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Abstract

In a model introduced by Weitzman an agent called Pandora opens boxes sequentially, in whatever order she likes,

discovers prizes within, and optimally stops. Her aim is to maximize the expected value of the greatest discovered

prize, minus the costs of opening the boxes. The solution, using the so-called Pandora rule, is attractive and

has many applications. However, it does not address applications in which the payoff depends on all discovered

prizes, rather than just the best of them, nor is it easy to say whether or not some generalized Pandora rule

might do so. Here, we establish a sense in which it cannot. We discover that if a generalized Pandora rule is to

be optimal for some more general utility, and all model parameters, then the problem can be solved via a second

problem having Weitzman’s form of utility.
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1. Introduction

In a classic problem first analyzed and solved by Weitzman (1979) an agent called Pandora is presented with

n boxes, each of which contains a prize. Pandora can, by paying a known cost ci, open box i to reveal its prize.

The nonnegative value of the prize, denoted xoi , is not known until the box is opened, but it has a distribution

Fi that is known ex ante.1 Pandora wishes to choose the order of opening the boxes, and when to stop opening,

so as to maximize the expected value the greatest discovered prize net of the sum of the costs of opening boxes.

Weitzman’s problem is attractive for two reasons. Firstly, it has an enormous number of applications, such as

to searching for a house, job, or research project to conduct.

Secondly, the solution is remarkably simple and attractive. Assign to any unopened box, say box i, a

reservation value (or reservation prize), of

x†i = inf
{
y : y ≥ −ci + Emax[y, xoi ]

}
, (1)

∗Corresponding author: Richard Weber, email: rrw1@cam.ac.uk, telephone/fax: +44-1223-337944/337956

1The superscript ‘o’ is provided as a mnemonic for ‘opened’ or ‘observed’.
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the expectation being taken over xoi . This is the smallest prize value y for which the agent can do as well by

taking y, as by opening box i and taking its prize or y. In (1) and throughout this note we are concerned only

with Weitzman’s problem in which costs and reward are undiscounted.

The so-called Pandora rule, which is optimal for Weitzman’s problem, is: open boxes in descending order of

reservation values until a prize is found whose value weakly exceeds the reservation value of any unopened box.

Attractive as it is, Weitzman’s model does not cover an important and large class of problems in which the

agent’s utility is not only a function of the prize the agent takes when she stops, but of all the prizes uncovered.

For example, a student may benefit from courses she takes while searching for the subject to choose as major; or

a person may obtain a flow of utility by dating different partners while looking for a spouse; or an institution may

be affected by different forms of operation with which it temporarily experiments before adopting a permanent

one.

Weitzman expected that Pandora’s rule would not generalize to such problems. He wrote: “If some fraction of

its reward can be collected from a research project before the sequential search procedure as a whole is terminated,

that could negate Pandora’s rule in extreme cases.” However, Weitzman gave no supporting detailed analysis,

and it turns out to be difficult to say whether or not some interesting generalization might be possible. In this

note, we fill this gap in understanding by starting with a very general utility and propose a generalized Pandora

rule. Then we take as “extreme cases” the requirement that this Pandora rule should be optimal for all choices

of costs and prize value distributions, our motivation being that this is true in Weitzman’s problem. We discover

that if a generalized Pandora rule is to be optimal under this requirement then the problem can also be solved

by solving a second problem having Weitzman’s utility, using his Pandora rule.

2. Model

2.1. The generalized Pandora problem

An agent called Pandora is presented with n boxes, each of which contains a prize. Pandora can, by paying a

known cost ci, open box i to reveal its prize. The nonnegative value of the prize, denoted xoi , is not known until

the box is opened, but it has a distribution function Fi which is known ex ante.

If S is the set of opened boxes at the point the agent stops, and the vector of the prize values found is

xoS = (xoi , i ∈ S), then the agent obtains a reward u(xoS), expressed as a utility that depends on all the prizes

discovered. Pandora’s aim is to maximize the expected value of

u(xoS)−
∑
i∈S

ci. (2)

2.2. Assumptions

In undiscounted Weitzman’s problem, u(xoS) = maxi∈S x
o
i . This utility has the following four special prop-

erties. It is continuous in its arguments, symmetric (in the sense that for any k-tuple of arguments the value

is unchanged by permutation of the arguments), monotone (in the sense that it is monotone coordinate-wise),
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and submodular, in the sense that the increase in u(x) obtained by increasing one coordinate of x becomes no

greater as any other coordinate becomes greater. That is, for any xoS , x1 < x1 and x2 < x2,

u(xoS , x1, x2)− u(xoS , x1, x2) ≤ u(xoS , x1, x2)− u(xoS , x1, x2). (3)

These properties are immediate in the case of u(xoS) = maxi∈S x
o
i , except submodularity. Submodularity can

be verified by considering separately the following two cases: (1) x2, x2 ≤ max{x1, xoi , i ∈ S} or max{x1, xoi , i ∈

S} ≤ x2, x2; (2) max{x1, xoi , i ∈ S} < x2 < max{x1, xoi , i ∈ S} or max{x1, xoi , i ∈ S} < x2 < max{x1, xoi , i ∈ S}.

