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Abstract
Analyzing and optimizing biological models is often identified as a research priority in bio-

medical engineering. An important feature of a model should be the ability to find the best

condition in which an organism has to be grown in order to reach specific optimal output val-

ues chosen by the researcher. In this work, we take into account a mitochondrial model ana-

lyzed with flux-balance analysis. The optimal design and assessment of these models is

achieved through single- and/or multi-objective optimization techniques driven by epsilon-

dominance and identifiability analysis. Our optimization algorithm searches for the values of

the flux rates that optimize multiple cellular functions simultaneously. The optimization of

the fluxes of the metabolic network includes not only input fluxes, but also internal fluxes. A

faster convergence process with robust candidate solutions is permitted by a relaxed Pareto

dominance, regulating the granularity of the approximation of the desired Pareto front. We

find that the maximum ATP production is linked to a total consumption of NADH, and reach-

ing the maximum amount of NADH leads to an increasing request of NADH from the exter-

nal environment. Furthermore, the identifiability analysis characterizes the type and the

stage of three monogenic diseases. Finally, we propose a new methodology to extend any

constraint-based model using protein abundances.

1 Introduction
The analysis of models and the automated design of metabolic networks and synthetic path-
ways are key features for investigating biochemical systems. To this end, several mathematical
model approaches have been designed, based on ordinary differential expression, stochastic
methods, master equations or on algebraic equations [1]. More recently, algorithms and
computational methods have been implemented to perform their numerical simulation. This
led to biological models that researchers used to build gene regulatory networks of cells under
specific experimental conditions [2], to inferring the metabolic flux behavior in single cells for
synthetic purposes [3], and to pharmacokinetics/pharmacodynamics studies [4].
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In this study, we propose the BIOCAD framework, which integrates different computational
tools able to analyze and query biological models. In particular, it integrates the Pareto optimal
principle, the �-dominance analysis and the identifiability analysis, with the aim of designing
robust metabolic networks that perform specific tasks. Since the models considered in BioCAD
represent biological processes, the tasks here reported are biological functions, such as the
energy yield of a cell. The framework is general-purpose, and the design acts on genes, reac-
tions, enzymes and metabolites (Fig 1).

In the work by Costanza et al. [5], the authors propose a technique for robust design of
microbial strains by using multi-objective optimization techniques [6]. Given two or more con-
flicting objectives in a system, the Pareto front is the set of trade-off points that are “non-
dominated”, i.e., they are such that an increase of one objective comes at the cost of a decrease
in the other objective. In a pre-processing step, models are analyzed by means of sensitivity
analysis methods. In a post-processing step, each Pareto front achieved by the multi-objective
optimization [6] is tested by the robustness analysis [7] in order to evaluate the fragility of each
Pareto point. We remark that an effective framework for analysis of metabolic networks would
include the following analyses: evolutionary many-objective optimization, robustness analysis,
�-dominance analysis, sensitivity and identifiability analysis [8].

Our BIOCAD pipeline is able to tackle biological problems in an automated way. More spe-
cifically, it is able to analyze a metabolic network and design an optimized version of the same
network. In the BIOCAD framework, we present here a new optimization method called OPT-

BIOCAD, a stochastic general-purpose optimization algorithm able to perform single and
multi-objective optimization. OPTBIOCAD searches for optimal (i) genetic strategies, (ii) metab-
olites and enzyme concentrations, and (iii) flux rates by using combinatorial/continuous opti-
mization. The �-dominance Pareto front analysis extends the search space of solutions,
therefore revealing other suitable (suboptimal) points, while the identifiability analysis finds
functional relations among decision variables. The source code of our pipeline is in S1 Code.
The novelty of the present work lies also in the Protein-Abundance Design through Multi-
objective Optimization (PADMO) algorithm, able to integrate protein abundances in genome-
scale metabolic networks while ensuring flux balance and optimization. The use of gene expres-
sion and protein abundance in computer-aided-design can help to build highly functional and
robust engineered strains with reduced times and costs [9].

As introduced above, the energy yield can be considered an interesting point to analyze,
since the metabolism of a cell is highly correlated with the energy production and utilization.
Mitochondria are organelles in eukaryotic cells and play a key role in the cell. First, they are
responsible for the energy productivity, since they synthesize adenosine triphosphate (ATP),
the chemical energy in the cell. Second, the mitochondrion is the site of carbohydrates metabo-
lism, fatty acid oxidation and urea cycle. Mitochondria are implied in many other important
processes, such as the regulation of calcium homeostasis and other inorganic ions [10, 11], cel-
lular differentiation, cell death (apoptosis) [12], as well as the control of the cell cycle and cell
growth [13]. Mitochondria have been also found responsible for several human diseases,
including mitochondrial disorders [14], cardiac dysfunction [15], and type 2 diabetes [16]. For
the reasons discussed above, we investigate two mitochondrial models [17, 18].

The first model we take into account is the mitochondrial network by Smith et al. [17], com-
posed of 423 reactions (including transformation reactions and transport reactions between
compartments and those between internal and external environment) and 228 metabolites.
Here, the system is described by considering a steady state for all the metabolites, and solved
through flux balance analysis (FBA) [19].

FBA is a modelling approach to simulate and investigate genome-scale metabolic networks
[3]. FBA is able to handle large networks and estimate the value of the metabolic fluxes through
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the network when an objective function is defined (e.g., the growth rate of a cell or its energy
yield). The network can be thought as a graph, where each edge represents a reaction and the
metabolic flux through the reaction. The direction of each edge is linked to the reversibility or
irreversibility of the corresponding enzymatic/transport/exchange reaction. Moreover, the ver-
tices represent the substrates or the products of each reaction. The output of the network (the
flux distribution) represents the phenotypic state of the biological system and depends on the
topology of the network and on the input, i.e., the uptake rates. From a computational stand-
point, the time needed to solve the network is remarkably short if compared, for instance, to
methods used to solve ordinary differential equations. Furthermore, FBA does not involve
kinetic parameters and is not affected by computational errors of numerical approximation. As
a result, FBA allows handling large networks with a large number of components [19].

