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Abstract 8 

The spatial sensitivity of bulk acoustic mode resonators can influence calibrations when they 9 

are implemented as accurate mass sensors of surface-bound particles. A new spatial 10 

sensitivity model based on images of the resonator surface is introduced from early 11 

principles. The adsorption of particles was studied empirically by repeatedly drying particle 12 

laden droplets on the surface of two 3.14 MHz bulk acoustic mode resonators. Theoretical 13 

and experimental results were compared to identify three scenarios over the course of 14 

consecutive droplet evaporation with varying spatial sensitivity influences. Examining 15 

different surface treatments for the resonators revealed the hydrophilic surface to have a 16 

higher rate of particle stacking and conglomeration. 17 

Keywords: Spatial Sensitivity; Bulk Acoustic Wave (BAW); Bulk Acoustic Mode Resonator; 18 

Particulate Mass Sensor; MEMS; Mathematical Modelling. 19 

Highlights: 20 

 Several spatial sensitivity models are introduced for particulate mass sensing. 21 

 Comparison with experiments using evaporated particulate laden water droplets. 22 

 Three sensitivity scenarios were identified for repeated mass addition. 23 

 Hydrophilic surface shows propensity towards particle stacking and conglomeration. 24 

1. Introduction 25 

Micromechanical resonators have seen increased use in a range of inertial [1], temperature 26 

[2], and mass sensing [3] applications. Many mass sensing applications focus on uniform 27 

depositions [3,4], but a niche exists for dispersed aerosol particle sensing for environmental 28 

and health applications, with potentially non-uniform mass deposition. Atmospheric aerosols 29 

from anthropogenic or natural sources are key components of the climate system as they 30 

affect directly or via cloud processes the radiative budget of the atmosphere [5]. Negative 31 

health impacts of aerosol particles are well established based on correlations with particle 32 

mass and morbidity or mortality statistics [6]. 33 

Most current small-scale systems use optical methods [7] for detecting particles that cannot 34 

detect particles below 100 nm in diameter [8] (which may be responsible for most of the 35 

observed health effects [9,10]) and are typically expensive, complex, and can only estimate 36 

particle mass based on diameter. A desire for real time mass measurements led to the 37 

implementation of mechanical resonators as mass sensors. Early work by Chuan [11] 38 

replacing traditional impactor collection filters with a quartz crystal microbalance has since 39 

been extended to other micromechanical resonators. Black et al. [12] and Paprotny et al. [13] 40 

both used thin-film bulk acoustic resonators to measure particles collected via thermophoresis 41 

while Mehdizadeh et al. [14] employed thermally actuated resonators as part of a traditional 42 

impactor design. The above resonators have shown to offer highly sensitive detection of 43 
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particulate mass, but certain resonator geometries are susceptible to spatial variations in 44 

sensitivity [15,16] that must be accounted for when interpreting the resonator output.  45 

A resonator can be modelled as a one-dimension mass-spring-damper system where the 46 

resonant frequency (f0) is related to the effective mass (Meff) and stiffness (Keff) by: 47 
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Mass addition to the device (effectively an increase in Meff) results in a detectable frequency 49 

shift providing a means of mass sensing. Two of the most common resonator topologies are 50 

the flexural and bulk acoustic mode resonators [17]. This study focuses on bulk acoustic 51 

mode resonators due to their higher quality factors [18] as particle adsorption may degrade 52 

signal quality. 53 

Uniform mass addition has previously been shown [19] to follow a general sensitivity model 54 

based on Sauerbrey’s principle for a frequency shift Δf and mass addition Δm (assuming no 55 

change in stiffness): 56 
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The simple model, however, fails to account for the spatial sensitivity of the resonator. 58 

Previous studies by Campanella et al. [20] have modelled spatial dependencies in thin-film 59 

bulk acoustic-wave resonators (FBARs). Their results highlight the importance of spatial 60 

sensitivity in microresonators while also discussing the influence of deposition area. The 61 

following study develops a spatial sensitivity model in the context of particulate adsorption 62 

from a liquid medium for the purpose of mass sensing using bulk acoustic  mode resonators. 63 

The model can be used to study the mass of particles in liquid biological samples or to study 64 

the deposition of particles from a gaseous medium (by removing the influence of the liquid) 65 

for more relevant atmospheric measurement studies. The theoretical model was compared 66 

with experimental results using square bulk acoustic mode single-crystal silicon 67 

microelectromechanical systems (MEMS) resonators to show three different stages of particle 68 

adsorption based on residue formation after evaporation. Work focused on the symmetric 69 

square-extensional mode but the method can be expanded to different geometries and modes.  70 