In the former case (3) holds with equality, and in the latter case (3) holds with strict inequality.

We consider more generally, problems in which the following assumption is satisfied.

Assumption 1: Rewards are given by a utility function

u : {∅} ∪
n+1⋃
k=1

Rk
+ → R+,

where

(a) u(∅) = 0 and u(0, x2, . . . , xk) = u(x2, . . . , xk);

(b) u is continuous, symmetric, nondecreasing and submodular, in the sense that for every k = 1, . . . , n + 1,

the restriction of u to Rk
+ is continuous, symmetric, monotone and submodular.

Some comments on Assumption 1 seem helpful. Part (a) says that prize value 0 can be interpreted as “no

prize”. Symmetry means that u depends only on the set of prize values uncovered, not on the order in which

they are uncovered. Continuity and monotonicity are standard assumptions. Submodularity is most restrictive,

but it is satisfied in many applications, including the Weitzman’s problem and all applications mentioned in

Introduction.

3. Result

3.1. The generalized Pandora rule

Suppose a set of boxes S ⊂ N = {1, . . . , n} has been opened, and i 6∈ S. We might ask, what is the smallest

prize value whose addition to the set of those already discovered would make it as good to stop as to open box

i and then stop? We define generalized reservation value as

x∗i (xoS) = inf{y : u(xoS , y) ≥ −ci + Eu(xoS , y, x
o
i ), y ≥ 0}, (4)

where the expectation is taken over xoi , and with the understanding that inf over an empty set is interpreted as

x∗i (xoS) = ∞. The calculation in (4) makes sense because xoS is a vector of length no more than n − 1 and we
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have assumed that u maps a vector of any length no more than n+ 1 to a real value.2,3

With no loss of clarity, we mostly drop the argument and write the reservation value as x∗i rather than x∗i (xoS).

The generalized Pandora rule is now this: Open an unopened box with the greatest reservation value, until there

is no unopened box whose reservation value strictly exceeds 0.

In the special case of Weitzman’s problem (that is, when u(xoS) = maxi∈S x
o
i ) his Pandora rule and our

generalized Pandora rule coincide. To show this, notice that for any variable xi, one of the following two cases

holds: (1) the inequality

u(xoS , y) ≥ −ci + Eu(xoS , y, x
o
i ) (5)

is satisfied by some y ≤ maxi∈S x
o
i ; or (2) the inequality may be satisfied only by y > maxi∈S x

o
i . In the former

case, the inequality is also satisfied by y = 0, so x∗i (xoS) = 0, and in the latter case x∗i (xoS) > 0. (In the latter

case, inequality (5) cannot be satisfied by y’s arbitrarily close to 0, since then it would also be satisfied by y = 0

by continuity.) If case (1) applies to all variables xi, then x†i ≤ maxi∈S x
o
i and x∗i (xoS) = 0 for all uncovered

i’s, and so both Weitzman’s Pandora rule and the generalized Pandora rule stop. If case (2) applies to some

uncovered variable xi, then the rules open the box with the greatest x†i or x∗i (xoS), respectively, and it follows

directly from the definitions that x†i = x∗i (xoS) for the i’s to which case (2) applies.

3.2. A constraining result on the Pandora rule

We can now state our result. Its proof is in Appendix A.

Theorem 1. Suppose utility u satisfies Assumption 1, and the generalized Pandora rule maximizes expected

value for all costs ci and distributions Fi. Then for any given ci and xi ∼ Fi the set of solutions found by the

generalized Pandora rule coincides with the set of solutions found by Weitzman’s Pandora rule for some other

c̄i, x̄i ∼ F̄i, and u(xoS) = maxi∈S x
o
i .

Remark 1. In proving Theorem 1 we allow costs and distributions for which the reservation values are infinite.

We believe Theorem 1 is true if costs and distributions are restricted to those for which all reservation values

are finite, but the proof is likely to be long and to provide no interesting additional insight. See footnote 5 in

Appendix A.