In the past, FBA models have been chosen for analysis aimed to synthetic biology. For
instance, OptKnock [20] implements a bi-level programming framework, GDLS [21] proposes
a local optimization algorithm, and GDMO [5] performs optimization based on genetic

Fig 1. The BIOCAD framework is able to performmulti-objective optimization on gene sets and protein abundances. The optimization can be applied
to the Boolean arrays of gene sets (simulating an on/off condition), to the real-valued fluxes, or to the real-valued arrays representing protein abundances. In
both cases, we seek for the Pareto-optimal arrays to simultaneously optimize two or more objective functions. The optimization is augmented with sensitivity,
identifiability, robustness and �-dominance analysis. The sensitivity analysis quantifies the importance of the input variables in the model, the identifiability
analysis infers functional relations between them, the robustness is used in combination with the sensitivity and quantifies if a solution is reachable even if
small perturbations are applied to the system, while the �-dominance analysis identifies sub-optimal points.

doi:10.1371/journal.pone.0133825.g001
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algorithms, where bacterial cells are optimized and computationally designed in terms of gene
knockouts.

For cross-comparison purposes, we will also consider a second model representing the
genome-scale metabolic network of the Chlamydomonas algal cell [18]. This model includes
the mitochondrial organelle; therefore, we use it to calculate the energy yield of the algal cell by
searching optimal gene knockout and uptake rates in the FBA framework. The analysis per-
formed on Chlamydomonas is reported in S1 File.

We search for those metabolites that are fundamental for optimizing the energy productiv-
ity, i.e., for maximizing ATP and NADH production in the matrix. Our method is able to tackle
and compare different systems modeled through FBA, gene-protein-reaction mapping (GPR),
systems of ODEs, and also to optimize reaction fluxes and gene sets simultaneously. Fig 1
shows the optimization steps performed by BIOCAD (columns 1–4) and the additional analyses
available (column 5).

The results we obtain indicate that the maximum ATP production is linked to a total con-
sumption of NADH, probably because NADH is completely used to synthesize ATP through
the electron transport chain. On the other hand, reaching the maximum amount of NADH
leads also to an increasing request of NADH from the external environment. The optimization
process showed also that biomass formation increases when ATP production is stopped. As
expected, oxygen is more requested when ATP production is maximized, together with hydro-
xybutanoate, isocitrate, alpha-D-glucose and citrate metabolites. We finally report that the
identifiability analysis can be used to detect and characterize the stage of a metabolic disease, as
well as the type of monogenic disorder. More specifically, we highlight that functional relations
among chemical reactions depend on the disease investigated and, within the same disease, on
its stage.

2 Results

2.1 Optimization of the mitochondrial FBA model
Using our novel bio-inspired algorithm OPTBIOCAD, we optimize the FBA mitochondrial
model by Smith and Robinson [17]. The model contains 423 reactions and 228 metabolites.
We specifically optimize energy-related objectives (ATP and NADH production). To measure
the availability of NADH, we added an exchange reaction for the metabolite NADH to the
external environment through the mitochondrial membrane. Given the common assumptions
of flux-balance analysis, such addition does not perturb the dynamics of the metabolic network.
Maximizing or minimizing the flux through this reaction represents a FBA-compatible way to
require maximum of minimum overall concentration of the NADHmetabolite in the mito-
chondrion. The aim is to find the optimal environment for mitochondria so as to increase their
bioenergy yield. The decision variables are the 73 input fluxes. We therefore search for the
best values of uptake rate of substrates, which are bounded by a maximum uptake rate of
1000 μmol min−1 gDW−1 (DW stands for dry weight, i.e., the weight of the mitochondrion
without water). The optimization finds a single Pareto point that reaches the maximum
amount of ATP, without NADH production (Fig 2, left panel). In another optimization experi-
ment, we maximize ATP production and simultaneously minimize NADH production. After
1000 generations of the optimization algorithm, we observe that ATP production grows more
rapidly when NADH is consumed more. During the simulation, the algorithm finds many
non-dominated points with respect to the previous generations. Instead, in the last generations
(after the 900th generation), the algorithm finds only four Pareto points, which represent our
final results. The results are shown in Fig 2, right panel.
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We set the input fluxes of the mitochondrial model as described by Smith and Robinson
[17]. With this setting, ATP production is equal to 139.4264 μmol min−1 gDW−1, while NADH
is totally consumed, and the production is equal to 0. At the end of the optimization process,
we find that the first non-dominated solution reaches NADH = −140.5484 μmol min−1 gDW−1

and ATP = 971.0874 μmol min−1 gDW−1, and the second one reaches NADH = −139.5166
μmol min−1 gDW−1 and ATP = 971.1778 μmol min−1 gDW−1. By comparing the initial state
with the Pareto optimal state, we remark that ATP increases when the uptake rates linked to
(R)-3-hydroxybutanoate, isocitrate, alpha-D-glucose, citrate and oxygen increase. Oxygen is
the element that evolves more, and changes from 19.8 μmol min−1 gDW−1 to 143.17 μmol
min−1 gDW−1. In this case, the optimization does not take into account the limitation of sub-
strates (such as glucose or oxygen) in the biological environment, so we consider this study as
an asymptotic analysis for investigating the potential of mitochondria. Recently, different stud-
ies reported some experimental validations. For instance, Smith and Robinson [17] found that
that when the maximum ATP production is reached (139.43 μmol min−1 gDW−1 calculated
from the FBA model, and 150 μmol min−1 gDW−1 experimentally measured [22]), both oxygen
and glucose uptake rates were at the maximum allowable rate [23, 24]. A negative value of
NADH production indicates the NADH uptake rate. We suppose that NADHmolecules are
used in mitochondria to synthesize ATP molecules. When more NADHmolecules are con-
sumed, more ATP molecules are formed.

To give a more in-depth interpretation of our optimization, we choose a minimal set of deci-
sion variables, consisting of the following twelve input fluxes: oxygen, arginine, lysine, proline,
aspartate, alpha-D-glucose, (R)-3-hydroxybutanoate, isoleucine, valine, hexadecanoic acid, (S)-
lactate, HCO3-. Moreover, we change the maximum allowable uptake rate for each variable,
that is equal to +33% of the nominal value. In this condition, NADH production does not
decrease, while ATP increases and we find ATP = 185.4299 μmol min−1 gDW−1. Also in this
experiment, the oxygen is the variable that increases more (with respect to its nominal value).

