
 1

AN INTEGRATED MODEL OF INNOVATION
DRIVERS FOR SMALLER SOFTWARE FIRMS

High technology innovation is essential for economic development in industrialised societies. Innovation

practice in smaller software companies, however, has received little attention. We derive software innovation

drivers and outputs from a fragmented literature and analyse their empirical relevance using qualitative data

from twenty-five in-depth interviews with software executives in the Silicon Fen. Repeating patterns in the

dataset revealed through content analysis show that the most important innovation drivers for smaller software

firms are external knowledge, leadership and team process. Specialised innovation tools and techniques are

hardly used. We develop a model of software innovation drivers, together with explorative theoretical

propositions.

Keywords: software, information system development, creativity, invention, innovation, management, small and

medium size enterprises, knowledge leverage

1. INTRODUCTION

Technological innovation has long been associated with entrepreneurship, market power and economic growth,

and widely researched by economists, and organisational and management theorists. High technology industries

(including the software industry) are particularly dependent on innovation, and provide many high-growth firms.

The high technology sector is important for national economies because of its ability to stimulate jobs and

growth through high levels of invention and innovation. The result can be new industries with high profits,

competitive edge and good salaries (Oakey, 2012). The US National Science Foundation reports that knowledge

and technology industries ‘have a much higher incidence of innovation than other industries and that ‘software

firms lead …….., with 69% of companies reporting the introduction of a new product or service.
1
’ Thus the

performance of software companies has broad economic consequences: “the software sector has effects that spill

over beyond its specific niche, particularly as a widening array of economic activity, goods, and services rely to

some extent on software-related technologies. Since these technologies promise to command a greater share of

economic activity, the size and effectiveness of investment in software-related R&D may determine economic

performance and international competitiveness more broadly” (Lippoldt & Stryszowski, 2009). Moreover the

importance of the sector is not confined to large companies; high-tech start-ups are a motor for economic growth

and a catalyst for technical innovation in societies (Oakey, 2012). However research and development in small

high technology small firms remains risky – success in the development of leading edge technology is never

guaranteed, and may be both expensive and time-consuming. Small and medium sized software enterprises

(SMSEs) operate in difficult competitive conditions as a result of their size in relation to their competitors

(Heirman & Clarysse, 2007). They often operate with constrained resources (especially for investment in new

projects), specialist skill shortages, and a small customer base over which they have little control. They face

entry barriers imposed by larger competitors (Ojala & Tyrväinen, 2006), challenges with internationalization and

markets distorted by the availability of free software, and are therefore often confined to niche markets of their

own development. One important response to these difficult conditions is the ability to innovate; innovation

facilitates the development of novel value for customers, streamlines internal development processes, and opens

market spaces that are not yet dominated by larger competitors.

1
 http://www.nsf.gov/statistics/seind14/index.cfm/chapter-6/c6s4.htm

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/77410173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Innovation involves ‘the generation, development, and adaptation of novel ideas on the part of the firm’ (Trott,

1998), where novelty is accompanied by utility, or value for the firm and its customers. Some researchers link

innovation with the creation of new knowledge: ‘innovation, which is a key form of organizational knowledge

creation, cannot be explained sufficiently in terms of information processing or problem solving. Innovation can

be better understood as a process in which the organization creates and defines problems and then actively

develops new knowledge to solve them’ (Nonaka, 1994). However innovation is normally understood as

complex and multi-faceted: ‘innovation is not a single action but a total process of interrelated sub processes. It

is not just the conception of a new idea, nor the invention of a new device, nor the development of a new market.

The process is all these things acting in an integrated fashion” (Trott, 1998).

Innovation in SMSEs requires independent study for two interlinked reasons. The first is that smaller firms may

innovate in different ways than large firms. Their innovation advantages tend to be linked to behaviour -

entrepreneurial dynamism, flexibility, efficiency, proximity to the market, motivation; whereas the advantages of

larger firms are material - economies of scale and scope, financial and technological resources (Love & Roper,

2015). Innovation may be informal, ad hoc and opportunistic, integrated with daily work (in our case software

development) – and primarily focused on design. SMEs have a low degree of job specialisation (Wong &

Aspinwall, 2004) and do not normally have specialist innovation or research and development departments.

Their innovation may involve cooperative and open strategies, and be led by owner-manager-decision makers

who are well integrated into the everyday work (Supyuenyong, Islam, & Kulkarni, 2009). It is likely to be

financed through bootstrapping (Aaen & Rose, 2011), since smaller firms have greater difficulty raising capital.

The second reason why SMSEs are deserving of independent study is that innovation with software may be

different from innovation in other sectors, because of the special characteristics of software and its development.

Software innovation, according to the OECD, can be defined as

 ‘the development of a novel aspect, feature or application of an existing software product or process; or

 introduction of a new software product, service or process or an improvement in the previous generation

of the software product or process; and

 entry to an existing market or the creation of a new market.’ (Lippoldt & Stryszowski, 2009)

Pikkarainen et al. (2011) argue that software innovation differs from other forms of innovation. Software is

intangible, highly malleable, has a low market entry threshold, and often depends on the input of users and

experts. Moreover the cost of software is focused in its development; reproduction and distribution costs are

negligible. Rose (2010) points out that that the forces of globalisation, standardisation, and industrialisation are

forcing software development firms in developed countries to become increasingly reliant on their innovation

skills. However, software has particular design characteristics, and software companies operate in particular

ways, so it cannot safely be assumed that innovation studies from other industries are directly transferrable -

especially not to SMSEs.

Researchers have identified and studied many different facets of software innovation. Early contributions

focused on creativity and creativity techniques in systems development (Couger, Higgins, & McIntyre, 1993),

innovation leadership (Mclean & Smits, 1993) and creative requirements analysis (Maiden, Manning, Robertson,

& Greenwood, 2004). A parallel trend in the organization and management sciences focused on open innovation

(Chesbrough, 2003) and open source development (Von Hippel & Von Krogh, 2003). Disruptive innovation has

more recently become a focus in IS (Lyytinen & Rose, 2003). Overall, however the literature reflects the

complex and multi-faceted nature of the subject; many fragmented contributions from several disciplines, many

different related foci, little cross-disciplinary referencing, and thus a lack of cumulative knowledge generation in

the area. Moreover, there is little consistent focus on SMSEs – much of the literature focuses on larger

companies, some contributions do not distinguish on the basis of company size and only a few researchers

(Carlo, Lyytinen, & Rose, 2011; Koc, 2007; Raffa & Zollo, 1994; Romijn & Albaladejo, 2002; Tjornehoj &

Mathiassen, 2010; Weterings & Koster, 2007) explicitly target SMSEs. It is currently hard to distinguish what

drives innovation in larger software companies from what drives it in SMSEs. Our research questions are

 3

therefore: which organizational levers drive innovation in SMSEs, and how are they related? We primarily

consider the work of software developers and their team leaders and managers, the artefacts or products they

develop, and the processes they use to develop these artefacts. Our analysis thus spans individuals, teams, and

organizations.

The starting point for the study is a literature study identifying the drivers of software innovation (irrespective of

size). This provides the initial conceptual framework for semi-structured interviews with experienced software

developers in the Silicon Fen. The Silicon Fen is a regional innovation cluster in the East of England centred

around Cambridge with a high concentration of small and medium sized software companies. The name Silicon

Fen alludes to Silicon Valley in California, and the former wetlands in this area known locally as The Fens. The

transcribed interviews were explored through content analysis for structural patterns. Concepts from literature

are in this way filtered and refined into an exploratory descriptive theory of software innovation in SMSEs.

These methodological considerations are reported in section 3, and the results of the analysis in sections 4 and 5.

Section 6 presents the refined concept set as overview and detailed models with a related set of exploratory

propositions, and the article ends with a discussion and conclusions.