We have shown in this note that there do not exist any simple conditions on model parameters for which

a non-trivial extension of Weitzman’s result is possible. However, in a working paper Olszewski and Weber

2One might wonder if the reservation value could be defined as some other function of the cost of opening a box, the distribution

prize value inside, and prize values already discovered. We conjecture that if it is always optimal to open boxes in descending order

of reservation values then the reservation values must coincide with those described in §3.1, up to a monotone rescaling.

3One might try to generalize further by allowing utility to depend on prizes in closed boxes. For example, Klabjan et al. (2014)

study a searcher who must decide whether to accept or reject an object which is characterized by multiple attributes. Before making

the decision the searcher can, at some cost, discover the values of selected attributes. For this more ambitious and difficult problem

Klabjan et al. were only able to characterize the optimal strategy for very specific classes of utilities, distributions and costs.
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(2015) we prove that the generalized Pandora rule is optimal if Assumptions 1 and 2 hold (where 2 is defined in

Appendix A), and the ordering of the generalized reservation values of covered prizes is independent of both the

number of prizes that have already been uncovered and their values. These conditions are met in Weitzman’s

model, and in at least one further example for which neither Weitzman’s results or the Gittins index theorem can

provide the solution. (We also explain in Olszewski and Weber (2015) how Weitzman’s result can be deduced

from the Gittins index theorem for bandit processes; see Gittins and Jones (1974)). Under these conditions the

proof of optimality of generalized Pandora rule is engagingly simple.
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Appendix A. Proof of Theorem 1

For the proof, it will be convenient to introduce another property of utility function u, which we label as

Assumption 2.

Assumption 2: The marginal benefit of increasing a coordinate of x from 0 to some positive value xoj is

independent of the values of coordinates of x which are greater than xoj . That is, for xoS and any xoj ≤ xk < xk,

with j, k 6∈ S and j 6= k,

u(xoS , xk, x
o
j)− u(xoS , xk, 0) = u(xoS , xk, x

o
j)− u(xoS , xk, 0). (A.1)

Lemma 1. Suppose that utility u satisfies Assumption 1 and the (generalized) Pandora rule maximizes expected

value for all costs ci and distributions Fi. Then u satisfies Assumption 2.

Proof. Consider an arbitrary S, xoS , and j, k /∈ S, with j 6= k, and numbers xoj ≤ xok < xok. Suppose there were a

violation of (A.1) of the form

u(xoS , x
o
j , x

o
k)− u(xoS , x

o
k) > u(xoS , x

o
j , x

o
k)− u(xoS , x

o
k).

Notice that because of Assumption 1 (submodularity) we cannot have the opposite strict inequality. Applying

Assumption 1, we can increase xoj to xok and the same inequality will hold. So there exists ε > 0 such that

u(xoS , x
o
k, x

o
k)− u(xoS , x

o
k) > u(xoS , x

o
k, x

o
k)− u(xoS , x

o
k) + ε. (A.2)
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We now show that if (A.2) is true then the Pandora rule cannot be optimal for all (ci, Fi, i ∈ N). To this

end, suppose Fj and Fk are degenerate, with xoj = xok and xok = xok with probability 1. Let

cj = u(xoS , x
o
k, x

o
k)− u(xoS , x

o
k)− ε, ck = u(xoS , x

o
k, x

o
k)− u(xoS , x

o
k).

The reservation price of xj is the least nonnegative y such that

cj = u(xoS , x
o
k, x

o
k)− u(xoS , x

o
k)− ε ≥ u(xoS , x

o
k, y)− u(xoS , y). (A.3)

Since (A.3) is false for y = xok we must have x∗j > xok.

The reservation price of xk is the least nonnegative y such that

ck = u(xoS , x
o
k, x

o
k)− u(xoS , x

o
k) ≥ u(xoS , x

o
k, y)− u(xoS , y). (A.4)

Suppose y is such that (A.3) holds, and therefore y ≥ x∗j > xok. Then (A.4) also holds, since

u(xoS , x
o
k, y)− u(xoS , y)

= u(xoS , x
o
k, y)− u(xoS , x

o
k, y) + u(xoS , x

o
k, y)− u(xoS , y)

≤ u(xoS , x
o
k, y)− u(xoS , x

o
k, y) + u(xoS , x

o
k, x

o
k)− u(xoS , x

o
k)− ε

= ck + [u(xoS , x
o
k, y)− u(xoS , x

o
k, y)]− [u(xoS , x

o
k, x

o
k)− u(xoS , x

o
k, x

o
k)]− ε

≤ ck,

where the first inequality is by (A.3) and the second inequality follows by using Assumption 1 (submodularity)

to see that, since y ≥ xok, the first square-bracketed term is no greater than the second.