2. Description of resonators 71 

Bulk mode resonators are defined to have full body contraction and extension. For a square, 72 

corner-anchored resonator the two commonly excited in-plane vibration modes are the 73 

square-extensional (SE) and wine glass (WG) – or Lamé – modes. The SE mode is 74 

characterised by symmetric extension/contraction along orthogonal axes producing a node at 75 

the resonator centre and antinodes at the corners. The WG mode is characterised by 76 

asymmetric extension/contraction along orthogonal axes producing nodes at the centre and 77 

corners of the resonator and antinodes at the edge midpoints. Contour plots of displacement 78 

for these modes are shown in Fig. 1. The SE mode was the focus of this study as it is simpler 79 

to model and can be implemented with piezoresistive sensing to increase the motional signal 80 

[21]. The theoretical resonant frequencies for the experimental resonator size (1400 μm side 81 

length) are 3.140 MHz and 2.949 MHz for SE and WG modes, respectively. The 82 

experimental resonators were silicon-on-insulator (SOI) devices fabricated using Multi-User 83 

MEMS Processes (MUMPs) produced by MEMSCAP [22]. Dimensions and properties of the 84 

resonators for the SE mode are shown in Table 1. 85 

The symmetric in-plane displacements for SE mode can be described as follows [16] for 86 

x ∈ [-L/2, L/2] and y ∈ [-L/2, L/2]: 87 
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where U0, L, and ω are the maximum displacement, resonator side length, and modal 90 

frequency of the resonator in the x and y directions at time t. Note that the maximum 91 

displacement, U0, has no effect on the sensitivity of the device. The above equations provide 92 

the basis of the spatial sensitivity model. 93 

 
            (a) 

 
           (b) 

Fig. 1. Contour plots of total displacement (as a fraction of maximum unidirectional displacement, U) with 94 
deformed (solid line) and undeformed (dashed line) mode shapes for the (a) square extensional mode and (b) 95 
wine glass mode. 96 

Table 1 Nominal dimensions and characteristics for the SE mode. Resonators were electrostatically forced and 97 
piezoresistively sensed. 98 

Parameter Unit Value 

Resonator thickness μm 25 

Resonator side length μm 1400 

Capacitance gap μm 2 

Effective mass μg 114 

Effective spring constant N μm
-1 

44.4 

Natural frequency MHz 3.140 

DC bias VDC 60 

AC power dBm 0 
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3. Theoretical sensitivity models 101 

The spatial sensitivity of a bulk mode resonator is caused by the non-uniform displacement 102 

across the resonator body as highlighted by Fig. 1a. For the SE mode, a point mass placed at 103 

a corner – an antinode – would experience larger displacements and velocities than an 104 

identical point mass placed near the node at the centre of the resonator. Higher velocities 105 

result in a larger kinetic energy contribution to the system leading to larger frequency shifts. 106 

The Rayleigh-Ritz method can be used, assuming negligible damping, to estimate the 107 

resonant frequency of a resonator. The approach assumes the summation of kinetic and 108 

potential energies of the system remains constant. The maximum potential and kinetic 109 

energies would then be equal and occur when the other is zero. It is possible to extend this 110 

result for the inclusion of a new mass to the resonator via an additional kinetic energy term 111 

assuming negligible stiffness change (i.e. the local resonator mass increases without 112 

modifying the elastic behaviour). 113 

Three mass addition scenarios were considered in increasing levels of complexity: point mass 114 

addition, circular/annular mass addition, and squircular mass addition. The point mass 115 

scenario assumes the mass is confined to an infinitesimally small area on the resonator and 116 

serves as a proof-of-concept calculation. The circular/annular scenario assumes the mass is 117 

spread over a circular (or annular) area with known outer and inner radii. This scenario serves 118 

to mimic the “coffee-ring” effect which involves higher concentrations of particle collection 119 

along the outer edges of residue [23]. The squircular (a combination of a square and a circle) 120 

scenario is meant to account for droplets large enough to interact with the resonator edges. 121 

