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Abstract Social immunity refers to any immune defence that benefits others, besides the

individual that mounts the response. Since contributions to social immunity are known to

be personally costly, they are contributions to a public good. However, individuals vary in

their contributions to this public good and it is unclear why. Here we investigate whether

they are responding to contributions made by others with experiments on burying beetle

(Nicrophorus vespilloides) families. In this species, females, males and larvae each con-

tribute to social immunity through the application of antimicrobial exudates upon the

carrion breeding resource. We show experimentally that mothers reduce their contributions

to social immunity when raising large broods, and test two contrasting hypotheses to

explain why. Either mothers are treating social immunity as a public good, investing less in

social immunity when their offspring collectively contribute more, or mothers are trading

off investment in social immunity with investment in parental care. Overall, our experi-

ments yield no evidence to support the existence of a trade-off between social immunity

and other parental care traits: we found no evidence of a trade-off in terms of time

allocated to each activity, nor did the relationship between social immunity and brood size

change with female condition. Instead, and consistent with predictions from models of

public goods games, we found that higher quality mothers contributed more to social

immunity. Therefore our results suggest that mothers are playing a public goods game with

their offspring to determine their personal contribution to the defence of the carrion

breeding resource.
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Introduction

Social immunity, in its broadest sense, refers to any immune defence that brings benefits to

others as well as the individual mounting the response itself (Cremer et al. 2007; Cotter and

Kilner 2010a). Social immune systems are evident in diverse animal societies including

animal families, where they are found in several fish species (Knouft et al. 2003; Gia-

comello et al. 2006; Little et al. 2008), frogs (Fleming et al. 2009), birds (Lafuma et al.

2001; Gwinner and Berger 2005) and insects (Kaltenpoth et al. 2005; Cardoza et al. 2006;

Adams et al. 2008; Rozen et al. 2008; Cotter and Kilner 2010a). They function both to

protect individuals directly and to defend a privatized resource from microbial attack

(Cremer et al. 2007; Cotter and Kilner 2010a; Strassmann and Queller 2014). Furthermore,

since mounting a social immune response is individually costly (e.g. Cotter et al. 2010), yet

benefits the entire group (e.g. Rozen et al. 2008), social immune systems can be thought of

as a type of public good (Cotter et al. 2010; Frank 2010). Recent work has revealed

considerable variation in the extent to which individuals contribute to this public good,

some of which can be explained by variation in individual quality and trade-offs with

personal immune defence (Cotter et al. 2010; Steiger et al. 2011; Cotter et al. 2013; Joop

et al. 2014). However, the social factors that regulate personal contributions to social

immunity within the family remain relatively poorly understood (Cotter and Kilner 2010a;

Cotter et al. 2010; Arce et al. 2013; Reavey et al. 2014). Here we investigate how offspring

influence maternal contributions to the social immune defence of a key breeding resource.

We focus specifically on the social immune system of the burying beetle, Nicrophorus

vespilloides, as our model system. Burying beetles breed upon a small vertebrate carcass,

from which they shave the fur or feathers, while rolling the flesh into a ball, and burying it

in a shallow grave. During this time, and also after the larvae hatch, the beetles continu-

ously coat the carcass with antimicrobial oral and anal exudates (Rozen et al. 2008; Cotter

and Kilner 2010b). Since the carcass provides both food and a nest for the beetle family,

the function of antimicrobial exudates may be two-fold: to defend a crucial food resource

from bacterial competitors (Rozen et al. 2008) and to promote nest hygiene, protecting

larvae and parents from pathogenic bacteria (Cotter and Kilner 2010a). Current evidence

indicates a relationship between the beetles’ antimicrobial exudates and disease risk. The

antimicrobial potency of anal exudates from adult beetles has been found to increase in

response to higher bacterial loads (Cotter et al. 2010) and to improve larval survival in the

presence of pathogenic bacteria (Arce et al. 2012). Furthermore, the anal exudates of

burying beetles have several features also found in immune function in insect haemo-

lymph. So far, all evidence suggests that lysozyme, a well-known component of the insect

internal immune system, is responsible for much of the anti-bacterial activity in exudates

(Arce et al. 2012). Anal exudates also show phenoloxidase activity, which seemingly

trades-off against lytic activity (Cotter and Kilner 2010b), a feature also shown in the

immune system of several insects (e.g. Freitak et al. 2007; Cotter et al. 2008; Povey et al.