2. SOFTWARE INNOVATION: OUTPUTS AND DRIVERS

Software innovation outputs

The most common form of software innovation results in the creation of new software functionality used in new

products and services. Innovation of this form has led to the creation of an extensive array of software systems

including enterprise tools, end-user applications, operating systems, communication protocols, mobile software,

and embedded software (Rose, 2010). Many forms of software are referred to as services; such as web services

or mobile services (Kristensson, Magnusson, & Matthing, 2002). A wide range of software-related activities

such as installation, customization, helpdesk, platform management, and consulting can also be referred to as

services. In addition, hosting or application service provision represents a combination of software with

additional services that permit organizational computing functions to be outsourced to software providers. A

modern variant of such an offering is software as a service (SaaS) (Lippoldt & Stryszowski, 2009). Software

process innovation focuses on the tasks and actions, the shapes and norms, and the formal and informal

procedures that lie behind software development. These are expressed in the methods, tools, and techniques that

organize the work of a developer, and describe how software is developed (Rose, 2010). Carlo et al. (2011a)

define this as innovation in ways to envision, design, and implement software. All significant improvements in

design techniques, team organisation, and managerial processes can be classified as process innovations.

Product/service innovation and process innovation constitute the two main innovation outputs for this study

Management drivers

An important group of software innovation drivers reside with those taking a leadership role, whether formally

as a manager or project-leader, or informally as part of a project group. Innovation leadership, monitoring and

feedback for project teams, is identified as having an important influence on software innovation. The IS leader

may be the champion of innovation (McLean & Smits, 1993). Leaders are responsible for fostering a work

environment that stimulates creativity and minimizes barriers to creativity, and Florida & Goodnight (2005)

characterize such efforts as minimizing hassles and stimulating minds. Leaders are often responsible for path

creation (Gumusluog & Ilsev, 2009), which guides organizations through changes in base technologies and

market and product segments that are beyond the considerations of individual developers. Leaders are also

responsible for portfolio management (Napier, Mathiassen, & Robey, 2011) conflict resolution (Sherif, Zmud, &

Browne, 2006) and providing feedback. The most valuable feedback activity is innovation evaluation -

assessing the work environment, the value of competing ideas during ideation, and new software product

concepts (Lobert & Dologite, 1994). Such evaluation may be formal or informal. Informal evaluation of team

innovation may be important for the process organizer in deciding to how to manage the project - perhaps taking

 4

the form of observations of team performance (Rose, 2010). Formal evaluation is more dependent on the

development and use of specific metrics and targets (Lobert & Dologite, 1994).

Knowledge drivers

A second group of factors understood to be important in software innovation refer to knowledge leverage and in

particular the role of knowledge external to the development team (Zmud, 1983). Attention has been directed

toward the role of absorptive capacity: the ability of a firm to identify, assimilate, and exploit external

knowledge. Carlo et al. (2011) isolate knowledge depth, diversity and linkages, and routines of sensing and

experimenting as important for software innovation. Market understanding and technology trajectory

understanding are important forms of knowledge - taken together they represent the well-known complement of

market pull and technology push (Brem & Voigt, 2009). Knowledge of competitors and their innovations is also

considered (Turner, Mitchell, & Bettis, 2010). A final type of knowledge generally considered a driver for

innovation is user-domain understanding generated from customers (Lee & Cole, 2003). Knowledge creation

and use is understood to be a social process and innovation researchers thus emphasize importance of community

and network (Franke & Von Hippel, 2003) in progressing knowledge development. In particular, the software

industry has witnessed the emergence of a specific form of community-based innovation in the form of the open

source movement. According to Von Hippel and Von Krogh (2003), open source development is an example of

a private-collective model of innovation not previously seen in either private industry or in the collective

knowledge creation efforts of universities. Some forms of open source development can also be understood as

user-driven software development processes involving open access to intellectual property (such as source code)

in a model known as open innovation (Chesbrough, 2003). Researchers are also interested in the role of crowd-

sourcing in software innovation (Leimeister, Huber, Bretschneider, & Krcmar, 2009) involving, for example

social networks (Gray, Parise, & Iyer, 2011). Some important forms of knowledge are held by users and recent

research has stressed the role of user involvement in software innovation (Bogers, Afuah, & Bastian, 2010).

Users may include end users, customers, other developers adapting software, and firms buying software products

or services. Customers can play an important role in the commercialization of software inventions (Athaide,

Meyers, & Wilemon, 1996), helping with customization, requirements, and early investment. User integration is

thought to play an important role in innovation with agile methods (Gassmann, Sandmeier, & Wecht, 2006) and

users often produce creative ideas (Kristensson et al., 2002), especially in respect to service innovation.

Moreover users with special skills which enable them to help conceptualise and prototype software systems

(lead users) are important in user-driven innovation (Franke & Von Hippel, 2003) where sticky knowledge

makes it difficult for software engineers to understand the use domain.

Team process drivers

Software is almost always produced in a team, in which the creative ideas of the team members (often drawn

from external knowledge sources) are synthesized into code outputs that form the product offerings of the

company. Several factors are important in this team process. Creative cognition involves understanding the

creative state of mind and creative acts in software development (Couger et al., 1993). Idea generation, or

generative capacity (Avital & Te’eni, 2009) describes ‘the ability to rejuvenate, to produce new configurations

and possibilities, to reframe the way we see and understand the world and to challenge the normative status quo

in a particular task-driven context.’ Generative capacity is improved by ideation, the evaluation, improvement

and realisation of ideas (Brem & Voigt, 2009). Ideation is naturally performed in a team, and teamwork is

considered an essential feature of innovative projects (Hoegl & Gemuenden, 2001), contributing to team

efficiency and the personal satisfaction of team members. Team composition, the blend of experience and

competences is important for innovation (Cooper, 2000). Tiwana and McLean (2005) highlight expertise

integration, the capacity to exploit knowledge transfer between team members who possess different skills. A

further important aspect is the development of shared understanding and relational capital among team members

(Koc, 2007). The software team’s work is often assumed to benefit from a repertoire of innovation tools and

techniques as well as situational knowledge of when to apply them. Couger et al. (1993) report on the use of

 5

analytical creative techniques (progressive abstraction, interrogatories and force field analysis) and intuitive

techniques (associations/images, wishful thinking, and analogy/metaphor) to support creativity in the systems

development effort. A related literature explores software systems designed to underpin creative work -

creativity support tools (Shneiderman, 2007). A specialized form of user toolkit (Franke & Von Hippel, 2003) is

designed to help end users in the innovation process. Innovation tools and techniques may form part of the

team’s development framework, its processes, underlying assumptions, and work practice norms. Process-

oriented software innovation strategies include Aaen’s (2008) Essence framework, and creative requirements

analysis (Maiden et al., 2004). A strand of literature associates agility (agile methods) with creativity in

development (Highsmith & Cockburn, 2001). Another related stream of research focuses on experimentation in

the design process (Thomke, 2001; Carlo et al., 2011). In software development contexts this usually involves

the use of prototyping, particularly where low-cost low-technology strategies are favoured (Martin, 2011). A

further aspect of the development framework is the installed base (Carlo et al., 2011) with which the team

works: those programming languages, application programming interfaces, standards and development

environments with which they are familiar. The teams ideas, supported by their process must eventually be

expressed as software design capability, which is defined as the ability to design a technology concept

(Leonardi, 2011) - an innovator’s vision of what functionality the built technology (the technological artefact)

should have, here understood as a novel and useful feature set (Roberts, 1988).

Table 1 summarizes innovation outputs and drivers from this discussion.

Concept Definition Key references

Output: Product/service

innovation

Novel and useful software

products and services

representing a significant

advance or change in

direction for a company

Too numerous to list

Output: Process innovation Step-changes or significant

modifications in the processes

used to develop software

products and services

Too numerous to list

Management Driver:

Innovation Leadership

Managing development teams

to create innovation

(Boland Jr., Lyytinen, & Yoo, 2007; R. G.