Both the circular/annular and squircular models assumed centred residues but can be 122 

modified to account for positional offsets as shown below with a modular squircular 123 

approach.  124 

The following derivations are for the SE mode only. 125 

3.1 No mass addition 126 

The no mass addition scenario serves to calculate the initial resonant frequency of a 127 

resonator. Treating the resonator as a simple mass spring system, the kinetic and potential 128 

energies are: 129 

2
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where KE and PE are the kinetic and potential energies for a resonator with effective mass 132 

Meff, effective stiffness Keff, local displacement u, and local velocity u . 133 

For a resonator vibrating at the SE mode, the effective mass and stiffness are given by [16]: 134 
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where ρSi, h, L, and ESi are the density, thickness, side length, and Young’s modulus of the 137 

resonator, respectively.  138 

The maximum kinetic and potential energies can be solved using Eq. 3 and Eq. 4 to yield: 139 
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Equating the above equations, as per the Rayleigh Ritz method, yields the well-known result: 143 
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3.2 Point mass addition 145 

An additional mass, m, can be added to the system through a kinetic energy term. If the mass 146 

is placed at a location (x, y) then the maximum energy equality becomes the following (using 147 

Eq. 3 and Eq. 4 as before): 148 
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The new resonant frequency, ω0,pm, is: 150 
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Sauerbrey’s equation, Eq. 10, estimates the frequency shift for mass and stiffness addition. 152 
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If the stiffness change is negligible (i.e. Δk ≈ 0), the sensitivity factor, S, can be solved to 154 

satisfy Δf = S f0 for an added mass Δm = m [sin
2
(πx/L) + sin

2
(πy/L)] located at a given (x, y) 155 

position: 156 
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Eq. 11 is valid for small mass additions and positions within x ∈ [-L/2, L/2] and 158 

y ∈ [-L/2, L/2]. Note that sensitivity is typically an intensive property for a given mode shape 159 

whereas the above defined sensitivity factor is an extensive property. 160 

3.3 Circular/annular mass addition 161 

For a mass spread over a significant area, the additional kinetic energy term must be 162 

integrated across its entire volume. For an infinitesimally small slice of a quarter circle with 163 

mass dm, the kinetic energy dKE is: 164 
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where ρadd, δ, and dA are the density, thickness, and area of the slice. Note that this assumes 167 

uniform thickness and mass distribution across the area. Due to the linearity of integrals, an 168 

annular mass can be solved by simple subtraction following the identity: 169 
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Fig. 2 shows the quarter circle of radius r to be integrated in order to solve Eq. 12. 171 



 172 

Fig. 2. Quarter circle of radius r with integration slice of area dA shaded. 173 

Based on the figure the area dA is: 174 

 dxxrdA 22            Eq. 14 175 

Integrating the quarter circle in the x-direction from x = 0 → r gives the following (assuming 176 

r ≤ L/2): 177 
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and J1(x) is the Bessel function of the first kind. 182 

Based on the symmetry of the SE mode, the total kinetic energy for a full annulus (of inner 183 

and outer radii ri and ro, respectively) in both directions is given by the following. Note that 184 

setting ri = 0 yields the result for a circle. 185 
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The maximum energy equality is then: 187 
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and the resonant frequency and sensitivity factor are: 189 
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Eq. 20 is valid for small mass additions and residue outer radii ro ≤ L/2. 194 
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3.4 Squircular mass addition 196 

A squircle is a geometric shape that shares properties between a square and a circle and it is a 197 

special case of the Lamé curve or superellipse. One possible definition [24] of the squircle in 198 

the x-y plane utilises a squareness factor, s, that ranges from 0 (circle) to 1 (square). A circle, 199 

therefore, is a subset of the general squircle shape. The definition, when centred at the origin, 200 

is given below and plotted in Fig. 3 for varying values of s and a constant k. 201 
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 203 

 204 

Fig. 3. Centred squircle geometry for varying squareness parameter values (s) with constant k based on the 205 
definition by Guasti [24]. Note that the s = 0.0 and s = 0.1 cases nearly completely overlap. 206 

Following the same procedure for the circle in Section 3.3, the sensitivity factor can be 207 

shown to be: 208 
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The function P(k) does not have an analytical solution, unlike I(r), and requires numerical 212 

methods to be solved. Eq. 22 is valid for small mass additions and residue sizes k ≤ L/2 and 213 

squareness parameters ranging from 0 ≤ s < 1. 214 

A summary of the derived theoretical model results is given in Table 2. 215 
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Table 2 Summary of theoretical sensitivity models for a point mass at location (x, y), centred circular/annular 217 
mass, and centred squircular mass. 218 