2009). The antibacterial activity of burying beetles is stimulated only when they are

provided with a carcass (Cotter et al. 2010) and after reaching its peak during larval

hatching, drops off during the course of the breeding event (Cotter et al. 2013), at the end

of which the carcass is typically fully consumed, thus resembling very much an immune
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response which is mounted to overcome a microbial challenge. Furthermore, like personal

immune responses, there are fitness costs associated with upregulating antimicrobial

activity in the exudates (Cotter et al. 2010). For these reasons, the beetles’ anal exudates

can be considered a part of a social immune response. It is this defence of a breeding

resource against microbial attack that is the social immune system of interest here.

During the first 24 h of carcass preparation, the female starts laying her eggs in the

surrounding soil and roughly 72 h after egg-laying, newly-hatched larvae crawl towards

the carcass. As soon as they arrive, the larvae also contribute to social immune defence by

producing exudates with antibacterial activity (Arce et al. 2013; Reavey et al. 2014).

Larvae are fed regurgitated meat from the carcass by both parents in the hours immediately

following hatching and also forage on the flesh themselves. Partial filial cannibalism

(Bartlett 1987), or larval death from other sources, is common meaning that brood size at

hatching typically exceeds brood size at dispersal. Roughly 5 days after hatching, larvae

disperse away from the remains of the carcass to pupate in the soil and their mother departs

in search of further opportunities for reproduction (Pukowski 1933; Bartlett 1988; Scott

and Traniello 1990; Trumbo 1991; Scott 1998).

In our previous work, we found that when females had a larger brood at dispersal, their

anal exudates exhibited lower lytic activity (or antimicrobial potency) (Cotter et al. 2013).

One explanation for this finding is that it reflects a trade-off between investment in

immunity and investment in fecundity (clutch size, larval provisioning, or both). Work on

other species has shown that increased investment in reproduction and parental care

compromises investment in personal immunity, and thus increases parasite load (Festa-

Bianchet 1989; Richner et al. 1995; Deerenberg et al. 1997; Siva-Jothy et al. 1998; Ger-

shman et al. 2010). Perhaps social immune systems are affected in a similar way.

An alternative (and novel) explanation is that mothers are playing a public goods game

with their own offspring to determine their contribution to social immunity. If each

individual larva produces a similar quality or quantity of antimicrobial exudates, irre-

spective of brood size, then collectively a large brood contributes more to the social

immune defence of the carcass than does a small brood. Females raising large broods can

afford to reduce their own investment in social immunity and so contribute less to the

public good.

Here we experimentally investigate which of these two explanations more accurately

describes maternal contributions to social immunity. This is more difficult than might at

first appear because the two hypotheses yield several identical predictions (Table 1). Our

approach, therefore, is to apply a combination of different experiments. For each of the two

competing hypotheses, we derive a unique set of predictions (Table 1). First, we investi-

gate whether the antibacterial activity shown by the brood is affected by brood size. A

necessary condition for the public goods hypothesis to be valid is that the brood’s quali-

tative contribution to social immunity is either unaffected or positively affected by brood

size; only then can a reduction of the maternal contribution to social immunity as a

response to brood size be seen as a public goods game (Table 1). Next, we manipulate

brood size (independent of clutch size), using cross-fostering experiments, to ensure that

any pattern observed in maternal behaviour or social immunity is not caused by a trade-off

between egg production and post-hatching investment. We focus on females because these

remain longer with the larvae than males, they provide most of the direct care (Smiseth and

Moore 2004), and it has been previously established that social immunity is costly in

females (Cotter et al. 2010). With these experimental broods, we seek behavioural evi-

dence of a trade-off between offspring provisioning and carcass defence by using parental

time budgets to measure the effort devoted to each activity. Only the trade-off hypothesis
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predicts that increased time spent provisioning large broods should cause a reduction in

behaviours associated with maintaining the carcass through the application of exudates.

Finally, we repeat the brood size manipulation but this time we also manipulate maternal

condition (by varying the extent of care that mothers received when they were larvae). We

measure the antimicrobial potency of the female’s anal exudates before and after hatching.