Cooper, 2011; Gassmann et al., 2006;

Martin, 2011; Mclean & Smits, 1993;

Nambisan, Agarwal, & Tanniru, 1999;

Napier et al., 2011; Romijn & Albaladejo,

2002; van den Ende & Wijnberg, 2003)

Work Environment Promoting a creative work

environment, minimising

creativity barriers

(Cooper, 2011; Florida & Goodnight, 2005;

Hocova, Cunha, & Staníček, 2009;

Maccrimmon & Wagner, 1994; Napier et

al., 2011; Romijn & Albaladejo, 2002)

Path Creation Creating an overall sense of

direction in response to

market and technology

developments

(Boland et al., 2007; Gumusluog & Ilsev,

2009; Napier et al., 2011; van den Ende &

Wijnberg, 2003; Weterings & Boschma,

2009; Weterings & Kotooster, 2007; Yang

& Hsiao, 2009)

 6

Portfolio Management Steering multiple projects in

respect to innovation

challenges

(Hocova et al., 2009; Napier et al., 2011)

Conflict Resolution Resolving conflicts between

individuals and groups in the

pursuit of innovation

(Sherif et al., 2006)

Management Driver:

Innovation Evaluation

The ability to reflectively

evaluate ideas, techniques and

processes for their

contribution to innovation

(Briggs & Reinig, 2010; Compeau,

Meister, & Higgins, 2007; Higgins, 1996;

Koc, 2007; Lamastra, 2009; Lobert &

Dologite, 1994; Massetti, 1996; Müller &

Ulrich, 2012; Sosa, 2011)

Knowledge Driver: Knowledge

Leverage

The use of internal or external

knowledge to drive software

innovation

(Cooper, 2000; Cooper, 2011; Gassmann et

al., 2006; Hanninen, 2007; Heirman &

Clarysse, 2007; Hung & Whittington,

2011; Lee & Cole, 2003; Morrison,

Roberts, & von Hippel, 2000; van den

Ende & Wijnberg, 2003; Weterings &

Boschma, 2009; Weterings & Koster,

2007; Zmud, 1983; Yang & Hsiao, 2009)

Absorptive Capacity The ability of a development

team to find, adapt and

exploit external knowledge in

software innovation

(Adams, Day, & Dougherty, 1998; M.

Bogers, Afuah, & Bastian, 2010; Carlo et

al., 2011; R. G. Cooper, 2011; Nambisan et

al., 1999; Napier et al., 2011; Sosa, 2011;

West & Gallagher, 2006)

Market Understanding The use of information about

software markets to promote

product innovation

(Adams et al., 1998; Brem & Voigt, 2009;

R. G. Cooper, 2011; Hung & Whittington,

2011; Napier et al., 2011; Turner et al.,

2010; van den Ende & Wijnberg, 2003;

Yang & Hsiao, 2009)

Technology Trajectory

Understanding

The use of understandings of

the probable direction of

future evolution of software

and hardware infrastructures,

platforms and technologies to

guide innovation

(Aerts, Goossenaerts, Hammer, &

Wortmann, 2004; Boland Jr. et al., 2007;

Brem & Voigt, 2009; R. G. Cooper, 2011;

Hanninen, 2007; Hung & Whittington,

2011; Napier et al., 2011; Romijn &

Albaladejo, 2002; Yang & Hsiao, 2009)

User Domain Understanding Using understandings of

customers’ business domain

or specialised internal

knowledge to drive

innovation

(Gray et al., 2011; Hanninen, 2007; Igira,

2008; Koc, 2007; Lee & Cole, 2003;

Martin, 2011; Mich, Berry & Anesi, 2005;

Raasch, 2011; Weterings & Boschma,

2009; Yang & Hsiao, 2009)

Competitor Understanding Monitoring competitors’

processes, products and

services to inform innovation

(Turner et al., 2010; Cooper, 2011)

Knowledge Driver: Community Exploiting external (Boland Jr. et al., 2007; Heirman &

 7

and Network connections, collaborations

and partnerships to promote

innovation

Clarysse, 2007; Franke & Von Hippel,

2003; Henkel, 2006; Hung & Whittington,

2011; Lee & Cole, 2003; Leimeister et al.,

2009; Morrison et al., 2000; Pisano &

Verganti, 2008; Romijn & Albaladejo,

2002; Sosa, 2011; van den Ende &

Wijnberg, 2003; West & Gallagher, 2006)

Open Innovation Using open business models

that partially or wholly share

intellectual property (for

example code) to promote

innovation

(Bogers et al., 2010; Henkel, 2006; Lee &

Cole, 2003; Leimeister et al., 2009; West &

Gallagher, 2006)

Open Source Exploiting open source code

or co-operations to drive

innovation

(Bogers et al., 2010; Henkel, 2006; Igira,

2008; Lamastra, 2009; Von Krogh, Spaeth,

& Lakhani, 2003)

Crowd Sourcing Inviting the wide-spread

participation of potential

users and customers to

enhance innovation

(de Jong & von Hippel, 2009; Gray et al,

2011; Leimeister et al., 2009)

Knowledge Driver: User

Involvement

Involving users to stimulate

innovation

(Athaide et al., 1996; Bogers et al., 2010;

Compeau et al., 2007; Franke & Von

Hippel, 2003; Kristensson et al., 2002;

Leimeister et al., 2009; Martin, 2011;

Oliveira & Von Hippel, 2011; Raasch,

2011)

Customisation Involving users in

customisation of standard

products and services

(Athaide et al., 1996)

User-Driven/Lead User Facilitating expert users with

specialist competences in

directing software innovation

(Franke & Von Hippel, 2003; Kristensson

et al., 2002; Morrison et al., 2000;

Nambisan et al., 1999; Napier et al., 2011;

Oliveira & Von Hippel, 2011)

Team Process Driver: Creative

Cognition

The exploitation of individual

cognitive creativity for

innovation

(Avital & Te’eni, 2009; Cooper, 2000;

Couger et al., 1993; Maccrimmon &

Wagner, 1994; Massetti, 1996; Santanen, et

al., 2004)

Generative Capacity The ability to generate

creative ideas and solutions

promoting innovation

(Avital & Te’eni, 2009; Kristensson et al.,

2002; Leimeister et al., 2009; Massetti,

1996; Pisano & Verganti, 2008; Romijn &

Albaladejo, 2002; Santanen et al., 2004;

Shneiderman, 2000; Sosa, 2011)

Ideation Expertise The ability to refine and

exploit creative ideas to

(Brem & Voigt, 2009; Cooper, 2011;

Santanen et al., 2004; Shneiderman, 2000)

 8

promote innovation

Team Process Driver: Software

Design Capability

The ability to design

innovative software products

and services

(April & Busse, 2007; Carayannis &

Coleman, 2005; Quintas, 1994; Sas &

Zhang, 2010)

Concept The ability to develop overall

concepts for new products

and services

(April & Busse, 2007; Carayannis &

Coleman, 2005; Leonardi, 2011; Quintas,

1994)

Feature Set The ability to create distinct

sets of novel and useful

software functionality

(Carayannis & Coleman, 2005; Leonardi,

2011; Quintas, 1994: Roberts, 1988)

Team Process Driver:

Teamwork

Organising teamwork to

promote innovation

(Cooper, 2000; Couger et al., 1993; Hoegl

& Proserpio, 2004; van den Ende &

Wijnberg, 2003)

Team Composition Selection of team members to

promote innovation

(Aaen, 2008; Cooper, 2000; Hocova et al.,

2009; Koc, 2007; Tiwana & McLean,

2005)

Expertise Integration Facilitating dialogue between

experts with different

technical and non-technical

specialisations

(Heirman & Clarysse, 2007; Leonardi,

2011; Tiwana & McLean, 2005; Von

Krogh et al., 2003; Weterings & Koster,

2007)

Shared Understanding Building and maintaining a

team’s common purpose in

the face of many challenges

and direction changes

(Cooper, 2000; Hesmer, Hribernik, Hauge,

& Thoben, 2011; Hocova et al., 2009; Koc,

2007; Lu & Wang, 2007; Snow, Fjeldstad,

Lettl, & Miles, 2011; Tiwana & McLean,

2005)

Team Process Driver:

Innovation Tools & Techniques

Using tools and techniques

designed to promote

creativity in the development

process

(Carayannis & Coleman, 2005; Cooper,

2000)

Creativity Techniques The use of conceptual tools

(such as mind-mapping) to

support innovation

(Amoroso & Couger, 1995; Carayannis &

Coleman, 2005; Cooper, 2000; Couger et

al., 1993; Maccrimmon & Wagner, 1994;