Residue Shape Sensitivity Factor, S 

Point mass 
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3.5 Modular approach 219 

While the above squircle definition is a close approximation to the shape remaining after the 220 

evaporation of droplets in contact with the resonator edges (Fig. 4a), a combination of a 221 

square and a circle provides a more accurate fit as it accounts for the longer and non-uniform 222 

linear portions along the resonator edges caused by surface tension. This procedure is also 223 

simpler for image processing and effectively allows for individual squareness parameters at 224 

each corner due to any off-centre alignment. 225 

The modular approach involves fitting a square to the resonator and a circle to the residue, as 226 

seen in Fig. 4b, with the origin placed at the centre of the resonator. The circle may extend 227 

past the resonator, be off centre, and allows up to eight intersection points to exist scenario 228 

(i.e. the four rounded corners of the squircle shape must exist). A narrowed contour, governed 229 

by a uniform offset from the outer shape, then splits the residue into inner and outer regions 230 

(Fig. 4c). Splitting the residue allows the model to account for the “coffee-ring” effect by 231 

distributing different masses in each region while still assuming homogenous density within 232 

both. 233 

Once the residue is split, the intersection points are calculated and the integration regions (up 234 

to twenty in each direction) are defined for both the x- (Fig. 4d) and y-directions. The 235 

integration regions are bounded by the exterior curve (either an arc or a line), the interior 236 

curve (either an arc or a line), or the x- or y-axis between the intersection points. Eq. 12b is 237 

then integrated over these regions and used to solve for the sensitivity factor.  238 
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(a) (b)         

  
(c) (d)      

Fig. 4. Processing steps for modular approach showing (a) the original, aligned image, (b) the fitted square 240 
(resonator) and circle (residue), (c) the contour that splits the residue, (d) the integration regions for the x-241 
direction in the outer (labelled A through N) and inner (labelled O through T) regions. The interior contour and 242 
all integration regions are for illustrative purposes only (with outer regions exaggerated for clarity) to describe 243 
the method. Similar regions are used for y-direction. 244 

4. Model intercomparison discussion 245 

The point mass model provides a means to examine the relative effect of mass placement but 246 

does not accurately represent the effect of droplet evaporation which consists of a dispersion 247 

of particles. Note that the maximum sensitivity, located at the corner antinodes, of the point 248 

mass model is twice that of the theoretical maximum given by Eq. 2.  249 

A comparison of annular ring thicknesses yields the implications of the “coffee-ring” effect. 250 

As the thickness of the ring decreases the mass distribution becomes more concentrated 251 

towards the outer radius of the residue, ro. Referring to Fig. 1a, this results in more mass 252 

located at areas of high velocity thus increasing the mass loading. The results of running the 253 

circular/annular model at various thicknesses, t, for a constant mass is summarised in Fig. 5. 254 

When ro = L/2 the resonator is more sensitive for small thicknesses (t < 0.5ro) than the 255 

uniform distribution case due to the concentrated placement of the mass as seen previously 256 

with the point mass model. The WG mode shape (Fig. 1b) would result in more pronounced 257 

sensitivity inflation since the antinodes would be better aligned with the ring.  258 

Adjusting the squareness factor can simulate the sensitivity effects of placing a large droplet 259 

(or a series of droplets) as discussed above. Fig. 6 shows the sensitivity factors relative to the 260 

uniform thin film deposition case for different sizes (k) and squareness parameter values (s). 261 

The most representative comparison occurs when k = L/2 since before the residue touches the 262 

resonator edge the residue would remain circular. Note that as k approaches the size of the 263 

resonator, L/2, the s = 0.0 cases matches the full circle case (t = 1.0ro) in Fig. 5 and the 264 

s = 1.0 case matches the uniform thin film case as expected. Based on the experimental 265 

studies discussed below, the average squareness parameter for the hydrophilic resonator was 266 

estimated to be s = 0.74 ± 0.02 based on 16 processed images with visible residue contact 267 

along the resonator perimeter. This value implies modelling the experimental results as 268 

squircles is significant. 269 
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 270 

Fig. 5. Sensitivity factors relative to a uniform thin film deposition for different annulus thicknesses, t, as 271 
fractions of the outer radius ranging from t = 0.1ro (thin ring) to t = 1.0ro (full disc). Mass kept constant for all 272 
sizes (i.e. homogenous density varied with changing ro and t). For small thicknesses (t < 0.5ro) the sensitivity is 273 
higher than theoretical maximum as the mass approaches the antinodes only. 274 