Optimization of internal fluxes. The optimization of the metabolic reactions in the FBA
mitochondrial model has been performed using a genetic algorithm and a novel mutation
operator. The genetic algorithm is inspired to NSGA-II with a new mutation heuristic. Since
perturbing metabolic reactions in FBA models may lead to unfeasible solutions, we create a
mutation operator that takes into account this issue. We introduce two parameters, C and N. C
is the maximum number of fluxes that can be perturbed. If the mutation results in unfeasible

Fig 2. Optimization of the FBAmitochondrial model. (Left) Maximization of ATP and NADH production in
the FBAmitochondrial model [17], carried out with 1000 individuals and halted at the 1500th generation. We
optimized the uptake rate fluxes (73 exchange fluxes) to analyze the energy state of the mitochondrion. In
blue the dominated feasible points, in black the wild type conditions, i.e., before optimization and in red the
non-dominated Pareto points. Negative flux values represent an uptake rate, while positive values represent
a production rate. (Right) Maximization of ATP production and minimization of NADH production.

doi:10.1371/journal.pone.0133825.g002
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solutions due to the constraints operating in the network, the procedure of mutation is
repeated until a new child solution is found or a maximum number of N trials is reached. In
the latter case, the current parent solution is maintained. We have performed the optimization
of 229 transformation fluxes and conducted two experiments: (i) the simultaneous maximiza-
tion of ATP and NADH production and (ii) the simultaneous maximization of ATP produc-
tion and the minimization of NADH production. For both the experiments we have used a
population of 1000 individuals. Each individual contains a vector of 229 values, and each value
represents the rate of the corresponding metabolic flux. The mutation operator takes also into
account the reversibility of the reactions. Our algorithm has performed the evolution of the
population until the 300th generation. The results are shown in Fig S4 in S1 File. For both the
experiments, the algorithm finds a set of non-dominated Pareto solutions, showed in red.
Dominated and feasible solutions are shown in blue, while the point in black represents the
wild type condition, i.e., the condition before the optimization.

Another multi-objective optimization that we take into account for the FBA mitochondrial
model involves the production of biomass, ATP and reactive oxygen species (ROS) from com-
plex I. Six reactions in the model represent the formation of the molecules responsible for the
growth of the mitochondrion (amino acids, DNA, RNA, lipid, ATP, and heme). In an optimi-
zation to maximize ATP and biomass we define as biomass flux the sum of all the biomass
fluxes except that of ATP (Fig S5 in S1 File). Conversely, in the optimization of ROS and bio-
mass, to obtain the biomass flux we sum up all the six fluxes (Fig S6 in S1 File).

2.2 Characterization of monogenic diseases using identifiability analysis
Studying functional relations in the mitochondrial metabolic network merits further attention
due to the possibility to characterize mitochondrial monogenic diseases. Here we consider the
FBA model of the mitochondrion by Smith et al. [17]. The identifiability analysis reveals
whether a component of a model is identifiable, i.e., uniquely determinable, thus indicating
what can (and cannot) be inferred from a model. We choose ATP production as the objective
function to evaluate the distribution of fluxes in the network. To reduce the non-identifiability,
one should fix the non-identifiable fluxes at an arbitrary value. This does not affect the dynam-
ical properties of the model, since all the variables related to the fixed one will change
accordingly.

Our idea is that by performing the Identifiability Analysis (IA) (see Section 4) in healthy,
pathological and disease conditions, we can characterize the onset of a disease by looking at the
functional relations among fluxes. When taking into account a specific disease, we constrain
the reaction responsible for that disease to various values in the range from 0 to the reaction
flux under normal conditions [17], and we evaluate the amount of ATP and NADH as outputs
of the model. We define a model condition as disease status if ATP production is less or equal
to 33% of the production under normal conditions, and inflammation status if ATP production
is less or equal to 66% but more than 33% of the production under normal conditions.

Fumarase deficiency. The fumarase deficiency is a monogenic disorder due to the
impairment of the fumarate hydratase enzyme, caused by a mutation in the fumarate hydratase
gene, which encodes the enzyme. As a result, the fumarate is not converted into malate in the
TCA cycle, and therefore a marker for this disease is the presence of fumarate in the urine.
Therefore, here we focus on the reaction Fumarate + H2O! (S)-Malate. The fumarase flux is
constrained to be equal to values equally distributed between 0 and 13.986 μmol min−1 gDW−1.
We first set the flux to be null, and then we increase it by 0.007 μmol min−1 gDW−1, so as to
obtain a 423 × 2000 matrix V containing all the fluxes corresponding to fixed fluxes of fuma-
rate. In healthy conditions and when the objective function in FBA is the maximum ATP
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production, we obtain a fumarase flux of 6.9721 μmol min−1 gDW−1. In the fumarase defi-
ciency conditions (about 2–3 μmol min−1 gDW−1), ATP production is reduced until 75% of
the maximum value [17]. For the fumarase deficiency, we identify these intervals of the fuma-
rase flux: healthy stage [10,5.69), inflammation stage [5.69,3.69), pathological stage [3.69,0]
μmol min−1 gDW−1 (we adopt the standard notation for half-closed intervals; [a, b) indicates
that a is included and b is not included).

We first apply the IA to detect global relations between two or more variables, allowing the
fumarase flux to span all the interval [0,13.986] μmol min−1 gDW−1. In the table summarizing
the results (Table A in S1 File), the “groups” column indicates the functional relations between
variables. For instance, R01361MM (conversion of (R)-3-Hydroxybutanoate and NAD+ into
acetoacetate, NADH and H+) and R01978MM (conversion of (S)-3-Hydroxy-3-methylglu-
taryl-CoA, and CoA into acetyl-CoA, H2O and Acetoacetyl-CoA) are functionally related. In
other words, the first reaction (response variable x47) is strongly related to the second reaction
(predictor x62). (See Table A in S1 File and Table L in S1 FIle for reaction ID and stoichiome-
try.) In Fig 3 we plot the optimal transformations β found for these two reactions (see also Sec-
tion 4). We note that the transformations are similar to each other, indicating the structural
non identifiability of both variables. The functional relation between these two reactions (x47
and x62) has been detected by the identifiability analysis applied to both reactions. This is
therefore a strong relation, marked by a double asterisk in Table A in S1 File.