We use this second experiment to determine whether an increase in brood size causes a

corresponding overall decline in maternal contribution to social immunity, as predicted by

both hypotheses. The trade-off hypothesis also predicts a negative correlation between the

female’s lytic activity before hatching and the mass of her brood at hatching (because

investing in social immunity would reduce allocation of resources to brood mass) whereas

no equivalent relationship is predicted by the public goods hypothesis. In addition, if the

negative correlation between brood size and lytic activity results from a resource-based

trade-off, then we predict this relationship to change with female condition because of the

corresponding change in the pool of resources available within each female to sustain each

activity. If, instead, maternal contributions to social immunity are governed by a public

goods game, then theory predicts that mothers in better condition should contribute more to

social immunity than mothers in poorer condition, all else being equal, because they are

better able to bear the costs of social immunity (Frank 2010).

Table 1 The predicted results from each experiment for either the trade-off or public goods hypotheses

Experiments Predictions Results

Trade-off hypothesis Public goods
hypothesis

1. Relationship between
brood size and brood
lytic activity

No effect of brood size No effect or
positive
correlation
between brood
size and brood
lytic activity

No effect of brood size

2. Manipulation of brood
size followed by
behavioural
observations

Increased time spent
provisioning larger
broods reduces time
spent maintaining
carcass

No trade-off No trade-off

3. Manipulation of brood
size and female
condition, followed by
measurement of female
lytic activity

Rearing large broods
causes reduction in
maternal lytic activity

Rearing large
broods causes
reduction in
maternal lytic
activity

Rearing large broods
causes reduction in
maternal lytic activity

Female condition affects
slope/elevation of trade-
off

Females in better
condition show
higher lytic
activity

Female condition (in hours
of care received as
larvae) does not
significantly affect lytic
activity; but larger
females show higher lytic
activity

Negative correlation
between lytic activity of
female’s exudates prior
to hatching and brood
mass at hatching

No such correlation Positive correlation
between lytic activity
prior to hatching and
brood mass at hatching
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Materials and methods

The experiments were performed throughout 2006 and in February and March 2013. We

used beetles from a laboratory stock population established in 2005 at the University of

Cambridge from wild beetles caught in woodlands surrounding Cambridge, and kept under

standard conditions of light and temperature (see Cotter et al. 2010 for details). Every

summer, field-caught beetles were added to the laboratory stock, to maintain genetic

diversity. Adult beetles were kept in individual plastic boxes (12 9 8 9 2 cm) filled with

moist soil and fed minced beef twice per week. When sexually mature, pairs of males and

females were placed in plastic containers (17 9 12 9 6 cm) half-filled with moist soil and

also containing a mouse carcass (12–16 g). Eight days later, dispersing larvae were

removed, placed in plastic boxes of 5 9 5 individual divisions, with one larva per cell,

covered with moist soil and left to pupate for 3 weeks.

Experiment 1: Relationship between lytic activity of larval exudates
and brood size

The methods are described in detail in Reavey et al. (2014). Briefly, sexually mature

beetle pairs were provided with a mouse carcass in a standard breeding box and allowed

to rear a brood. Exudates were collected from every member of the brood 3–5 days after

hatching using a capillary tube, and pooled into a single sample per brood for each day

of collection. 1 ll of pooled exudate per brood was used in a lytic zone assay to measure

antimicrobial activity, following Cotter et al. (2010). In brief, agar was mixed with a

solution of frozen cells of Micrococcus lysodeikticus, and plated in Petri dishes. We

punched holes of approximately 1 mm diameter into the solidified agar mix and applied

1 ll of thawed exudate in each hole. We measured the diameter of the lytic zone

appearing after 24 h of incubation at 33 �C, using the free software ImageJ. Egg white

lysozyme at known concentrations was also applied in holes to create standard curves

from which we derived the slope and intercept of the regression explaining the rela-

tionship between lytic activity (in mg/ml lysozyme equivalents) and diameter of the lytic

zone.

Experiment 2: Brood size and time budget of parental activities

We selected pairs of sexually mature virgin sisters from the stock population and paired

each female with an unrelated sexually mature virgin male. We provided pairs with a piece

of fresh steak (14.98 g ± 0.01 SE), instead of a thawed mouse, to control as accurately as

possible for resource mass. 36 h after pairing, we removed males from the breeding boxes.