From this it follows that x∗k ≤ x∗j . Thus, according to the Pandora rule, it would be optimal to begin by next

uncovering xj . However, the payoff obtained by uncovering xk first and then stopping is strictly greater than

the payoff obtained by uncovering xj first and then stopping if

u(xoS , x
o
k)− ck > u(xoS , x

o
k)− cj . (A.5)

On substituting for cj and ck we find that (A.5) is the same as (A.2).

The payoff obtained by uncovering xk first and then stopping is also strictly greater than the payoff of

uncovering both if

u(xoS , x
o
k)− ck > u(xoS , x

o
k, x

o
k)− cj − ck. (A.6)

On substituting for cj we find that (A.6) is also the same as (A.2).

Now suppose that apart from xj and xk, all other prizes should certainly stay covered. For example, each

other value might be xoi = 0 with probability 1, and ci > 0. We have argued that uncovering xk first and then

stopping is strictly better than uncovering xj first and then either stopping or uncovering xk. As x∗k ≤ x∗j > 0,

the Pandora rule dictates that it is optimal to uncover prize xj first. As this is false, we must conclude that if

the Pandora rule is optimal then (A.2) must be false, and thus Lemma 1 is true.
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Lemma 2. Suppose that utility u satisfies Assumptions 1 and 2. For any xoS, let x` denote the `-th greatest

coordinate of xoS.4 Then,

(a) there exist functions g` : R+ → R+, ` = 1, 2, . . . , n, such that for any xoS we have

u(xoS) =

|S|∑
`=1

g`(x`),

(b) g`(x) is (weakly) increasing in x and (weakly) decreasing in `,

(c) g`(x)− g`+1(x) is weakly increasing in x.

(d) there exists some g such that g2 = · · · = gn = g, and hence

u(xoS) = u(max
i∈S

xoi )− g(max
i∈S

xoi ) +
∑
i∈S

g(xoi ) (A.7)

where u− g is nondecreasing, and u(0) = g(0) = 0.

Once we know (A.7) is true, then we can complete a proof of Theorem 1 as follows. Consider Weitzman’s

problem with cost c̄i, and prize values, x̄oi defined by

c̄i = ci − Eg(xoi ),

x̄oi = u(xoi )− g(xoi ).

The payoff obtained as E[−
∑

i∈S c̄i + maxi∈S x̄
o
i ] will be the same as obtained with (A.7). This completes the

proof of Theorem 1. It remains to prove the Lemma 2.

Proof. To prove (a), define

g`(x) = u(x, . . . , x︸ ︷︷ ︸
` times

)− u(x, . . . , x︸ ︷︷ ︸
`−1 times

).

Then for S = {1, . . . , k} and xoS = (xi, i ∈ S),

u(xoS) = u(x1, . . . , xk)

= u(x1, . . . , xk)− u(x1, . . . , xk−1, 0) + u(x1, . . . , xk−1) (A.8)

= u(xk, . . . , xk︸ ︷︷ ︸
k times

)− u(xk, . . . , xk︸ ︷︷ ︸
k−1 times

, 0) + u(x1, . . . , xk−1) (A.9)

= gk(xk) + u(x1, . . . , xk−1)

=

k∑
`=1

g`(x`),

where (A.9) follows from (A.8) by repeated application of Lemma 1.

4Of course, x` is a function of xo
S , but we drop the argument with no loss of clarity.
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For (b), the fact that g`(x) is a decreasing function of ` follows from Assumption 1 (submodularity). The

fact that g`(x) is increasing in x can be seen by taking x < x′, and observing that

g`(x) = u(x, x′, . . . , x′︸ ︷︷ ︸
`−1 times

)− u(x′, . . . , x′︸ ︷︷ ︸
`−1 times

) ≤ g`(x′),

where the equality is by Lemma 1 and the inequality is by Assumption 1.