 275 

Fig. 6. Sensitivity factors relative to a uniform thin film deposition for different squareness parameter values 276 
ranging from s = 0.0 (a circle) to s = 1.0 (a square). Mass kept constant for all sizes (i.e. homogenous density 277 
varied with changing k). 278 

5. Experimental studies 279 

A set of experiments were conducted to evaluate the accuracy of the modular approach for 280 

calculating sensitivity factors.  281 

5.1 Experimental procedure 282 

0.5 μL droplets containing a 2.2 ± 0.1 ng μL
-1

 suspension of 296 ± 6 nm polystyrene latex 283 

(PSL) particles (Nanosphere Size Standards, Thermo Fisher Scientific) in High Performance 284 

Liquid Chromatography (HPLC) grade water were manually deposited onto 1400 μm square 285 

resonators and evaporated in a vacuum chamber. Two suspended resonators, of identical 286 

design, were treated to become either hydrophilic or hydrophobic. The hydrophilic surface 287 

was produced with low-power O2 RF plasma (to remove any hydrophobic coatings) while the 288 

hydrophobic surface was created using a perfluorodecyltrichlorosilane (FDTS) 289 

self-assembled monolayer which has previously been implemented with MEMS surfaces 290 

[25]. 291 

Droplets were placed sequentially on each resonator and evaporated in a vacuum chamber 292 

before measuring the resonant frequency while still under vacuum. The resonator surfaces 293 

were optically imaged after each measurement. Twenty and ten drops were placed on the 294 

hydrophilic and hydrophobic resonators, respectively. The frequency output from the 295 

resonator was measured using a network analyser (Agilent 4396B 296 

Network/Spectrum/Impedence Analyzer) via piezoresistive sensing of a one-port capacitive 297 



forcing arrangement (Fig. 7). Frequency measurements, taken over a span of 1 kHz centred at 298 

the peak, were recorded after a set time to minimise temperature drift induced by 299 

piezoresistive sensing and allow for pressure stabilisation within the chamber. The 300 

experimental sensitivity factor, Si, discussed in subsequent sections was calculated for each 301 

droplet i based on a measured frequency, fi, following the definition Si = (fi – f0)/f0.  302 

 303 

Fig. 7. Circuit schematic for one-port capacitive forcing with piezoresistive sensing highlighting the (a) 304 
resonator, (b) electrodes, and (c) anchors (adapted from [26]). An input voltage consisting of AC (VAC) and DC 305 
(VDC) components is sent to actuate all four electrodes. The output motional current (Im) is then sensed through 306 
one of the anchors with the diagonally opposite anchor being grounded. The motional current is then passed to 307 
the network analyser via a transimpedence amp (TIA) to measure the S21 parameter. 308 

The above method was previously shown [15] to provide consistent (yet elevated) mass 309 

addition due to the presence of contaminant particles which was accounted for based on 310 

larger scale mass experiments as discussed in Section 5.3. 311 

5.2 Model comparisons 312 

Each image was analysed using the modular approach described in Section 3.5 to estimate the 313 

relative frequency shift induced by each droplet. Image processing was performed using 314 

simple geometric relations and the GNU Image Manipulation Program (GIMP) [27]. The 315 

“coffee-ring” thicknesses were 0.024 and 0.040 of the effective residue radius for hydrophilic 316 

and hydrophobic surfaces, respectively, based on average values for each set of images as 317 

analysed through GIMP. Following studies by Yunker et al. [23], which corroborate the 318 

“coffee-ring” thicknesses above, 98.5% of the total mass was distributed in the “coffee-ring” 319 

for each model run. The total mass per droplet used in the model (approximately 5.2 ng) 320 

included factors accounting for contaminants (further explained in Section 5.3) in the solution 321 

and potentially trapped water between closely packed particles. The model assumes the total 322 

added mass is redistributed after each droplet following the “coffee-ring” distribution. 323 

Recalling that the theoretical model assumes homogenous distributions, it should be 324 

recognised that the any heterogeneity of the mass distribution could influence the following 325 

comparisons. Modelling this heterogeneity is quite difficult, and the true response depends on 326 

the mass location relative to the mode shape in a similar fashion to Fig. 5 and Fig. 6. 327 