68 h after pairing, we transferred females and the prepared steaks to new containers. We

searched for eggs in the original container and placed all the eggs we could find on moist

filter paper where they remained until hatching. Meanwhile, at regular intervals, we

examined the female’s new container for eggs. If any were present, we transferred the

female and her carcass to another new container and added the additional eggs to her

original set on the filter paper. When the females’ own larvae started to hatch, we selected

pairs of sisters with intermediate sized clutches (29.33 eggs ± 0.40 SE), to control for egg-

laying effort, and transferred them with their steak to new containers. At this point, we

gave each sister either a small brood of five larvae (N = 20) or a large brood of 20 larvae
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(N = 20). Larvae were unrelated to the foster mother. All females accepted their foster

brood.

On the day of hatching, we observed the females’ behaviour under red light to simulate

underground conditions (Smiseth et al. 2005). We recorded behaviour by instantaneous

scan sampling (Martin and Bateson 1986), scanning once per minute for 30 min. We

scored the following behaviours: (1) Provisioning of the brood—defined as mouth to

mouth contact between the parent and at least one larva. (2) Maintenance of the carcass and

the crypt (the soil surrounding the carcass)—adding secretions to or manipulating the

surface of the carcass, excavating the crypt or moving the carcass from below. (3)

Guarding the brood—standing over or near the crater making frequent head movements

from side to side. (4) Other behaviour—any behaviour other than provisioning, mainte-

nance and guarding, this includes walking, grooming and consuming carrion. (5)

Absence—being away from the crypt.

Experiment 3: Social immunity in response to brood size and female condition

Manipulating female condition by changing developmental conditions

In previous work, we showed that females that received no post-hatching care as larvae

subsequently raised fewer offspring upon becoming mothers themselves than females

that received either 24 h or full post-hatching care (Boncoraglio and Kilner 2012, Kilner

et al. 2015). Furthermore, they also suffered higher costs of reproduction (Kilner et al.

2015). We therefore chose to manipulate female condition by varying the duration of

care received as larvae. We placed 20 pairs of unrelated virgin males and females from

the stock population in a breeding box with a mouse carcass (23.3 g ± 2.5 SD). In half

of the pairs, parents were removed 3 days after pairing, at the time of larval hatching.

The developing broods thus received no post-hatching care (‘‘0 h’’ broods). In the other

pairs, parents were allowed to stay until day 4 after pairing (‘‘24 h’’ broods). In both

treatments, larvae completed their development on the carcass until dispersal and then

were left to pupate under standard conditions. Upon reaching adulthood, we collected

two females per family (N = 20 for ‘‘0 h’’ broods, N = 18 for ‘‘24 h’’ broods). In each

family, each sister was assigned to one of two brood size treatments (‘‘small’’ and

‘‘large’’, see below).

Manipulating brood size

Three-week old ‘‘0 h’’ and ‘‘24 h’’ females were paired with virgin males from the stock

population, under standard breeding conditions with a mouse carcass (12.9 g ± 2.4 SD).

We removed males after carcass preparation but prior to hatching, 56 h after pairing. At

larval hatching, we collected the larvae that had arrived at the carcass, weighed them,

and placed the female and the carcass in a new box half-filled with fresh compost, to

prevent new hatchlings arriving at the carcass after brood size manipulation. Only

females whose own larvae had hatched were subsequently used (17 females from 0 h

treatment, 16 females from 24 h treatment). We created foster broods from the offspring

of unrelated females, who had experienced the same duration of parental care as larvae.

Each female received either a small (5 larvae) or large (20 larvae) brood of unrelated

larvae. All females accepted the foster brood and reared the larvae until they were ready
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to disperse from the carcass. At dispersal, we counted and weighed the larvae from each

brood.

Anal exudate collection

We collected anal exudates from females at two time points: 48 h after pairing (i.e. the

day before larval hatching), and 96 h after pairing [i.e. 1 day after hatching, which is

when the antibacterial activity of the exudates peaks (Cotter et al. 2013)]. In this way

we could account for any variation in lytic activity between females which is unrelated

to the brood manipulation. Exudates are readily produced by most beetles when tapped

gently on the end of the abdomen, but on rare occasions we could not collect sufficient

exudates for analysis. For the subsequent statistical analysis of lytic activity results we

only used females for which we had exudates at 48 and 96 h after pairing; this

excluded 1 female in the ‘0 h, large brood’ treatment, 1 female in the ‘24 h, small

brood’ treatment and 1 female in the ‘24 h, large brood’ treatment from the analysis.

