oldcost ← Newcost 
Accepted ← Accepted + 1 

else  
 𝑫 ← Currentpolicy 
end  

else  

 Oldcost ← Newcost 
Accepted ← Accepted + 1 

end  
end  
𝑫∗ ← 𝑫 

end  

 

  



 

 

 

     

8 Appendix B 

Perturbation Function 
Input: Currentpolicy, Temp, W 
Output: Newpolicy 
begin  

  

Select ← 𝛾 (𝛾 is a random integer of a uniform distribution on the interval [1, M+1]) 
Boundaries ← True 
SWITCH  

  

CASE 1 do 

 

while Boundaries do 

 

𝐷ST. ← 𝐷ST. + 𝜃	
(𝜃 is a random number of a normal distribution with zero 
mean and standard deviation ��

�
Temp) 

if 0 < 𝐷ST. < 𝑊. do 
 Boundaries ← False 
end  

end  
CASE 2 do 

 

while Boundaries do 

 

𝐷ST/ ← 𝐷ST/ + 𝜃	
(𝜃 is a random number of a normal distribution with zero 
mean and standard deviation ��

�
Temp) 

if 0 < 𝐷ST/ < 𝑊/ do 
 Boundaries ← False 
end  

end  
⋮  

CASE M do 

 

while Boundaries do 

 

𝐷STN ← 𝐷STN + 𝜃	
(𝜃 is a random number of a normal distribution with zero 
mean and standard deviation ��

�
Temp) 

if 0 < 𝐷STN < 𝑊N do 
 Boundaries ← False 
end  

end  
CASE M+1 do 

 

while Boundaries do 

 

𝑟 ← 𝑟 + 𝜃	
(𝜃 is a random number of a normal distribution with zero 
mean and standard deviation Temp) 
if 0 < 𝑟 < 1 do 
 Boundaries ← False 
end  

end  
end  

 end 

 

  



 

 

 

     

9 Appendix C 

Algorithm 1: Average Cost Calculation Algorithm 
Input: 𝑫 
Output: 𝐵 𝜏, 𝑫 , 𝑻𝒊𝒏, 𝑻𝒄𝒓𝟏 , … , 𝑻𝒄𝒓𝑴 , 𝑻𝒑𝒓𝟏 , … , 𝑻𝒑𝒓𝑴  
begin  

  

Initialise 𝑇 ← 1 
while 𝑇 ≤ 𝜏 do 

  

Calculate 𝑅 𝑇   
Calculate 𝑆. 𝑇. , … , 𝑆N 𝑇N   
Calculate ℎ(𝑆. 𝑇. , … , 𝑆N 𝑇N )  
𝐻(𝑇, 𝑫) ← 𝐻(𝑇 − 1,𝑫) + ℎ(𝑆. 𝑇. , … , 𝑆N 𝑇N ) 
if 𝑅 𝑇 < 𝑟 do 

 

𝑻𝒊𝒏 ← 𝑻𝒊𝒏 𝑇  
𝑛%Z ← 𝑛%Z + 1 
if 𝑆. 𝑇. > 𝑊. ∪ ⋯∪ 𝑆N 𝑇N > 𝑊N  do 

 

for each 𝑘 ∈ 1,2,3, … ,𝑀  do 

 

if 𝑆$ 𝑇$ > 𝑊$ do 

 

𝑻𝒄𝒓𝒌 ← 𝑻𝒄𝒓𝒌 𝑇  
𝑛`T$ ← 𝑛`T$ + 1 
𝑇$ ← 𝜉` 
𝑆$ 𝑇$ ← 𝑆$ 𝜉`  

end  
end  

else if 𝑆. 𝑇. > 𝐷ST. ∪ ⋯∪ 𝑆N 𝑇N > 𝐷STN  do 

 

for each 𝑘 ∈ 1,2,3, … ,𝑀  do 

 

if 𝑆$ 𝑇$ > 𝐷ST$  do 

 

𝑻𝒑𝒓𝒌 ← 𝑻𝒑𝒓𝒌 𝑇  
𝑛ST$ ← 𝑛ST$ + 1 
𝑇$ ← 𝜉S 

𝑆$ 𝑇$ ← 𝑆$ 𝜉S  
end  

end  
end  

end  
𝑇 ← 𝑇 + 1, 𝑇. ← 𝑇. + 1,… , 𝑇N ← 𝑇N + 1 

end  
Calculate 𝐵(𝜏, 𝑫) using (5.1) 

end  
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