Santanen et al., 2004)

Creativity Support Tools The use of computerised tools

designed to facilitate

creativity to support

innovation

(Avital & Te’eni, 2009; Maccrimmon &

Wagner, 1994; Massetti, 1996;

Shneiderman, 2000; Shneiderman, 2007)

User Toolkits The deployment of tools

(often computerised) to

facilitate user innovation,

often with respect to a

technology platform

(Franke & Von Hippel, 2003; Müller &

Ulrich, 2012; Quintas, 1994; West &

Gallagher, 2006)

 9

Team Process Driver:

Development Framework

The concepts, methods and

techniques used to underpin

software team’s development

effort in respect to innovation

(Aaen, 2008; R. B. Cooper, 2000;

Highsmith & Cockburn, 2001; Maiden,

Gizikis, & Robertson, 2004; Maiden,

Manning, Robertson, & Greenwood, 2004;

Quintas, 1994) (April & Busse, 2007)

Agility Use of agile methods, or

adaptations of agile methods

as an innovation driver

(Aaen, 2008; April & Busse, 2007;

Gassmann et al., 2006; Highsmith &

Cockburn, 2001)

Creative Requirements

Analysis

Stimulating requirements

gathering by use of

techniques designed to

increase users’ an customers’

creativity

(Cooper, 2000; Hesmer et al., 2011;

Hocova et al., 2009; Maiden et al., 2004b;

Mich et al., 2005)

Experimentation/Prototyping Stimulating creativity by

iterative use of

experimentation and/or

prototyping in the

development process

(Carlo et al., 2011; Holmquist, 2004;

Martin, 2011; Thomke, 2001)

Installed Base Exploiting the technical

development environment of

a software firm to generate

innovation

(Aerts et al., 2004; Boland et al., 2007)

Table 1. Drivers and outputs for software innovation

The principal outputs are software process innovation and software product/service innovation, where process

innovation is understood also to influence product and service development. Other concepts are understood to

facilitate innovation, with a central group of influences closely associated with the team process (development

framework, innovation tools and techniques, creative cognition, teamwork and software design capability).

Innovation leadership and evaluation primarily influence the team process, whereas knowledge leveraged from

users and community and network influence both process and products and services.

3. RESEARCH APPROACH

Having identified a wide range of concepts related to software innovation from the literature, we now proceed to

refine the concepts and target them better towards SMSEs through an empirical analysis of their application in

SMSEs in a significant regional innovation cluster. Quantitative techniques are not appropriate for integrative

studies, since they cannot accommodate many variables with complex patterns of associations. The empirical

work is therefore a pre-structured qualitative investigation (Jansen, 2010) where the objective is ‘to gather data

on attitudes, opinions, impressions and beliefs of human subjects’ (Jenkins, 1985). Qualitative surveys aim at

determining the ‘diversity of some topic of interest within a given population’ and establish ‘the meaningful

variation (relevant dimensions and values) within that population’ (Jansen, 2010). The population here consists

of experienced software developers working in companies in the Silicon Fen, and the sample is self-selected

through interest in the topic. The main topics, dimensions and categories were defined beforehand (Table 1),

and explored by means of semi-structured interviews (contextualized through workshops and web-site study).

 10

The empirical setting for the study is the Silicon Fen. The Silicon Fen, sometimes known as Europe’s Silicon

Valley (Koepp, 2003), is a grouping of high-tech businesses focusing on software, electronic and biotechnology

located around Cambridge in Eastern England. They are distributed in an area bounded by Ely, Newmarket,

Saffron Walden, Royston and Huntingdon – all roughly a half-hour’s drive from Cambridge. The origins of the

cluster date back to the establishment of Cambridge Science Park by Trinity College in 1970, and many of the

companies have some connections with the university. There were reported to be 1,379 high-tech companies

employing 48,099 people in Cambridge and South Cambridge at the last census in 2008 (Doel, 2011). The

Cambridge cluster map
2
 currently lists 332 information technology (IT) and telecommunications companies, of

which a few (e.g. ARM, Aveva and Autonomy Systems Ltd.) are major international companies. Fifty-two of

these companies are spin-offs or otherwise closely linked to the university. However only six reported more

than 250 employees or revenues of more than €50M; the IT and telecommunications cluster can therefore be

described as predominantly made up of small, medium and micro sized enterprises (according to the European

Union’s definitions
3
), which are the subject of our study.

The Silicon Fen is described as a ‘cluster of creativity’ by Koepp (2003), making it an excellent area to study

innovation; however it is difficult to assess how representative the companies studied are of SMSEs in general.

Two characteristics are known to be particular to the silicon clusters: the network effects of having many

companies and technical specialists close to each other, and the knowledge effects of having a major university

in the area. Nevertheless the companies, executives and senior developers participating in the study represent a

varied sample of SMSEs. We contacted over 100 companies chosen at random, and the only obvious

characteristic that the sample shares is that of self-selection (they had enough interest and resources to

participate). Nineteen companies participated in the study - ranging in size from 3 to 120 people, and producing

many different kinds of software, from companies working primarily with a single packaged product to

companies developing many different products for clients. This yielded 16 short preparatory interviews with

CEO’s and 25 in-depth structured interviews (

2
 http://www.camclustermap.com

3
 http://ec.europa.eu/enterprise/policies/sme/facts-figures-analysis/sme-definition/index_en.htm

http://en.wikipedia.org/wiki/Newmarket,_Suffolk
http://en.wikipedia.org/wiki/Saffron_Walden
http://en.wikipedia.org/wiki/Royston,_Hertfordshire
http://en.wikipedia.org/wiki/Huntingdon

 11

Appendix 1, Appendix 2) carried out in the first half of 2013. All of the companies had web sites, which were

examined, and a total of 33 software developers attended four workshops on closely related themes. Most of the

developers also participated in the interviews. Focus groups with feedback were held in two companies.

Interviewees were chosen from company employees who both participated in software development, and had

some form of managerial responsibility for it (for example as a project manager). The majority (17) were at

senior executive level in their companies. Three companies provided more than one interview. The interview

protocol (Appendix 3) was piloted and iteratively improved over the first 5 interviews. After initial

introductions, and an explanation of the objectives of the research project, the interview was carried out in four

parts.

 The interviewee was asked to provide basic factual information about themselves and their company,

including, their name, role, company, size of company and the type of software they built

 The two outcomes (product/service innovation, process innovation) were explained and the interviewee

was asked to provide a narrative (tell a story) of a successful innovation. This technique is known as

priming by psychologists, and is designed to set up a stimulus in the interviewee’s mind that will affect

the way they later respond to questions. For instance any repetition of the word innovation will trigger,

consciously or unconsciously, the narrative they have recently explored.

 The interviewees were given a list of the principal concepts of the study, with short explanations, and

asked to prioritise them, in the sense that they should begin with the most important concept associated

with their innovation experience and explain the association as they understood it, and continue with the

next most important and continue as long as time remained. The interviewer was armed with a more

extensive list of concepts to direct supplementary questions.

 In the final part of the interview, the concept list was removed and the interviewee asked to identify

other contributing innovation factors that had not yet been identified.

Data analysis was conducted using content analysis (Berelson, 1952; Krippendorff, 2004; Silverman, 2001). As

a technique, content analysis yields ‘a relatively systematic and comprehensive summary or overview of the

dataset as a whole’ (Wilkinson, 1997;170). It operates by observing repeating themes and categorizing them

using a coding system. Categories can be elicited in a grounded way or can (as in our case) originate from an

external source such as a theoretical model (Wilkinson, 1997). Dedoose was used as the coding tool to facilitate

on-line interaction. A formal two level coding scheme was developed from the major concepts summarised in

Table 1. The coding was piloted and refined. Inter-coder reliability was achieved by using a total of four coders

(the three authors and a PhD student). The first coder coded the majority of interviews to ensure consistency,

with the three others also coding some complete interviews, and performing various consistency checks

(Appendix 4). Open coding was allowed (but sparingly used) to facilitate the development of new concepts.