Anal exudates were kept at -20 �C until further analysis as described for experiment

1. To examine the relationship between the lytic activity of maternal anal exudates

prior to hatching, and lytic activity after hatching in unmanipulated broods, we carried

out a new analysis of data collected as part of a different experiment (described in

Cotter et al. 2013). The beetles included in this new analysis were the controls in

Cotter et al. (2013); briefly, female beetles were paired with a virgin male in a

standard breeding box and provided with a mouse carcass. Males were removed after

2 days. Exudates were collected at day 2, 4 and 6 after pairing. Using the same

protocol for breeding and exudate collection, females were allowed to breed repeatedly

until their death. Here we analyse for each breeding event whether lytic activity at day

2 (1 day before hatching) was significantly correlated with lytic activity at day 4

(1 day after hatching).

Statistical analyses

We used general linear (LM’s) and linear mixed models (LMM’s), with log transfor-

mations when inspection of residuals suggested heteroscedasticity or deviations

from normal distribution. Starting from models including all possible covariates (such

as carcass mass and female body size), we applied model selection by comparing

nested models with Anova using Akaike’s Information Criterion (AIC). In all mod-

els, female family was initially included as a random effect to account for variation due

to genetic or maternal effects, and only removed if it accounted for little or no

variance.

When analysing average larval mass, we identified an outlier by examination of a

boxplot and Cleveland dot chart of the data (Zuur et al. 2009). The outlier belonged to

the ‘24 h’ and ‘small brood’ treatments, and was removed from further analysis.

For non-significant effects, we report significance upon removal from the model.

For LM’s, we obtained for each fixed effect t-statistics and p values from the sum-

mary() function in R. For LMM’s, we used the ‘‘lme4’’ package in R (Bates et al.

2013); t-statistics, degrees of freedom and p values were calculated using Satterth-

waite’s approximation, with the ‘‘lmerTest’’ package in R (Kuznetsova et al. 2013).

Tukey post hoc comparisons were performed using the ‘‘lsmeans’’ package in R (Lenth

2014).
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Results

Experiment 1: Larval lytic activity in relation to brood size

We found no significant relationship between brood size at dispersal and the brood’s

collective lytic activity (Table 2; Fig.S1).

Experiment 2: Brood size and time budget of parental care activities

When given a large brood, females spent significantly more time guarding (LMM,

slope = 0.886, SE = 0.34, df = 27.79, t = 2.615, p = 0.016) and feeding larvae (LMM,

slope = 1.526, SE = 0.29, df = 19.33, t = 5.333, p\ 0.001). Brood size treatment had

no effect on time spent maintaining the carcass (LMM, slope = -0.120, df = 32,

t = -0.474, p = 0.639). Furthermore, there was no overall correlation between time spent

feeding and time spent maintaining the carcass (Spearman rank correlation coeffi-

cient = -0.02, p = 0.9, Supporting Information S2).

Experiment 3: Social immunity in response to brood size and female condition

Antimicrobial activity increased significantly from 48 h (pre-hatching) to 96 h (post-

hatching) after pairing (paired t test, t = -6.1121, df = 33, p\ 0.01), as expected from

previous work (Cotter et al. 2013).

Females assigned to small and large broods did not differ a priori in their pre-hatching

lytic activity (Anova: F1,28 = 1.54, p = 0.22). Pre-hatching lytic activity was only sig-

nificantly predicted by female size (LMM: slope = 1.21, SE = 0.38, df = 18.42, t = 3.18,

p = 0.005).

Females that were given large broods showed on average lower levels of post-hatching

antimicrobial activity than females that were given small broods (Fig. 1a; Table 3). Female

size was positively correlated with post-hatching lytic activity (Table 3). Brood size

treatment was only marginally significant, but its removal from the model increased AIC

(from 88.7 to 90.7), hence it was retained in the minimal adequate model. Maternal

condition had no effect on lytic activity (LM: slope = 0.33, SE = 0.39, df = 26, t = 0.87,

p = 0.39), nor was there an interaction between maternal condition and brood size treat-

ment (slope = -0.53, SE = 0.83, df = 12.2, t = -0.64, p = 0.53).