In Table B in S1 File, Table D in S1 File, and Table E in S1 File, we show the results of the IA
applied to the metabolic network with various values of the fumarase flux. The (x28, x50) group
is detected both in the healthy and in the pathological stage, but not in the inflammation stage.
In the pathological stage only four different functional relations are detected, which means that
variables are mostly unrelated to one another.

Succinate dehydrogenase deficiency. This disorders affects the mitochondrial complex II,
responsible for linking the TCA cycle with the electron transport chain. It is often due to the
bi-allelic inactivation of the SDHA gene. The deficiency of succinate dehydrogenase causes
encephalomyopathy or tumor formation, and may affect motor and mental skills.

The behavior of ATP as function of the succinate dehydrogenase flux is equivalent to that
obtained as function of the fumarase flux [17]. Therefore, we identify three intervals of the suc-
cinate dehydrogenase flux: healthy stage [10,5.69), inflammation stage [5.69,3.69), pathological
stage [3.69,0] μmol min−1 gDW−1.

In Fig 4 we show a strong functional relation between the two reactions R00713MM and
R01648MM in healthy stage (full reaction stoichiometry is reported in Table L in S1 File). By
cross-comparing, in the healthy stage, this functional relation under succinate dehydrogenase
deficiency with the functional relation under fumarase deficiency referring to the same func-
tional group, we report that the IA can be used to detect the type of monogenic disorder. In
fact, the relation between the two variables depends on the disease investigated, although the
intervals chosen are equivalent to those of the fumarase deficiency. Functional groups within
succinate dehydrogenase deficiency may also include a high number of reactions (Fig 5).

α-ketoglutarate dehydrogenase deficiency. The α-ketoglutarate dehydrogenase enzyme
provides protection against cyanide induced convulsions, and decreases mitochondrial damage
induced by seizures caused by kainic acid. The corresponding deficiency affects the TCA cycle,
and in particular the conversion of oxoglutarate into succinyl-CoA.

The intervals identified by plotting ATP as function of α-ketoglutarate dehydrogenase flux
are as follows: healthy stage [0,8.31), inflammation stage [8.31,10.31), pathological stage
[10.31,12] μmol min−1 gDW−1. Interestingly, the transformations β found for the healthy,
inflammation and pathological conditions (Fig 6) show that the optimal transformation in the

Multi-Target Analysis and Design of Mitochondrial Metabolism

PLOSONE | DOI:10.1371/journal.pone.0133825 September 16, 2015 7 / 22



Fig 4. Fumarase deficiency (left) and succinate dehydrogenase deficiency (right) in the healthy stage. Functional relation found for the two fluxes
R00713MM and R01648MM (x axis) [μmol min−1 gDW−1] in the mitochondrial FBAmodel [17]. Reaction stoichiometry is reported in Table L in S1 File. In the
same stage of disease, the IA can be used to detect the type of monogenic disorder through the shape of the functional relation.

doi:10.1371/journal.pone.0133825.g004

Fig 3. Optimal transformations β (y axis) found for the two fluxes R01361MM (top) and R01978MM (bottom) (x axis) [μmol min−1 gDW−1] in the
mitochondrial FBAmodel [17]. This plot proves that there is a strong relation between these two fluxes, with slightly different and noisier behavior in the
neighborhood of 0 and 0.7.

doi:10.1371/journal.pone.0133825.g003
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pathological stage has a different shape with respect to the healthy and the inflammation stages.
The functional relations associated with these plots are in S1 File.

2.3 Optimization of protein abundances for FBA models
Given that protein synthesis is an outcome of expression of the genes that code for protein seg-
ments, our idea is to link the values representing protein abundances to the bounds of the flux
of the reactions controlled by those proteins. We remark that the FBA models allow the varia-
tion of the bounds of each reaction flux. After the perturbation of the range of the reaction
fluxes, due to the values of protein abundance given by the optimization algorithm, the actual

Fig 5. Succinate dehydrogenase deficiency—inflammation stage.Optimal transformations β (y axis) found for the five fluxes R00004MM, R01280MM,
R01706MM, R04544MM, and R04968MM (x axis) [μmol min−1 gDW−1] in the mitochondrial FBA model [17].

doi:10.1371/journal.pone.0133825.g005
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Fig 6. α-ketoglutarate dehydrogenase deficiency—healthy stage (top), inflammation stage (middle),
pathological stage (bottom). The optimal transformations β (y axis) have been found for the two fluxes
R00713MM and R01648MM (x axis) [μmol min−1 gDW−1] in the mitochondrial FBAmodel [17].

doi:10.1371/journal.pone.0133825.g006
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reaction fluxes are the results of the FBA, simulating the local variability of fluxes. As a result,
by perturbing the values of protein abundance through a multi-objective optimization method,
desired fluxes can be concurrently increased [25]. In other words, we perform a Protein-
Abundance Design through Multi-objective Optimization (PADMO).

Let yi be the protein abundance of the ith protein, responsible for the ith reaction of the
model. In order to map the protein abundance value into a specific condition of the model, we
use the following piecewise multiplicative function (Fig S11 in S1 File):

f ðyiÞ ¼
( ð1þ jlogðyiÞjÞðyi�1Þ=jyi�1j if yi 2 R

þ n f1g

1 if yi ¼ 1
ð1Þ

In the FBA model, we change the minimum and maximum flux of the ith reaction accord-
ingly: vmin

i ¼ Vmin
i f ðyiÞ, vmax

i ¼ Vmax
i f ðyiÞ, where Vmin

i and Vmax
i are the minimum and maximum

flux of the wild-type configuration of the model. The bounds of the reaction fluxes are multi-
plied by the logarithmic piecewise multiplicative function (Eq 1) so as to avoid that the genetic
algorithm underlying the optimization is driven towards high and unfeasible values of protein
abundance. Namely, the upper and lower bound of the flux in the FBA model in a specific con-
dition are equal to the wild-type bounds multiplied by f. In yi = 1, the function has a disconti-
nuity of the third kind, removable by imposing f(1) = 1. The logarithm function, in a different
way, has already been used in other approaches [26], so as to build new objective functions
when the argument is the ratio between gene expression values. Regarding f as a f(x) scaling

function, the properties f ðxÞ�!x!0
0 and f(1) = 1 ensure that GDMO [5] becomes a particular

case of PADMO. The steps of PADMO are presented in Fig 1 (red row).
The FBA model can be optimized through a multi-objective evolutionary algorithm. In

GDMO [5], each “individual” of the population is represented by a binary variable set repre-
senting the knockout strategy of gene sets. Conversely, in PADMO the individuals are arrays of
real values, each of which represents the abundance of a protein. Through the function f(x),
these abundances have a continuous effect on the FBA model, rather than only an on/off effect
on reactions.