Inter-coder reliability was thus built into the process, but no statistical test was carried out. The coders were

careful to pay attention to relationships between innovation drivers and outputs; where these were signalled in

the text they were coded with overlapping driver and output codes so that they could easily be traced and

analysed later. A complete mapping of relationships by this method was not attempted because of the number of

possible relationships: (39-1)
39

 without the open codings. Code frequency over the dataset was interpreted as a

validity signal, and code co-occurrence used as a signal for investigating potential concept associations. The

patterns of code associations were tracked manually to unravel complex and mediated relationships. The

eventual model was derived by an iterative refinement of concepts and associations according to patterns

revealed in the dataset, which also forms the basis for the accompanying propositions.

Figure 1 gives the overall research process.

 12

Figure 1. Research process

Two different analyses underpin the development of models and propositions.

Analysis 1 is based on coding frequency, and reports on the relative importance of the innovation drivers as

reported by the interviewees. Appendix 5 shows coding frequencies for innovation outputs and drivers. Since

interviewees were asked to prioritise the drivers in the context of their own innovations, these can be interpreted

as representing their understanding of the relative importance of the drivers. Drivers with less than 20 codings

were considered to lack empirical validation and removed from further consideration. Appendix 6 shows the

distribution of high level codings, where each plot on the radar chart represents the sum of the high level coding

and its second level decomposition. However a detailed ranking of drivers is not part of the purpose of this

research; coding frequency is used to show the validity of the codes (they represent a significant part of the

interviewees’ discourse) and qualitative analysis (through tracking the coded passages of text) is used to

investigate how and why they are considered important for innovation. Analysis 1 underpins the selection of

concepts for the model presented in section 6.

Analysis 2 investigates the relationships between different drivers and outputs based on code co-occurrence,

which signals patterns of associations between concepts (drivers and outputs) in the dataset, and explanations of

how and why drivers impact innovation revealed in Analysis 1. The most significant co-occurrences (n>20)

were tracked back to their contexts in the interviews and the nature of the relationships between drivers and

outputs analysed. Appendix 7 summarizes typical explanations for the associations. These explanations are

combined with the relational insights from Analysis 1 in the development of a series of propositions explaining

the most important relationships between concepts.

literature review

concepts

interview

protocols

data collection

content analysis

models,

propositions

 13

4. ANALYSIS 1: INNOVATION DRIVERS FOR SOFTWARE COMPANIES IN

THE SILICON FEN

In this section we summarize the major repeating themes of the analysis, illustrating them with quotations from

the interviews.

Software innovation outputs: product/service, process

Product/service innovation

The interviewees described a wide variety of firm level innovations, mostly of an incremental rather than a

radical nature. Two companies had been through major architectural restructuring of their principal software

product, in one case to support a different use of the product, and in the other to make it suitable for use as an

open platform (with an application programming interface) for other developers. A third had redeveloped their

product range from a single customer, single platform system to a cross-platform system spanning most of the

operating systems and database management systems used in their industry segment. Some described new

product developments: a smart energy management switching system, a workflow control system, a video driver,

an automated testing program, an interface design now widely used in smartphones. One described a

programming platform change: one of their products would be migrated to a modern platform, involving

updating the feature set to reflect modern technology affordances and coding the entire system from scratch in

the new languages. Another interviewee focused on the development of original algorithms to solve customer

problems; others focused on their recent projects: an open source collaboration for intelligent houses; a

simplified way of organising natural language search for customer service involving new business models for

customers; a major overhaul of product platforms and related consultancy practice in response to perceived

technology trajectories.

Process innovation

Two companies described the introduction of customised forms of the agile method Scrum, one including major

elements of Kanban. A third described the introduction of an ISO 9000 standard, a fourth the introduction of an

idea management system with organisational processes to support it
4
, a fifth a revision of consultancy support for

their core project.

Management drivers: innovation leadership, evaluation

Innovation leadership

The most significant of the leadership activities discussed was path creation. SMSEs typically produce many

creative ideas and product suggestions; so prioritising those that will be taken further, creating clarity of

direction in their execution and seeing them through to completion are essential skills. “I’ve been able to use the

ideas of the really bright guys around me, spot that talent, reinforce it, support it... recognize a good idea and go

forward with it...... you have to have the knowledge and foresight of where you might want to get to as well as

where you are…… you need utter determination and belief that you are right … there’s an awful lot of practical

difficulties and you just have to go round them, over them, through them or whatever if you’re going to deliver

the thing” (i15). Path creation supports shared understanding, and a common direction in teamwork
5
. It is

dependent upon excellent knowledge of the environment; as one CEO puts it: “my own perception of where the

company needs to go commercially….. we can’t be in markets which are dying markets or flat markets...we need

to be in buoyant markets where customers have money to spend” (i17)
6
. A further important leadership aspect

4
 see proposition 15

5
 see P6

6
 see P5

 14

was creating a psychologically supportive work environment for the team
7
, the “drive for execution, spirit,

creativity, and fun….happy hacking on Friday afternoon” (i14), a culture of “full empowerment…. if somebody

has an idea …. they’re allowed to put forward the idea” (i10).

Innovation evaluation

In the SMSEs we investigated there was little formal evaluation of innovation. Instead aspects of product and

process evaluation were incorporated into the work of leaders, often owner managers, or small groups of

director/managers, working closely with their developers. Leaders controlled scarce resources and an important

component of path creation was project selection - “sometimes ideas just won't fly…..the real, hard, commercial

world, there're lots of reasons why you can just immediately see it isn't going to happen” (i21)
8
. Evaluation

often involved resource prioritization and a commercial focus - “we’ve got these 30 things we need to build ….

how many do we actually need before it’s sold… we’re deferring 20 until version 2… we’ve got to get 10 of

them out there” (i5). These are also components of developing shared understandings and common direction in

the team
9
.

Knowledge drivers: knowledge leverage, community and network, user involvement

Knowledge leverage

Silicon Fen developers identify knowledge leverage as the most important contributor to innovation –

“knowledge leverage is the key ….you have to know an awful lot of techniques and technologies and extrapolate

beyond the known combinations …. to discover new elements” (i15). Knowledge is important for generative

capacity
10

: “ideas come from three main sources …. the existing customer base, they’re the ones who are driving

we want this feature, feature X, Y, Z. ….. market direction …… the adoption of mobile technology and touch

devices ….the third area would be where the company needs to go commercially…..” (i17). Absorptive capacity

describes the utilisation mechanism for four different types of knowledge. User domain knowledge is

considered vital for innovation: “my boss spends a lot of time talking to the users and their managers as well. He

gets to know the kind of things that they need to do and what the overall direction is as well…. ... when a

shipping line is thinking about buying out another one or when their volumes are likely to increase or decrease”

(i10). Some SMSEs have staff who focus on user relationships: “she knows her customers’ business often better

than many of them do. She works with water companies, and she knows all about their billing cycles. She works

with the hotel trade. She gets to learn everything about them… They always feed back great ideas on what the

software needs to do …. Some of that is very inspiring. We can’t do it all, but we prioritize what we can”

(i18)
11

. Market understandings help focus technology enthusiasts on business benefits: “don’t fall in love with a

product before you’ve done the market research. I’ve seen two people lose their houses because of that” (i5).

However, software specialists often conflate market and technology trajectory knowledge: “we do some market

analysis and we work with our existing customers on what kind of roadmaps they are thinking of and …. what

platforms we are going to be using and what architectures we need” (i14). They use these forms of knowledge

for idea generation
12

: “we keep an eye on technology roadmaps… we can spot technologies that will be useful to

our customers in three or four years time and ….develop crucial concepts for particular technologies….. how we

pick particular markets to focus on and what type of prototypes we develop and proposing those to customers,”

(i4) and predicting future needs: “I'm trying to be there when the curve is going up. I'm not jumping on the

bandwagon when we've hit the peak and it's on the way down” (i13); “if you take a particular card or a

7
 see P6

8
 see P5

9
 see P6

10
 see P8

11
 see P2

12
 see P8

 15

particular operating system, you're not picking it for what's the best you're picking it for the one you can use in

25 years' time” (i21). They also track their competitors, for instance to focus new product development: “I’ve

done quite a bit of work on competitor analysis …. we’re having a really good look internationally……we’re

ranking them ….. we quite happily nick good ideas from our competitors” (i3)
 13

 and to keep abreast of technical

developments: “we have a business development manager …. watching the big hardware developers like Intel

and Apple and generating intelligence for us” (i8). Many specialised niche software companies in the Silicon

Fen also keep track of basic science development in their areas (e.g. advanced graphics): “we need to track the

developments in the field…keep an eye on the literature……there’s one big academic conference called

SIGGRAPH and if we can get hold of the papers …..” (i8).