Experiment 3: Brood performance

Brood mass at hatching, prior to brood size manipulation, did not differ between treatments

(LMM, t = 1.24, p = 0.23). Contrary to the prediction of the trade-off hypothesis, we

Table 2 LM with log-transformed larval lytic activity as response variable

Estimate SE df t p

(Intercept) 0.10 0.46 74 0.21 0.83

Day -0.55 0.12 74 -4.67 <0.001

Number of larvae -0.01 0.01 74 -1.18 0.24

Significant effects (p value\ 0.05) are shown in bold
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found that pre-hatching lytic activity of the biological mother significantly predicted brood

mass at hatching (LMM: slope = 0.24, SE = 0.04, df = 29.3, t = 5.73, p\ 0.001).

Furthermore, in unmanipulated broods (data corresponding to control treatment in

Cotter et al. 2013) we found a significant positive correlation between pre- and post-

hatching lytic activity of the mother’s anal exudates (Pearson product moment correlation:

r = 0.398, t36 = 2.602, p = 0.013)(Fig. 2).

Maternal condition affected average larval mass at dispersal, with low quality mothers

(i.e. those that received 0 h post-hatching care as larvae) raising larvae of lower mass than

higher quality mothers (i.e. those that received 24 h post-hatching care as larvae) (LMM:

slope = -0.25, SE = 0.07, df = 25.97, t = 3.36, p = 0.002), although there was a sig-

nificant interaction between brood size and maternal condition treatments (Fig. 1b, inter-

action term: slope = 0.32, SE = 0.10, df = 17.84, t = 3.30, p = 0.004). The average

mass of larvae raised by higher quality mothers did not differ significantly between large

and small broods, whereas larvae raised by lower quality mothers were significantly

smaller if they came from large broods rather than small broods (Tukey post hoc com-

parison: estimated difference = -0.39, SE = 0.06, df = 16.81, t-ratio = -6.2,

p\ 0.001). Overall, average larval mass at dispersal increased with carcass mass (LMM:
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Fig. 1 a Log lytic activity (in mg/ml lysozyme equivalents) of females one day after hatching. Females
received either large (20 larvae, N = 14) or small (5 larvae, N = 16) broods. b Log average larval mass of
small and large broods. In both plots filled circles show predicted means and standard errors of the minimal
adequate model (white circles = 0 h females, black circles = 24 h females). Open circles are raw data.
Data points from each treatment have been offset for clarity of the figure

Table 3 LM with log-transformed female lytic activity 1 day after hatching as response variable, when
brood size was experimentally manipulated

Estimate SE df t p

(Intercept) -7.61 2.41 27 -3.16 0.004

Brood (small) 0.69 0.35 27 1.98 0.058

Female size 1.22 0.48 27 2.25 0.018

Significant effects (p value\ 0.05) are shown in bold
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slope = 0.063, SE = 0.01, df = 25.87, t = 4.28, p\ 0.001), though the nature of this

relationship differed between the brood size treatments (interaction term: slope = -0.05,

SE = 0.02, df = 25.33, t = -2.59, p = 0.01).

Discussion

Our aim is to explain why maternal contributions to social immunity are inversely cor-

related with brood size at dispersal (Cotter et al. 2013). Our first key experimental result is

the finding that this relationship is caused by variation in brood size, because females given

small broods of five larvae showed higher lytic activity in their anal exudates than females

receiving large broods of 20 larvae. But how does this relationship arise? Does a resource-

based trade-off mean that putting more investment into reproduction leaves less for social

immune defence? Or are mothers adjusting their contribution to social immunity in relation

to their brood’s contribution to this public good? Note that while these two hypotheses are

not mutually exclusive, each yields a unique set of predictions, which allows us to

determine which hypothesis is more consistent with current empirical findings.

In general, our results are not consistent with a trade-off between investment in

reproduction and social immunity (see Table 1 for original predictions). We found no

evidence that the negative association between brood size and maternal investment in

social immunity is due to a trade-off with investment in egg production. This is because

when we controlled for pre-hatching investment by mothers in their clutch, using cross-

fostering in experiment 3, we still found that females raising a large brood contributed less

to social immunity than females raising small broods.