The multi-objective optimization can then be performed with OPTBIOCAD. For each genera-
tion of the algorithm, we provide the Pareto optimal solutions, in order to evaluate the evolu-
tion of the Pareto front. This loop is repeated until the solutions set does not improve, or until
an individual with a desired phenotype is achieved. The number of generations and population
are parameters chosen by the researcher. Using this approach, each point of the Pareto front is
not merely a specific optimal model in the objective space, but also a protein abundance array
representing a specific condition in the variable space. In Fig 7 we show the results of PADMO
applied to the maximization of ATP and biomass in the mitochondrial FBA model. We run the
model looking for the optimal arrays of protein abundances that maximize both concurrently.
Since the model has five biomass reactions other than that of ATP, we define as biomass flux
the sum of all the five biomass reaction fluxes.

3 Discussion
Mitochondria are the core of cellular metabolism, since they generate ATP molecules. Data
from literature demonstrate that mitochondria play a crucial role in neuronal cell survival [27].
Calcium is an important ion inside mitochondria and its concentration is fundamental to regu-
late functions and acts at several levels during the ATP synthesis. The dysregulation of the
mitochondrial Ca2+ homeostasis is involved in many pathologies. For example, an accumula-
tion of Ca2+ ions in the mitochondrial space can lead to an increased generation of ROS
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(reactive oxygen species) that alters the permeability of the inner membrane leading the cell to
apoptosis. Additionally, the dysregulation of the Ca2+ homeostasis is involved in neurodegen-
erative diseases [11]. ATP metabolism, Ca2+ homeostasis, NAD+, NADH and ROS are key
players in the cellular mechanisms, and their alteration can lead to the cell death. Diseases like
Parkinson [28], Alzheimer [29] and Amyotrophic Lateral Sclerosis [30] have a common point:
mitochondrial dysfunction occurs prior to the onset of the pathology symptoms.

In this study, we analyzed how the genetic and the energy-converting pathways of mito-
chondria can be explored using multi-objective optimization, sensitivity, identifiability and
�-dominance. These techniques are framed in a unique pipeline applicable to a variety of con-
ditions and organisms. As well as optimizing simultaneously two or more outputs of a model,
the pipeline can also provide interesting insights into clusters of chemical reaction networks,
which are often found in the cell and reflect the presence of different pathways with different
responses to external or internal perturbations. Indeed, in addition to optimizing input and
output fluxes, we defined a strategy to determine the role of the internal fluxes in the mitochon-
drial FBA network, evaluating the response of the network to changes of their rate.

The multi-objective optimization algorithm we propose in this manuscript, named OPTBIO-

CAD, allows for a better coverage of the objective space. More specifically, it has been designed

Fig 7. Maximization of ATP and biomass in the mitochondrial FBAmodel when taking into account the protein abundances as real-valued
variables. The red points constitute the Pareto frontier, while the others represent all the feasible points. The points are color coded according to the
generation to which they belong. Points from the early generations of the genetic algorithm are colored light grey, while points from the last ones are colored
black.

doi:10.1371/journal.pone.0133825.g007
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to generate diversity among the solutions during the convergence process, and to use various
perturbation operators to ensure both a local and a global search of optimal solutions. Our
pipeline is suitable for comparing the structure of the metabolism through optimization and
associated measures for any model taken as a “black-box” input.

For instance, by comparing Fig 2 and Fig S1 in S1 File, the analysis of the Pareto front high-
lights that the NADH production is flexible in the mitochondrial model by Smith et al., but not
in the algal model, which instead allows higher values of ATP production. Furthermore, the
algal model is able to better highlight the changes in the metabolism with respect to the wild
type condition. On the other hand, the multi-objective optimization of the mitochondrial
model finds many Pareto-optimal and sub-optimal points, while there are only few optimal
points for each optimization run on the algal metabolism.

The sensitivity analysis has detected the variables playing the major role on the output of
the model. Specifically, the PoSA algorithm assesses the sensitivity of each pathway, rather
than focusing only on a single reaction or component of the model. Most importantly, PoSA is
also able to handle Boolean inputs [5]. Conversely, the identifiability analysis has detected the
functional groups of variables. The elements of a functional group are variables functionally
related with each other, which cannot be determined unambiguously. In our work, the iden-
tifiability analysis is applied to the input variables of each model, considering only the values in
the variable space that correspond to the Pareto optimal points in the objective space. The
�-dominance analysis is performed to investigate the neighborhood of the suitable Pareto-opti-
mal designs (see S1 File).

The decision variables of our multi-objective optimization algorithm can also be the protein
abundance values. Each point of the Pareto front represents a different strain or the same strain
responding differently to different sets of environmental conditions. By refining our algorithm
with the possibility of modifying real-valued protein abundances rather than binary knockout
arrays, we provide a new method to optimize simultaneously two or more outputs of the model
by finding the best protein abundance array. Most notably, this may permit to determine the
best environmental condition in which an organism has to be grown in order to reach specific
optimal output values from a range of objective functions chosen by the researcher. This
method is particularly suitable for bacteria [31], when different environmental conditions
cause differences in gene expression arrays and therefore in the protein abundances, whose
effect can be analyzed in the FBA model using our novel PADMO algorithm. Interestingly, our
approach can serve as support for the study of gene expression also in mitochondria. For
instance, in studies linking gene expression data and mitochondrial disease [32], our method
can be used to predict the effect of changes in gene expression due to the specific disease under
investigation. In particular, using our algorithm to implement the genetic and genomic status
of mitochondria can help infer biomarkers for diseases diagnoses and prognoses [33].