For (c), we note that if x < x′,

g`(x)− g`+1(x) = [u(x, . . . , x︸ ︷︷ ︸
` times

)− u(x, . . . , x︸ ︷︷ ︸
`−1 times

)]− [u(x, . . . , x︸ ︷︷ ︸
`+1 times

)− u(x, . . . , x︸ ︷︷ ︸
` times

)]

= [u(x′, . . . , x′︸ ︷︷ ︸
`−1 times

, x)− u(x′, . . . , x′︸ ︷︷ ︸
`−1 times

)]− [u(x′, . . . , x′︸ ︷︷ ︸
` times

, x)− u(x′, . . . , x′︸ ︷︷ ︸
` times

)]

≤ [u(x′, . . . , x′︸ ︷︷ ︸
` times

)− u(x′, . . . , x′︸ ︷︷ ︸
`−1 times

)]− [u(x′, . . . , x′︸ ︷︷ ︸
`+1 times

)− u(x′, . . . , x′︸ ︷︷ ︸
` times

)]

= g`(x
′)− g`+1(x′).

The second line follows by Lemma 1, and the third line by Assumption 1 (submodularity).

For (d) We prove g2 = g3. The proof of g` = g`+1, ` > 2 follows by examining an instance in which the first

` − 2 prizes uncovered are ones with ci = 0 (and reservation values ∞) and their uncovered values are greater

than any values that can be found amongst the prizes which remain uncovered at that point.

(i) Assume first that g3 is not equal to 0. Then there exists x0 such that g1(x0) ≥ g2(x0) > g3(x0) > 0.

Consider three variables, x1, x2 and x3 with the same degenerate distribution, having xoi = x0, with probability

1, i = 1, 2, 3. Let costs be chosen so

c3 = 0 ≤ c1 < g3(x0) < c2 < g2(x0). (A.10)

We proceed to show the Pandora rule cannot be optimal.

Firstly, it follows from (A.10) that for all y we have u(y) < −ci + Eu(y, xoi ). Hence initially, when S = ∅,

all three prizes have reservation value ∞. So if the Pandora rule is optimal then it must be optimal to uncover

any of them first. Suppose x2 is uncovered first, and then x3 (which still has reservation value ∞).5 It is now

strictly best to uncover x1 if and only if

g1(x0) + g2(x0) < −c1 + g1(x0) + g2(x0) + g3(x0)

which is true because c1 < g3(x0). The payoff is that of uncovering all three prizes.

5The proof of Lemma 2 (d) is where using variables with infinite reservation values facilitates analysis. Variables x1, x2, x3 with

finite reservation values would require non-degenerate distributions, and controlling for the desired orderings of reservation values

(initial and after uncovering one of them) would require an elaborate construction of these variables.
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Alternatively, if we uncover x1 first, followed by x3, it is now strictly best not to uncover x2, since c2 > g3(x0).

The difference in expected payoffs of the strategy which uncovers x1, x3 and of that which uncovers x2, x3, x1 is

[−c1 − c3 + g1(x0) + g2(x0)]− [−c1 − c3 − c2 + g1(x0) + g2(x0) + g3(x0)] = c2 − g3(x0),

which is positive, whereas if the Pandora rule were optimal this difference should be no greater than 0.

(ii) Now consider the special case in which g3 = 0 and x0 is such that g1(x0) ≥ g2(x0) > g3(x0) = 0. Suppose

xi is a variable such that xoi is equal to 0 or x0 with probabilities qi = 1 − pi and pi respectively, and where

ci/pi < g2(x0). Consider the class of prizes like this, for varying pi and ci. All have initial reservation value

∞. Suppose a prize in this class is uncovered and reveals value x0. Subsequent to this, the reservation value of

another variable in the class is now the least y, with y ≤ x0, such that

g1(x0) + g2(y) ≥ −ci + g1(x0) + pig2(x0) + (1− pi)g2(y),

i.e. the least y such that g2(y) ≥ −ci/pi + g2(x0). Since ci/pi < g2(x0), the reservation value is positive.

So suppose we start with three prizes in this class. We uncover one and it takes value x0. The other two

prizes have now positive reservation values, the greater of which is for the prize with least value of ci/pi. In

following the Pandora rule we may start by uncovering any prize initially, and then continue by uncovering prizes

in increasing order of c`/p`, until either two values of x0 are revealed or all three prizes are uncovered.

If we uncover the prizes in the order xi, xj , xk then the expected payoff is

−ci + pi[g1(x0)− cj + pjg2(x0) + qj [−ck + pkg2(x0)]]

+ qi[−cj + pj [g1(x0)− ck + pkg2(x0)] + qj [−ck + pkg1(x0)]]

= (ck/pk)pipjpk + σ,

where σ is an expression that is symmetric in i, j, k. So if ci/pi < cj/pj < ck/pk < g2(x0) then it is strictly

better to begin by uncovering xi or xj , than to begin by uncovering xk. Thus optimality of the Pandora rule is

incompatible with g2(x0) > g3(x0) = 0.
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