Community and network

Community and network are the source of much innovation-generating knowledge, both in terms of problem

solving (“how did we ever write software before we had …web forums? …..it used to take ages to look up the

answer to …my software is crashing here” (i12)), and user domain understanding (“part of the network is you're

trying to work with accountants, both to understand their needs and that they will guide their clients towards the

solutions” (i1))
14

. They stimulate generative capacity: “there's a government-sponsored specification …. and I

sit on the technical committee for that…. [which] is bringing forward ideas” (i9). Pre-existing open source

software can enable many innovations “ you can’t build this thing from scratch in three months with $50,000,

it’s not going to happen. You have to go out and find …. a piece of open source software. Then you’ve got to get

a square peg into a round hole…….. it requires innovation. (i22). The community relationships continue to be

important even where there is a business imperative - “from a hard-headed business standpoint if we make fixes

and we don’t contribute them back, we’re going to have to make those same fixes over and over again, whereas

if you contribute them upstream and they go into the upstream product, then it’s less work for us and it’ll save us

money” (i23). Partnerships sometimes formalized relationships considered important for innovation; for

example around open source development: “it's been a very, very good partnership…….their business model is

somewhat different from us because a lot of what they do, they do it under the open source framework…… their

core system is open source, but they have commercial plug-ins to that open source framework…..and they also

provide tools for anyone to provide plug-ins to it ……..it allows us to sell our ideas on a new platform that we

wouldn’t otherwise be able to do…..if we have an idea for a thing that might impinge on one of their commercial

products, we talk to them - is this is going to be competitive to you? We don’t want that. They’re very nice. We

swap ideas” (i13). Various open innovation strategies are also prominent, such as open innovation tenders:

“several pharmaceutical companies have got the same problem….rather than keeping it closed and innovating

themselves ….... they’ve described the problem….. they’ve gone out to look for solutions to that problem…….

across all the open innovation platforms that is a very common theme” (i22)
 15

.

User involvement

User involvement in the development process is the most important source of user domain understanding, and

sometimes the starting condition for innovation: “somebody has got a problem and there is no solution to that

problem….an innovative step is required to construct that solution. (i21). The input may come from end-users or

customers who are themselves experienced engineers or scientists - “we start off being treated as suppliers, but it

soon ends up that we’re effectively colleagues or treated that way” (i23). These relationships can be inspiring:

“bouncing ideas off, learning about what they’re doing …the whole thing is actually a very innovative planet and

it allows you to achieve …impressive results” (i22)
16

. Software innovators often apply a degree of interpretation

to what they learn: “listening to the customers is a very valuable source of perception and cognition of what it is

13

 see P8
14

 see P1
15

 see proposition 1
16

 see P3

 16

that they’re trying to do…..I discriminate between what they say they want and what they need…… those are

usually different…… …… the art of this is to listen to them and work out what those three different animals

are…... sometimes you can infer the problem that they’re actually trying to solve, which may not be the one that

they’ve told you it is, but you may therefore be able to invent a new solution that solves that problem and a

whole class of others in a new way” (i15).

Team process drivers: creative cognition, software design capability, teamwork, innovation tools and

techniques, development framework

Creative cognition

Though many of the sources of idea generation can be found in the various kinds of knowledge absorbed,

SNSE’s still need generative capacity, the ability to generate ideas: “when a customer gives us a concept or an

idea or we read about a competitor or we see where the market’s going we still need to apply that to our use case

scenario. There is an element of creativity and cognition required, how will it fit, how will it work, what benefits

is it going to bring? … there isn’t really an engineering discipline for that. …..it’s very, very difficult (i17)
17

.

The software developers we met preferred very low-tech tools when working with ideas, feeling that having their

hands on a keyboard, or the detailed formality of a programming environment often impeded creativity. Many

companies documented ideas and ideation (working with ideas) was almost invariably a team process - “it’s

always been a peer process….. a collaboration…….the ideas you have in that [development] situation are

usually some quite small ideas to do with the implementation…..you could have a big idea in that situation that

says, “oh wait a second…we’re doing this completely wrong…..we ought to scratch this and do it a completely

different way” ….that could obviously lead to more discussion before you actually change track…..small, small

clever ideas that add up to a good innovative product
18

. The more of those you can do as you’re going along, the

better the software in the end” (i12)
19

. Much ideation was informal and low key (“If you have a cool idea and

you are a techie you have to get one of the business development guys to okay it” (i24)). Some medium-sized

companies had more formal processes: “we’re big Wiki users…..we’ve got some conventions that we use within

that….we’ve got cover sheets for projects, but also ideas can just start as people dumping into a page or pulling

together links from pre-existing pages and so we’ve categories that we call futures where we’ve got pages and

pages of ideas that have been built up…. we’ve got Bugzilla which is bug tracking ….. that also is a repository

of a lot of ideas. Between the Wiki and Bugzilla is where people dump stuff. When a release comes to be

thought about, there’s a top-down seed where the senior management have a strategy or strategic objectives

….then we start trying to find ideas with …prospects in that domain….we try to synthesize those into early wish

lists …. then individual winning items might get treed out a bit more” (i16)
20

. Creative cognition applies just as

much to process innovation as to product/service innovation; many senior developers are very aware of their

development frameworks and have “periods of very intense productivity when you’re tinkering with the process

…..you’re hoping that it’ll be an investment that pays back…… you go into continuous process improvement”

(i2)
21

.

Software design capability

Though generative capacity and ideation deliver ideas, in the case of new product innovation those ideas must be

refined through software design capability - “an effective software design idea that yields itself to delivering

well designed, well maintainable software over a long period” (i8). Such a design idea can be described as a

product concept - “we’re currently working on a product ….which is essentially a sequencing engine for

17

 see P8, P5
18

 see P7, P10
19

 see P7
20

 see P6, P8, P13, P15
21

 see P9

 17

[existing product]. The idea behind the [new product] is to simplify the sequencing of operations in [existing

product]. The idea is slightly deeper than that in that it allows you to…..queue up tasks and perform them in a

sequence….. there’s a decision-making tree within that sequence ……it’s not a question of replacing

functionality that’s already in there, it’s simply a way of simplifying the mundane tasks” (i7)
22

. Those concepts

may respond to market and technology trajectory understandings: “if we are looking at having high power set-

top boxes then the application environment …. is going to be more complex and that is going to take some years

……[we’re] trying to evolve a new roadmap for the products where our current partners are able to adapt their

architecture to make use of the power we have….” (i14). They may respond to user domain understandings: you

sell people what they want but you give them what they need. So that the underlying thing [product} may not

have its features exposed, but when they come back to you and say - well, I want to do this - you say - we’ll turn

it on for you - and it’s there.“ (i6)
23

. Software concepts are often built up of feature sets, and another way of

incrementally innovating is to add features to existing products: “you can use social media in business and it's

probably where everything is going to go ……your LinkedIn profile definitely will get linked in [to our

product].... because it then keeps it [personal data] updated” (i1).

Teamwork

Some interviewees described teamwork as an vital component of their innovation work: ”teamwork is the most

important thing with a company our size because most of our costs are the people themselves and most of the

results come out of the effort of the people themselves……it is critical that they work together in a team” (i21).