The interplay between these techniques in our general-purpose framework can be exploited
not merely to reach the optimal and suboptimal configuration for a model in a single-objective
and multi-objective fashion, but also to conduct tentative analyses on the variables and compo-
nents of any model including ODEs, DAEs, FBA and GPR mapping. In fact, our framework is
also suitable for general-purpose and comparative analysis, enabling to investigate and cross-
compare not merely any biological pathway modeled with ordinary differential equations, dif-
ferential algebraic equations, flux balance analysis and gene-protein-reaction mapping, but
also models in which fluxes and gene sets need to be optimized concurrently. Striking applica-
tions of our pipeline could be in the field of metabolic engineering of a whole biological net-
work. In particular, we propose a general and automated way to optimize biological models
and assess their optimal solutions. In a network of organisms interacting with each other,
where each model becomes a submodel of the whole network model, our approach can be used
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for analyzing all the network. The results given by the framework applied to each submodel
can be easily integrated, being output of the same pipeline, thus allowing a convergence of dif-
ferent modelling techniques [5, 34, 35].

In each optimization procedure we have considered a single organelle, while in the cells
there are usually many compartments, each of which contains an organelle. Compartments,
also referred to as submodules, may differ for their activity depending on their location in the
cell. In a module of interacting organelles, most of the reactions involve more than one com-
partment. Indeed, any kind of circuit can be split into submodules to increase its efficiency. An
appropriate approach towards whole-cell analysis would therefore be to build a Pareto front
where each objective belongs to a different compartment [36, 37], linking compartments with a
set of delay differential equations (DDEs) to account for events that depend on the state of the
system at an earlier time (e.g., diffusion processes or maturation events). In this way, we could
envisage our framework in a larger common pipeline to investigate not merely biological cir-
cuits, but also human body monitoring techniques, biosensors design, as well as a possible inte-
gration with microelectronics, e.g., CMOS biomicrosystems.

4 Methods

4.1 Searching for optimal trade-offs: the Pareto front
Standard optimization routines in computational biology are concerned with the maximization
of a single objective, usually the growth rate. However, there is increasing evidence that cells
need to optimize multiple, often conflicting, objectives. When two tasks are in contrast with
each other, there is no phenotype that can be optimal at all of them. However, multi-objective
optimization [6] allows searching for all the trade-off solutions for both tasks.

We exploit the concept of multi-objective Pareto optimality to maximize or minimize two
or more desired metabolites in a model, thus obtaining new in silico synthetic strains, which
are optimal in many parameters or variables simultaneously.

Let us assume to have r objective functions f1, . . ., fr to optimize. The problem of multi-
objective optimization can be formalized as finding a solution x� that optimizes the vector
function

f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; :::; frðxÞÞ; ð2Þ
where x is the variable in the search space.

The solution of a multi-objective problem is a set of points called Pareto optimal solutions
or Pareto front. A point y� in the solution space is said to be Pareto optimal if there does not
exist a point y such that f(y) dominates f(y�). Formally, if we consider the maximization prob-
lem, y� is Pareto optimal if ∄ y s.t. fi(y)> fi(y�), 8i = 1, . . ., r, where f is the vector of r objective
functions to maximize in the objective space. Without loss of generality, we have assumed that
all the functions have to be maximized (note that minimizing a function fi can be thought of as
maximizing −fi). The objective functions fi are usually in conflict with each other, and therefore
we use the Pareto-front concept to find the set of designs that represent the best trade-off
between two or more requirements. From a biological perspective, the Pareto front is the set of
all the phenotypes that remain after eliminating all the feasible phenotypes dominated on all
tasks [38].

4.2 OptBioCAD: a stochastic general-purpose optimization algorithm
In order to tackle multi-objective optimization problems, we design a novel algorithm, called
OPTBIOCAD, which belongs to the class of the well-known evolutionary multi-objective
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optimization algorithms (e.g., [39] and [40]). Each candidate solution is a vector of n values,
where n is the dimension of the problem, and is assigned an age τ, initially set to 0 [40, 41].
An initial population P(0) of dimension d is randomly generated, and each variable is
defined in the range where the search is performed. The copying phase is responsible for the
production of copies of the candidate solutions. Each member of the population is copied
dup times, thus producing a population Pcop of size d × dup, where each copied candidate
solution takes the same age of its parent; simultaneously, the age of the parent increments by
one unit. Once the Pcop population is created, it undergoes the mutation phase in order to
find better solutions; in this phase, two operators, called local search and global search, are
applied to each candidate solution. Firstly, the local search operator mutates a randomly
chosen variable xi of a given candidate solution using a self-adaptive Gaussian mutation

computed as xnewi ¼ xi þ snew
i Nð0; 1Þ, where snew

i ¼ sie
gNð0;1Þþg0Nið0;1Þ, with initial conditions

si ¼ 0:4ðxmax
i � xmin

i Þ=
ffiffiffi
n
p

; g ¼ 1=
ffiffiffiffiffi
2n
p

; g0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
n
pp

, n being the number of decision
variables.

Successively, the global search operator applies a convex perturbation to a given solution by
setting xnewi ¼ ð1� giÞxi þ gixk, where xk is a variable randomly chosen such that xi 6¼ xk, with
γi = N(0, 1). These local and global search operators are controlled by a specific mutation rate
α; for the local search, we define α = e−ρF, while for the global search operator we adopted
a ¼ 1

b e
�F , where F is the fitness function value normalized in [0, 1], while ρ and β are parame-

ters. The fitness function is defined as F ¼Pr
i¼1 fi=fmaxi

where f is the vector of the r objective

functions and fmax is the vector of the r best values (of all the populations), one for each objec-
tive function. F is normalized dividing by r.

The two operators are applied sequentially; the local search operator acts on the Pcop pro-
ducing a new population PLS. The global search operator mutates PLS generating the PGS popu-
lation. After the local search operator, the population PGS is evaluated; if a candidate solution
achieves a better value of objective function, its age is set to 0, otherwise it is increased by one.
Then, the diversity enforcing operator is applied to P(t) and PGS; it deletes candidate solutions
with an age greater than τB + 1, where τB is a parameter of the algorithm. The deleted candidate
solutions are saved into the archive BCarch. Since the archive contains at most sa solutions, if
there is enough space, the candidate solution is put into the first available location, otherwise it
is put in a random location. Finally, the selection is performed and the new population P(t+1) is
created by picking the best individuals from the parents and the mutated candidate solutions.
However, if jP(t+1)j< d, d − jP(t+1)j candidate solutions are randomly picked from the archive
and added to the new population.