The comparison between measured (with capacitive feedthrough removed following Lee et 328 

al. [17]) and modelled results on a per droplet basis are shown in Fig. 8 while a direct 329 

comparison via correlation plots is shown in Fig. 9. Both correlation plots show strong 330 

correlation with r
2
 values above 98% and slopes implying gain errors on the order of 1.5. 331 

Slopes greater than 1 suggest the existence of additional unexpected mass, on the order of 2 332 

to 3 ng, that may be due in part to discrepancies in solution preparation procedures between 333 

resonator testing and the larger scale microbalance studies (Section 5.3). 334 



 335 

Fig. 8. Absolute experimental and theoretical sensitivity factors for both resonator surface treatments on a per 336 
droplet basis. Experimental results show a distinctly increased slope implying more mass was added than 337 
expected. The theoretical model assumes a mass addition of 5.2 ng per droplet (including contaminants). Filled 338 
areas represent 95% confidence interval of fit. 339 

 340 

 
(a)  

 
(b) 

Fig. 9. Correlation plots for (a) hydrophilic and (b) hydrophobic resonators between experimental and 341 
theoretical sensitivity factors showing a strong linear relationship with a small slope and a factor of 342 
approximately 1.5 difference between the model and experimental results. Experimental results have capacitive 343 
feedthrough analytically removed. The theoretical model assumes a mass addition of 5.2 ng per droplet 344 
(including contaminants). Filled areas represent 95% confidence interval of fit. 345 

Inconsistent slopes between the resonators could imply differences in mass distribution, 346 

residue thickness, or particle stacking (as discussed in Section 5.4). Manufacturing 347 

discrepancies from nominal resonator dimensions may also have a minor influence on the 348 

slopes. The non-zero y-intercepts in the correlations highlight the uncertainty in the slopes as 349 

they should ideally be zero. Note that the y-intercept for the hydrophobic resonator is within 350 

zero when considering the 95% confidence interval. 351 

Hydrophilic Resonator Surface 

Hydrophobic Resonator Surface 



Using the slopes from each correlation to orientate data on the same scale, the experimental 352 

and theoretical relative frequency shifts (i.e. sensitivity factors) were plotted to show the 353 

drop-by-drop trends in Fig. 10. There are three general scenarios seen during the deposition 354 

of particles: residue growth, uniform mass addition, and particle stacking. 355 

The residue growth scenario is described by an increasing residue radius over sequential 356 

drops. This scenario experiences the largest spatial sensitivity as the droplet is both 357 

expanding and adjusting its location as particles are rearranged.  Fig. 11 shows the residue 358 

growth and highlights a transition after the fifth droplet for both resonators after which the 359 

radius remains stable. Fig. 12 shows a selection of images of the resonator surface 360 

corresponding to the initial droplet (Drop 1), the transition (Drop 5), and the final residue 361 

(Drop 20, 10) for both resonators. Note that the general residue shape does not change 362 

between the transition and final images but there is a distinct increase in particle 363 

concentration. The concept of spatial sensitivity dictates that the slope magnitude should 364 

reduce after the transition (i.e. the fifth droplet) as the frequency shift will solely be mass 365 

based. Experimental results corroborate this expectation as the slope magnitudes reduced 366 

from (2.9 ± 0.6)×10
-5

 droplet
-1

 to (2.1 ± 0.2)×10
-5

 droplet
-1

 and from (3.0 ± 0.5)×10
-5

 droplet
-1

 367 

to (2.1 ± 0.4)×10
-5

 droplet
-1

 for the hydrophilic and hydrophobic resonators at confidence 368 

levels of 90% and 80%, respectively. 369 

After the transition, there is a scenario of uniform mass addition which the model expects to 370 

be relatively constant. This holds true for the experimental hydrophobic data, but the 371 

hydrophilic data shows significant fluctuations past the tenth droplet. The expected cause of 372 

these fluctuations is the vertical stacking of particles after each droplet is evaporated as the 373 

higher stacked particles will have diminished energy influences based on their attachment 374 

stiffness. Particle stacking was previously shown [15] to take place during droplet deposition. 375 