Developing and maintaining shared understanding was important for a common sense or purpose and direction:

“I would say the most important aspect are be very aware of what the whole focus and direction and structure of

what the team is doing is, so everybody knows what everybody's doing. The reason …. is that what you're doing

will not suddenly rear off at a tangent” (i21)
24

. Shared understanding was also important for work coordination:

“we would work with a small team that was sufficient that we could have a shared mindset and not have to have

too many formal procedures, but do the daily scrum kind of thing - what do we all know to do today - what are

you doing - what am I doing?” and rapidly iterate towards a solution” (i15), “focusing more on the

communication and long-term understanding of where we are going through our business. Then people know

what we are doing and why and the problem then is just getting the buy-in from people that what we are doing is

actually the right thing to be doing” (i8). A leadership skill is getting the right people in the team - team

composition: “I look for people who are technically excellent and enthusiastic about the technology - in other

words, they actually find the subject of what they're working on interesting and fun, not just a job” (i21)
25

. A

further important aspect is expertise integration: “[my partner’s] got an amazing knowledge of the specifications

of the end product and of the cryptography…. I understand the cryptography and the hardware, and that makes

for …overlapping content-specific, but covering the spectrum of our target audience” [i9].

Innovation tools and techniques

Innovation tools and techniques (as developed and recommended in the academic literature) were not much in

evidence in the companies we studied, though one had recently purchased innovation portal software for idea

management: “we're opening that up to our internal staff to be able to put in ideas …… and they get this type of

social media discussion going about ….. these ideas” (i4)
26

. There was scattered use of techniques such as mind

mapping and brainstorming. However the many tools and techniques of innovation consultants didn’t seem to

impress the software engineers, even where they were familiar with them, although they were rather good at

adapting their engineering tools (issue trackers, bug trackers, online Scrum tools, and cloud collaboration tools

22

 see P10
23

 see P11
24

 see P6
25

 see P6,
26

 see P15

 18

such as wikis and Google documents) for the purposes of idea documentation and ideation, as documented

earlier
27

.

Development framework

The development framework refers to the set of conceptual and software tools, techniques and processes used in

the innovative development context. The most important of these, according to the participants, are

experimentation carried out through various forms of prototyping: “a lot of the stuff we’ve been doing is….

showing people onto the website and watching how they use it and talking to them about why they’re shopping

….. the other half …. is doing paper prototyping and wire frame prototyping and seeing how they react” (i2)
28

;

“sketches are quite important….it can be low tech; it can be a simplified demonstration of the algorithm ……..

play with the algorithm see what it can achieve. ……. it can just be a set of sample screens …… and let people

play with [them] to see whether they interact the way they want to” (i5)
29

. In software development this kind of

experimentation is an advanced form of ideation through design experiments – the tools that are used to design

the product are also used to experiment with competing designs, and elicit design feedback
30

. The companies in

the study either worked explicitly with an agile method, or worked informally in a process that resembled it to

some degree (an exception is that they sometimes made reasonably detailed specifications where the customer

expected it). Incremental/iterative development with a degree of experimentation is supported by agility: “one

of the guys working for us had been using agile development in the videogames industry. He was able to get

everyone on board for a process change here…… people bought into the idea to different degrees. We managed

to hammer out of that a working system based around the ideas of Scrum and agile development using user

stories and sprint iterations……. customized for us ….. and now no one can believe that we ever did any other

way” (i8)
31

. Agile methods often support ways of developing shared understanding, especially about the design

concepts which: “using Scrum obviously makes people stand up every day in front of the whiteboard and talk

about what they are doing, there is a level of knowledge transfer” (i14)
32

. An important innovation support is the

installed base – here referring to the development technical platform. It has already been observed that

developers use these tools for helping store and improve ideas. Installed base helps generative capacity by

lifting the level of programming abstraction: “I don’t know if you’ve used Visual Studio …… five years ago, we

were just writing C++ code in text editors. … you constantly having to track what file, where you go to find

what. … you don’t have to think about that anymore…...your mind is free to think about the object map of your

code rather than how it’s stored in files. … people who code think - I’m quite capable of managing all that in my

head, at the same time as coming up with innovative ideas - if your mind is free from that, then there’s the whole

portion of your brain that is free to think” (i12)
33

. Modern tools also facilitate experimentation: “one of the

supporting pillars is your source code control system….we’ve moved away from a centralized one to a

distributed one ……say we’re looking at an individual feature, maybe speculative, maybe experimental or

maybe just destabilizing and we don’t want it published back to the central place too soon ….. one spinoff

benefits is that effectively you’re always working in a branch…… a developer can break up the work into ten

chunks and they’re all unpublished or private until they say I’m done .….. then you’re not forcing the developer

to publish intermediate pieces of work……. a really commonplace tool changes the way you work” (i16)
34

.

27

 see P9, P13, P15
28

 see P4
29

 see P13
30

 see P14
31

 see P9, P13
32

 see P12, P14
33

 see P9
34

 see P13, P14

 19

5. ANALYSIS 2: ASSOCIATIONS BETWEEN INNOVATION DRIVERS AND

OUTPUTS IN THE SILICON FEN

Since drivers without sufficient empirical grounding are removed from the study, those that remain are, by

definition, associated with one or both of the two innovation outputs: product/service innovation and process

innovation. The purpose of this section is to unpack the more significant associations, which are later captured

as theoretical propositions in section 6.

Product/service innovation associations

Since companies’ future revenues are dependent on new (or updated) products and services, product/service

innovation serves as the end-goal for many different chains of reasoning (some of which are illustrated below).

Here is a typical example: “So the idea is that, working with a greater range of clients, that we'll start to generate

more ideas, which will feed back into software products, which we can then commercialize to generate more

sales, to create a virtuous circle, which will help this company grow” (i11). In the concept language of this

study, user involvement leads to generative capacity, which leads to product/service innovation; when

institutionalised this is a minor process innovation (the virtuous circle).

Process innovation associations

The study observes a recursive relationship between process innovation and product/service innovation. Since

process innovation in itself generates no new revenues in the software industry, it’s often undertaken to support

the capacity to innovate with products and services. However process innovation may itself be provoked by new

product development requirements. “We brought out our new generation of high definition boxes……that was

an opportunity for us to get rid of a lot of legacy code that is hard to maintain, and it was an opportunity to

review the infrastructure that we had and that we used to manage our software development …… …we adopted

agile development …. so we have been using Scrum for some time….we had a historic source control system

and build system that were a little inefficient….. so one of the things that we did as a part of our new product

development was to transition new development over to Git [source control software]. …….with that

infrastructure, that thing speeds up the process and the quality, so we get something out to market faster” (i14).

Here product/service innovation sparks a change to the development framework (agility, installed base), which

constitutes a process innovation, which has as its primary purpose speeding up product/service innovation.

Innovation leadership and innovation evaluation associations

Although leaders have a hand in ideation, the SMSE leaders interviewed in this study seldom saw themselves as

the source of inspiration, but as the moderator of creativity in their teams. Therefore the most significant

association for leadership is teamwork. Leaders are responsible for path creation for their teams: “a lot of what

we do is decided with conversations……..getting the right people in the room to thrash out what we are going to

do and having just enough presentation material and input to planning process that the people who are going to

focus more on that area are going to be able to pick that up and run with it” (i14). They are also responsible for

maintaining a creative work environment, for significant evaluative actions that primarily affect their teams

(such as project selection and process improvement decisions) and for generating finance for innovative projects.

Knowledge leverage associations

Three important associations for knowledge leverage are observed in the empirical material. Firstly, knowledge

leverage forms the background for innovation leadership, particularly path creation and evaluation. The

managers were good boundary spanners, and adept at absorbing a wider variety of external information. An

understanding of technology trajectories was particularly important for making product innovation choices.

Secondly knowledge leverage was a prerequisite for creative cognition, both for generative capacity (often in a

combinatorial style) and for ideation (developing the ideas): “it’s based on years of mathematical, scientific

knowledge and experience…. and sometimes it is the application of an idea from one field into another one”

 20

(i15). Lastly knowledge leverage (particularly market understandings and technology trajectories) aids software

design capability, both in terms of identifying new product concepts and features: “what’s innovative about this

software is more that it’s in a different space…it’s a space that’s quite new…. emerging…the world of transfer

switches has been mechanical …..something that uses software to make intelligent decisions is a big change.”

(i7).