In many real world applications, it is common to deal with constraints, which could be
imposed on input and output values [42]. In general, a constraint is a function g(x) that certifi-
cates if a solution for a given optimization problem is feasible or not. We consider constraints
defined as g(x) : Rn! R if g(x)� θ, where θ is a feasibility threshold. The algorithm considers
the constraint values during the selection procedure. Given two individuals p1, p2, if both are
feasible, then the individual with the lowest objective function value is picked; if p1 is feasible
and p2 is unfeasible, p1 is chosen, otherwise if p1 and p2 are unfeasible the individual with the
lowest constraints violation is selected.

In section 1, all the simulations are performed with the following algorithm parameters:
d = 20, dup = 2, τB = 50, ρ = 1, β = 7 and sa = 160. Additionally, the model (input of OPTBIO-

CAD) can be a FBA, FBA-GPR, ODEs or DAEs model. For each model a vector ~mp of parame-
ters is defined and its elements are used as decision variables. The output of the algorithm will
be P(t), where t = tfinal, and will contain the optimal designs, ~mp�i ; i ¼ 1; . . . ; d. Moreover, sa
additional solutions will be contained in the BCarch archive and in P(t), where t = 0, 1, . . ., tfinal.
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In section 1 and 3, the results come from these two last sets. The pseudo-code of OptBioCAD
is reported in Table 1. The choice of the biomass production as a goal to optimize (e.g., allow-
ing the maximal growth of the organism), is common for FBA models [43].

4.3 �-dominance analysis
The �-dominance analysis, inspired by Laumanns et al. [44], is a technique that improves the
diversity of the solutions and the convergence of the optimization algorithm. In Section 1, we
highlighted that a point y� in the solution space is said to be Pareto optimal if there does not
exist a point y such that fi(y)> fi(y�), 8i = 1, . . ., r, where f is the vector of r objective functions
to optimize in the objective space. The �-dominance technique applies a “relaxed” condition of
dominance. That is, a point y� in the solution space is said to be �-non-dominated if there does
not exist a point y such that f(y) dominates f(y�) of a value higher than �. Formally, y� is said to
be �-non-dominated if ∄ y s.t. fi(y)� fi(y�)+�i, �i > 0, 8i = 1, . . ., r. This “relaxed” condition
captures both the “�-non-dominated” solutions and the non-dominated ones (Pareto-optimal),
since a Pareto-optimal solution is also �-non-dominated, but the converse does not hold. This
technique allows suboptimal solutions to remain in the population, therefore increasing diver-
sity and facilitating the search for multi-modal solutions in single objective optimization
problems.

In our work, we use this method to seek solutions that may have been discarded because
they are dominated by a small amount � that, for our purposes, can be considered negligible.
After the optimization, we perform an �-dominance analysis to search accurately near the edge
of the Pareto-optimal region. Formally, let f be the array of the r objective functions, and sup-
pose that all the objective functions are positive and must be maximized. Let � > 0 be the toler-
ance of our relaxed condition. We seek all points (solutions) y� belonging to the set {y� : fi(y�) +
�i� fi(y), 8i = 1, . . ., r},where f is the vector of the r objective functions, and y represents the
non-dominated points. This set will contain both the new “�-non-dominated” points and the

Table 1. OPTBIOCAD Pseudo-code.

1: optBioCAD (model, d, dup, τB, ρ, β, sa) /* the model can be FBA, FBA-GPR, ODEs or DAEs */

2: t 0;

3: BCarch Create_Archive(sa);

4: P(t) Initialize(d);

5: Evaluate(P(t), model);

6: EvaluateConstraints(P(t), model);

7: while ¬Stop_Condition(t) do

8: Pcop Copying(P(t), dup);

9: PLS Local_Search_Operator(Pcop, ρ);

10: PGS Global_Search_Operator(PLS, β);

11: Evaluate(PGS, model);

12: EvaluateConstraints(PGS, model);

13: Diversity_Enforcing(P(t), PGS, τB);

14: BCarch (BCarch [ P(t)[PGS);

15: P(t+1) Selection(P(t), PGS, BCarch);

16: t t + 1;

17: end while

18: return (P(t)); /* output the best d candidate solutions (metabolic networks) */

doi:10.1371/journal.pone.0133825.t001
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old non-dominated ones. The “�-non-dominated” solutions can be considered suboptimal
solution because they are close to the Pareto-optimal region. To better understand this analysis,
we report some examples in Section 2 in S1 File.

4.4 Identifiability analysis
A biological model is made up of many components (e.g., parameters, variables) estimated
through fitting to experiments. The Identifiability Analysis (IA) seeks the functional relations
underlying the components of a given system, and can be used after the multi-objective optimi-
zation. Coupled with the sensitivity analysis, it gives insight into the model under investigation.

A component is said to be non-identifiable if there is no unique solution for its estimation.
The non-identifiability can be (i) structural, when there are relations among components and
therefore they cannot be determined unambiguously; (ii) practical, when the low amount or
quality of data available does not allow achieving a good estimate for the component. From the
definitions, it follows that if a model is structurally non-identifiable, it is also practically non-
identifiable. Conversely, the structural identifiability does not necessarily imply the practical
identifiability. Using repeated fitting to data and estimations of components, the IA is aimed at
finding the structural non-identifiable components of a model, providing hints for simplifying
the model and thus avoiding redundancy, or indicating where new experimental measures are
needed to ensure the identifiability of the model.

Specifically, letm be the number of decision variables {x1, . . ., xm} of the model, which are
related by unknown linear or non-linear functional relations. Let n be the number of estimates
available for each variable. These estimates are usually organized into a matrix K = [v1, . . ., vm]
2 Rn × m, where each column array vi 2 R

n consists of the n estimates for the ith variable.
With the aim of detecting relations among flux rates, we assign a variable xi to each flux

rate, i = 1, . . .,m. Let us denote by α and βj the true transformations that linearize the relations
among variables:

aðxiÞ ¼
Xm
j 6¼i

bjðxjÞ þ x; ð3Þ

where ξ is a Gaussian noise. The alternating conditional expectation (ACE) algorithm [45] esti-

mates the optimal transformations âðxiÞ and b̂jðxjÞ; j 6¼ i, such that

âðxiÞ ¼
Xm
j 6¼i

b̂jðxjÞ; ð4Þ

where xi is the response, while all the other variables are the predictors. Starting from an initial
guess of α(xi) = xi/kxik and βj(xj) = 0, j 6¼ i, ACE iteratively estimates α and {βj}j 6¼ i based on
the minimization of the square residuals of (Eq 4).