Since the theoretical model assumes a constant energy contribution per mass added it does 376 

not account for these fluctuations.  377 

The spatial sensitivity model provides the most information prior to the residue stabilising in 378 

shape and accounts for some of the experimental fluctuations seen during this region. For 379 

example, the shift between the third and fourth drop on the hydrophobic resonator is well 380 

captured by the model. The fourth hydrophobic droplet saw a sudden residue expansion, 381 

captured in the residue sizes from Fig. 11, resulting in the substantial frequency shift. In 382 

general, the sensitivity model appears to be applicable regardless of surface treatment as 383 

overall trends were consistent and local trends within the residue growth region followed the 384 

experimental results well. 385 

An additional detail presented by Fig. 10 is that once the gain error is accounted for the 386 

experimental results and theoretical results  follow quite well (and generally within 387 

uncertainty) implying that the main discrepancy is likely due to a consistent unaccounted 388 

mass in each droplet. 389 

  390 



 
(a) 

 
(b) 

Fig. 10. Sensitivity factors on a per droplet basis relative to original, unloaded resonant frequency using 391 
experimental and theoretical results for the (a) hydrophilic and (b) hydrophobic resonators. Theoretical results 392 
adjusted to the experimental scale using correlation slopes as given in Fig. 9. 393 

 394 

Fig. 11. Residue radius growth rate per droplet. Radius stabilises for both resonators (hydrophilic and 395 
hydrophobic) at approximately the fifth droplet. The hydrophilic radius is based on the modular approach and 396 
describes a squircle rather than a perfect circle. 397 
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(a)  (b) 

Fig. 12. Selected images after measurement for (a) hydrophilic and (b) hydrophobic resonators. The first drop 400 
shows the start of the residue growth for both resonators. The fifth drop for both resonators is the point when the 401 
residue size stopped significantly growing as per Fig. 11. The twentieth and tenth drop for the hydrophilic and 402 
hydrophobic resonators, respectively, show the final resonator surfaces with a similar area to the fifth drop but 403 
noticeably larger concentrations of particles. 404 

5.3 Examining contamination factor 405 

Larger scale mass experiments were conducted, using a mechanical microbalance (M5, 406 

Mettler Inc.), to quantify the additional mass deposited when using a suspension of PSL 407 

particles and HPLC grade water. The procedure separated a set of twelve vials, previously 408 

cleaned via methanol sonication and baking, into three groups: six vials for a PSL particle 409 

and HPLC grade water solution, three vials for HPLC grade water only, and three vials left as 410 

a control (i.e. empty). Volumes of 5 mL were pipetted into each non-control vial and left to 411 

evaporate under a nitrogen air flow before measuring the mass change. Three different 412 

concentrations of PSL particles were used in two different sets of vials. In the first vial set, a 413 

concentration of 27 ± 1 μg mL
-1

 was used for a single measurement. In the second vial set, 414 

three measurements using a concentration of 54 ± 3 μg mL
-1

 were followed by two 415 

measurements using a concentration of 139 ± 7 μg mL
-1

. 416 

The results of these experiments showed a significant deviation from a 1:1 relationship 417 

between expected and actual PSL particle mass as shown in Fig. 13. Similarly, Fig. 14 shows 418 

significant contamination from the water. A deposited mass correction can be completed 419 

assuming a percentage contamination associated with PSL particle mass (slope from Fig. 13) 420 

and a volume based contamination for the HPLC grade water measurements (slope from Fig. 421 

14). The correction equation based on these slopes is presented in Fig. 15 with the original 422 

data points included to show good agreement. Extending this relationship to the original 0.5 423 

μL droplets containing 1.1 ng of PSL particles, the corrected mass is 4.0 ± 0.4 ng with 424 

approximately 2/3 of the mass coming from water contamination. SEM images, shown in Fig. 425 

16, corroborate that both the stock PSL solution and HPLC grade water contain 426 

contaminants. Note that surfactants in the stock PSL particle solution were expected to only 427 

make up 0.142% of the total PSL particle-related mass. 428 

Drop 1 Drop 1 

Drop 5 Drop 5 

Drop 20 Drop 10 



 429 

Fig. 13. Correlation plot between actual and expected PSL particle mass addition. Expected mass is based on 430 
solution concentrations; actual mass is the mass difference between PSL particle-containing and water only 431 
vials. A strong linear relationship implies 19% more mass was added than expected from the PSL solution alone 432 
(does not account for water contamination). Symbols correspond to PSL concentrations (○, □, and Δ describe 433 
27 ± 1 μg mL