Furthermore, we found that female contributions to social immunity before hatching were

positively correlated with the mass of their original brood at hatching (experiment 3), as well

as with social immunity post-hatching in unmanipulated broods. These positive relationships

are probably driven by female quality (as found in Steiger 2013) and do not support the

negative correlation predicted by the trade-off hypothesis. Hence, females do not seem to be

constrained by a trade-off between pre-hatching and post-hatching investment.

We found no behavioural evidence for a trade-off either. Females spent approximately

the same amount of time maintaining the carcass, regardless of their brood size, even

though they spent more time feeding larger broods.

Pearson correlation
= 0.398, 36 = 2.602,  = 0.013

Fig. 2 Scatterplot of log lytic
activity in female exudates prior
to hatching (48 h) against log
lytic activity 1 day after hatching
(96 h)

132 Evol Ecol (2016) 30:123–135

123



In another experimental approach, we tried to expose any trade-off between investment

in reproduction and social immunity by manipulating female condition, so changing the

hypothetical pool of resources to be divided between each action. The manipulation

worked, in the sense that females in poorer condition were less capable of investing in

large numbers of offspring, producing smaller larvae when rearing large broods (Fig. 2b).

If social immunity and brood size were trading-off, we would expect females in poor

condition to show this trade-off more markedly than females in better condition (van

Noordwijk and de Jong 1986). Yet, we found that female condition did not affect the

relationship between social immunity and brood size (Fig. 2a). Instead, females in good

and poor condition adjusted their lytic activity in a similar way in response to our

manipulations of brood size.

Yet further evidence against the trade-off hypothesis comes from previous work where

we induced females to up-regulate the lytic activity of their anal exudates by exposing

carcasses to a bacterial challenge (Cotter et al. 2010). If there were a simple trade-off

between investment in social immunity and brood size then we would expect to observe

smaller brood sizes when females were forced to invest more in social immunity—but no

such change was observed (Cotter et al. 2010). Likewise, when we previously forced

females to down-regulate their investment in social immunity by experimentally up-reg-

ulating their investment in personal immunity (Cotter et al. 2013), we found that down-

regulation of social immunity alone was not coupled to an increase in brood size, again

demonstrating little support for a trade-off between investment in brood provisioning and

social immunity.

Thus, the best explanation for the negative relationship between brood size and maternal

contributions to social immunity we currently have is that females and their broods are

using social cues to adjust their respective contributions to a public good. The two lines of

evidence that support this interpretation are more circumstantial than direct. First, we

carried out new analyses of some of the data published in Reavey et al. (2014), to

investigate the association between brood size and the brood’s contribution to social

immunity. We predicted that the lytic activity of larval exudates should either stay constant

or rise with increasing brood size, since the lytic activity of maternal exudates falls with

increasing brood size. Finding a negative correlation between larval lytic activity and

brood size would refute the public goods hypothesis. We found the lytic activity of the

brood to be constant regardless of brood size.

The second line of indirect support for the suggestion that maternal contributions to

social immunity are governed by a public goods game comes from our test of the pre-

diction from public goods theory that better quality mothers should produce exudates with

greater lytic activity (Frank 2010). Although we did not find that our experimental

manipulation of maternal condition influenced females’ contributions to social immunity,

we did find that larger females produced exudates that were more potently antimicrobial

after their larvae hatched. Whether this is because larger females were better able to sustain

the higher fitness costs associated with producing exudates with greater lytic activity, as

assumed theoretically (Frank 2010), remains to be determined in future work.

While the current work does not offer the definitive answer on whether beetle mothers

and offspring are involved in a public goods game over their contributions to social

immunity, it does suggest that the simplest explanation (a trade-off between social

immunity and brood size) is not the most likely. As we learn more about the genes

underlying social behaviour (e.g. Cunningham et al. 2015), the definitive answer could be

provided by experiments making use of the recent technological advances in genome

editing, such as CRISPR/Cas (Gaj et al. 2013). Genetically engineering larvae lacking
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antimicrobial activity would allow us to determine to what extent maternal contributions to

social immunity depend on offspring contributions.
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