As a post processing step of the multi-objective optimization ATP-NADH of the FBA mito-
chondrial model [17], we use the IA to find all the relations among reaction fluxes. The mito-
chondrial FBA model is composed of 423 reactions, of which p = 73 are the “input fluxes”, i.e.,
reactions transporting metabolites from the external environment into the mitochondrion; 135
are the matrix reactions, i.e., all those taking place in the matrix compartment, e.g., Krebs cycle
and beta-oxidation; all the remaining reactions take place in the inner membrane space.

We take into account 135 decision variables, namely the 135 fluxes of the matrix reactions
in the 2000 mitochondrial conditions obtained with 2000 different values of fumarate. To per-
form the IA, we infer functional relations with the ACE algorithm within the method proposed
by Hengl et al. [46]. In this way, we seek structural identifiability affecting decision variables.
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Each row of he matrix K, in the standard ACE approach, is obtained by estimating parameters
of a system. Specifically, a row contains the estimated parameters, obtained by minimizing the
square residuals between experimental data and model predictions, but with a different initial
guess of the parameters in each row. In our case, this is replaced by repeating the FBA analysis
for each fumarate value, thus taking into account all the configurations found by the FBA run
with different fumarase flux. Therefore, the key result of our approach is the possibility to high-
light stage-specific functional relations among reactions in the three monogenic diseases. Since
the fitting matrix K consists of the 135 columns in V associated with matrix fluxes (see Section
3 for the definition of V), we reduce the problem of finding structural non-identifiability to the
problem of detecting groups of interdependent fluxes in K. We note that the identifiability
analysis depends on the constraints, since a non-identifiable constraint involving decision vari-
ables is a functional relation between them. In our approach, the constraint is detected by per-
forming 2000 estimates of the 135 variables (matrix fluxes), with the aim of characterizing
three mitochondrial diseases by looking at the functional relations among the fluxes in the
model. We use the Mean Optimal Transformation Approach (MOTA) [46] and the ACE algo-
rithm, fixing at 10 the maximum number of reactions allowed to enclose a functional relation.

In S1 File we report the tables summarizing the results of the IA applied to the three mono-
genic diseases. There are fluxes showing functional relations in a group of more than two ele-
ments, although in this case strong relations among variables are less likely. We remark that a
variable is detected in a group depending on the contribution strength of a predictor to the
response. Each variable is considered once as response variable. As a result, if a functional rela-
tion is among k variables, it is tested k times, although it is unlikely that the same functional
group is really detected all the k times. The r2 column indicates how much variance of the
response can be explained by the predictors. A high amount of explained variance of the
response indicates a significant effect of the fixation of the predictors on the standard devia-
tions of the response. The cv(x) = std(x)/mean(x) helps to distinguish practical identifiable
from non-identifiable variables [46]. In case of practical non-identifiability, the choice of the
value that needs to be fixed strongly depends on the experiments, also considering reference
values in the literature.

4.5 Sensitivity analysis
The Sensitivity Analysis (SA) is a method that evaluates the importance of the input(s) in a
model. The idea is to randomly perturb the input(s) of a model in order to obtain a distribution
of elementary effects (on the output) due to the perturbations of each input. An elementary
effect is calculated by comparing (subtracting) the output(s) of the model when the input is
perturbed, with the output(s) of the model without perturbation. Plotting the average and the
standard deviation of the distribution of elementary effects gives an idea of how the perturba-
tion of the input affects the output(s) of the model. If the mean of the distribution is large, the
input has an important overall influence on the output(s) [47]. If the distribution has a large
standard deviation, the input has a high influence depending on the values of the other inputs.

The SA is frequently used for the in-silico design of electronic devices, and in the last decade
it has been widely used in bioengineering. In electronic design automation, the input(s) of the
model can be gain and tension, or resistance and conductance. Conversely, in a biological
model the input(s) of the model can be: (i) nutrients of a cell, for instance the uptake rate of
glucose or oxygen; (ii) gene knockouts in the genome of a bacterium, for instance the knockout
of the pyruvate dehydrogenase complex; (iii) enzyme concentrations in a metabolic pathway,
for instance the concentration of RuBisCO in a plant cell. According to the modelling tech-
nique and the parameters included in the model, the SA provides a ranking of selected input
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(s), evaluating their importance. Our BIOCAD framework includes two sensitivity methods:
Morris’ [47] and Sobol’s [48] methods.

In Fig 8, we show the result of the Morris method considering as input the uptake flux rates
in the genome-scale metabolic network of the mitochondrion [17] discussed in Section 2. In
the plot we report the mean and the standard deviation of the distribution of elementary effects
for each input. The legend in the figure ranks the inputs from the most to the less important.
These results were confirmed by the local robustness analysis [7], performed through perturba-
tion of one input at a time. Finally, a pathway-oriented SA is reported in Fig S3 in S1 File for
the model of Chlamydomonas reinhardtii [18] discussed in Section 1.

Supporting Information
S1 File. Supporting Figs. 1–32 and Tables 1–11.
(PDF)

S1 Table. Best solutions found after the optimization of the FBA algal mitochondria with
10 knockouts permitted.
(XLSX)

S2 Table. Best solutions found after the optimization of the FBA algal mitochondria with
50 knockouts permitted.
(XLSX)

Fig 8. Sensitivity analysis on the mitochondrial FBAmodel. The plot shows the mean and the standard
deviation of the elementary effects computed through the Morris’method applied on the upper bounds of the
exchange reaction fluxes. The uptake rates are ranked according to their relative influence on the ATP
production. The mitochondrial ATP production is highly sensitive to changes in the uptake rate of oxygen,
HCO3, L-serine, and L-aspartate.

doi:10.1371/journal.pone.0133825.g008
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S1 Code. BIOCAD source code.
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