-1
, 54 ± 3 μg mL

-1
, and 139 ± 7 μg mL

-1
, respectively). Filled area shows 95% confidence interval 434 

of fit. Dashed line represents 1:1 ratio. 435 

 436 

Fig. 14. Correlation plot between water contamination mass and deposited HPLC grade water. Contamination 437 
mass is based on the mass difference between water only vials and the control vials. A strong linear relationship 438 
implies 5.51 μg of contaminants in the water is added per mL. Symbols correspond to PSL concentrations (○, □, 439 
and Δ describe 27 ± 1 μg mL

-1
, 54 ± 3 μg mL

-1
, and 139 ± 7 μg mL

-1
, respectively). Filled area shows 95% 440 

confidence interval of fit. 441 

 442 

Fig. 15. Correlation plot between the total added mass and expected (i.e. PSL particle) mass. Fitted line 443 
describes predictive equation (with 95% confidence interval) based on slopes from Fig. 13 and Fig. 14. Symbols 444 
correspond to PSL concentrations (○, □, and Δ describe 27 ± 1 μg mL

-1
, 54 ± 3 μg mL

-1
, and 139 ± 7 μg mL

-1
, 445 

respectively). Dashed line represents 1:1 ratio. 446 
  447 



 
(a) 

 
(b) 

Fig. 16. SEM images of an untreated, hydrophilic silicon resonator surface with evaporated (a) HPLC grade 448 
water only and (b) PSL particles and HPLC grade water. The contamination seen in (a) also covers the surface 449 
of the resonator surface in (b). The dark, cylindrical particles in (b) are contaminants (PSL particles are white 450 
and spherical). 451 

5.4 Comparing Hydrophilic and Hydrophobic Coatings 452 

Based on the early model runs shown in Fig. 6 it would be expected that the hydrophilic 453 

sensitivity would be higher than the hydrophobic sensitivity since the residue has reached the 454 

more sensitive regions of the resonator. However, as shown in Fig. 17, both the experimental 455 

and theoretical results show disagreement with this expectation. Past the residue growth 456 

region, the hydrophilic sensitivity is approximately 90% of the hydrophobic sensitivity which 457 

is partially explained by the assumptions made for mass distribution. The model runs in Fig. 458 

6 assume a uniform mass distributed across the entire residue while the modular approach in 459 

Fig. 17 accounts for the “coffee-ring” in a way that is also influenced by the size of the 460 

residue. That is, for smaller residue sizes the total area of the “coffee-ring” is smaller thus 461 

causing a higher mass density along the outer edge than for larger residues. Another 462 

influential factor is the particle stacking and conglomeration that is more prevalent on the 463 

hydrophilic resonator surface (Fig. 16b) which would lead to reduced effective masses and a 464 

ratio less than one. 465 

5 μm 

5 μm 



 466 

Fig. 17. Ratios of hydrophilic sensitivity to hydrophobic sensitivity on a per droplet basis for both theoretical 467 
and experimental results. After the initial residue growth stage, both theoretical and experimental results 468 
fluctuate around a ratio of 0.9. Filled area shows 95% confidence interval of theoretical model. 469 

6. Conclusions 470 

Bulk acoustic mode resonators show potential for high sensitivity mass sensing but 471 

consideration of their spatial sensitivity is necessary. Sensitivity to both mass and spatial 472 

distribution on the resonator was modelled and confirmed experimentally for the square 473 

extensional mode using piezoresistive sensing of electrostatically actuated MEMS resonators. 474 

Three analytical sensitivity models were introduced with varying levels of complexity to 475 

investigate the implications of shape and area on sensitivity for a specific actuation mode. A 476 

modular approach was used to aptly compare the spatial sensitivity model to experimental 477 

results. 478 

Three distinct stages of sensitivity were introduced covering initial residue growth, uniform 479 

mass addition, and particle stacking. The effects were observed regardless of surface 480 

treatment and based primarily on mass addition and distribution. The hydrophilic surface 481 

showed a larger degree of particle stacking and conglomeration when inspected with an SEM. 482 

Potential improvements to the presented model focus around the assumptions made during 483 

the derivations. Incorporating non-homogeneous densities and non-uniform residue 484 

thicknesses would allow for a more accurate modelling potential for situations such as the 485 

“coffee-ring” effect (beyond the current approach). Furthermore, examining the particular 486 

case of a coupled resonator-particle system [28] for low particle attachment stiffness may 487 

explain the large fluctuations in resonant frequency during the particle stacking phase. 488 

Experimentally, using a cleaner (i.e. fewer contaminants) particle source would provide more 489 

accurate comparisons and reproducible results since remaining the differences can be 490 

explained by a simple gain error. 491 
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