Community and network associations

Community and network provides an important source for knowledge which can be trusted, so its principal

association is with knowledge leverage: “we have an idea as to where we want to go……. but then we want to

find out what everybody else is doing, where everybody else gone to, let’s learn from one another……people are

surprisingly open….. sharing” (i25)

User involvement associations

User involvement is associated (obviously) with better understanding of user domains, but also with better

creative cognition, in that conversations with users spark many ideas, and with productive experimentation and

prototyping, since users prove highly relevant feedback. In combination these also produce improved software

design capability.

Creative cognition associations

Creative cognition (producing and working with ideas) lies at the root of all innovation. In the study, generative

capacity and ideation showed a recursive association - they work together to strengthen creative cognition.

Generative capacity was associated with process innovation and strongly associated with product/service

innovation. Software engineers think in terms of software designs: “we started, just trying to think, probably

about three or four of us initially ….. coming up with a frame, an architecture and an overall design that would

meet the requirements we'd been given, but would also meet all the other requirements that we knew would exist

at some point from our experience” (i21), so we record a primary association between creative cognition and

software design capability. However creative cognition is also important for improving the development

framework: “we build tools for our own staff to use ….our staff in London use customized tools we build here”

(i2) and thus for process innovation.

Software design capability associations

Software design capability showed, as might be expected, a strong empirical relationship with product/service

innovation: “the building blocks of what we do are algorithms that …. are mainly released under open source

licenses………what we do is take these components and put those together, in new ways to build workflows that

support particular data processes and tasks” (i22)

Teamwork associations

The most developed teamwork association was in supporting creative cognition: “each month we have an

activity called the den, in which a number of people will evaluate the ideas …..if somebody's put in an

idea….people will then iterate around that idea and it could change direction or get optimized in a particular

way” (i4).

Development framework and innovation tools and techniques associations

A more complex set of associations surround the development framework. The configuration of the

development framework affects creative cognition, for example experimentation and prototyping support idea

development, especially if user involvement is possible, and tools from the installed base are often used to

record ideas – this is the closest that SMSEs normally come to dedicated innovation tools and techniques.

Agility supports teamwork, which in turn supports creative cognition. A well-configured development

framework is essential to software design capability, and most software process innovations are made up of

modifications to the development framework.

 21

6. SOFTWARE INNOVATION IN SMSEs: THEORY DEVELOPMENT

Overview concepts and primary associations

Figure 2 gives a simplified overview of significant innovation drivers and their relationship to outputs, which is

derived from the literature study, and supported by the interview findings.

Figure 2. Software innovation in SMSEs: drivers and outputs

The significant knowledge drivers for Silicon Fen SMSEs are user involvement, community and network and

knowledge leverage. Users and community are important sources of knowledge, and knowledge leverage

represents the process of exploiting knowledge for innovation. Knowledge informs both management and team

process. The primary management driver is innovation leadership, which is important in shaping the team

process. Significant team process drivers are teamwork, creative cognition, the development framework, and

software design capability. The team process is important in the framing both of innovative software products

and services, and innovations in its own software development process. The primary associations between

drivers and outputs can be describes as follows:

 Knowledge drivers inform (frame innovation sense making, provide evidential support for decision

making and creative inspiration) innovation management and the team process.

 Managerial drivers shape (provide overall guidance and direction for) the innovative team process

 Team process drivers frame (provide the work environment and cognitive framing for) software

innovation outputs.

Detailed model and exploratory theoretical propositions

In this section the overview model in Figure 2 is decomposed using the results of the qualitative analysis. Figure

3 shows all the significant concepts in their study with exploratory relationships drawn from the two analyses.

Concept and coding frequency analysis (analysis 1) determines the selection of concepts for the model. Coding

co-occurrence analysis (analysis 2) underpins the building of relational propositions.

software innovation
outputs

- product/service
- process

frame

inform

managerial drivers
- innovation leadership

team process drivers
- teamwork

- creative cognition
- development framework

- software design capability

knowledge drivers
- user involvement

- community and network
- knowledge leverage

shape

 22

Figure 3. Detailed model of software innovation in SMSEs indicating relational propositions

Table 2 recasts derived relationships between concepts as an exploratory proposition set for the model, with

explanations of the mechanisms underpinning the propositions and showing their analytical derivation.

 Proposition Mechanisms

P1 Interactions with community and network

improve knowledge leverage

Open source communities provide code which

facilitates software design capability, open innovation

stimulates creative cognition and innovative business

models

P2 User involvement improves user domain

understanding

Knowledge transfer

P3 User involvement improves creative cognition Users produce good ideas of their own (generative

capacity) and improve the quality of ideation

P4 User involvement improves the quality of

experimentation/prototyping

Users provide commercially-oriented feedback that is

otherwise difficult for developers to reproduce

P5 Knowledge leverage improves innovation

leadership

Provides the foundation for path creation and

evaluation

innovation leadership
- path creation

- work environment
- evaluation
- financing

community and network
- open source

- open innovation
user involvement

knowledge leverage:
absorptive capacity for

- user domains
- markets

- technology trajectories
- competitors

software product and
service innovation

teamwork
- shared understanding
- expertise integration

- team composition

software design
capability

- concept/feature set

development framework
- experimentation/prototyping

- agility
- installed base/creativity support tools

creative cognition
- generative capacity
- ideation expertise

software process
innovation

1
2

3

4

5

6

7
8

9
10

11

12

13

14

15

16

17

 23

P6 Innovation leadership improves teamwork Path creation and evaluation feed into the shared

understandings and expertise integration of the team,

contribute to its work environment and is the primary

inspiration for team composition

P7 Teamwork improves ideation expertise Incorporates complementary expertise and develops

shared understandings

P8 Knowledge leverage increases the quality of

creative cognition

Provides the inspiration for idea generation and the

evaluative context for ideation

P9 Creative cognition improves the development

framework

Provides effective ideas for orienting the development

framework towards the promotion of innovation

P10 Creative cognition increases software design

capability

Improving generative capacity and ideation provide

more innovative product designs

P11 Knowledge leverage promotes software design

capability

Provides the evidential and experiential base for

product design decisions

P12 Agility supports teamwork Supports shared understanding and expertise

integration

P13 The development framework can be organised

to support creative cognition

Experimentation/prototyping supports ideation

expertise, agility encourages iteration for prototyping

(as well as teamwork and interaction with users), the

installed base can be used as creativity tools to support

ideation

P14 A development framework including

experimentation/prototyping, agility and

installed base used to support ideation increases

innovative software design capability

These features combine to stimulate generative

capacity and productive ideation in software design

P15 Targeted improvements in the development

framework improve the capacity of the software

process to support innovation

Agility, experimentation/prototyping (including low-

tech prototyping) and installed base supporting ideation

and experimentation constitute process innovations

which promote innovation

P16 Innovation-directed capability in software

design supports software product and service

innovation

The ability to generate novel and useful software

concepts and feature sets drives product/service

innovation

P17 Targeted software process innovations increase

software product and service innovation

Innovation-directed process improvements (such as, but

not limited to, those mentioned in p14) can improve

product and service innovation.

Table 2. Integrated proposition set for software innovation in SMES

7. DISCUSSION

The empirical evidence supports the importance of knowledge leverage for innovation in SMES’s, and offers

qualified support for the importance of community and network and user involvement, especially as knowledge

 24

sources. Qualified support is also offered for the role of creative cognition, software design capability,

teamwork and the development framework. Innovation tools and techniques are not much used in our sample of

SMSEs (though we met one company that had recently installed a proprietary idea management system) and

neither was formal innovation evaluation. Some codes (customization, portfolio management, creativity

techniques, user-driven/lead user, user toolkits, conflict resolution, crowd sourcing, innovation tools &

techniques, creative requirements analysis) were little used and consequently dropped from the models. The

study shows minimal adoption of creativity techniques proposed by Couger et al. (1993) by SMSEs, perhaps

because of a lack of fit with engineering cultures; in any case our engineers preferred low-tech prototyping for

design ideation. There was no use of the workshop-based creative requirements gathering proposed by Maiden

et al. (2004) and others, and no real use of crowd-sourcing. The only kinds of user toolkits (Franke & Von

Hippel, 2003) in use were application programming interfaces (APIs) to open platforms. One new code emerged

as significant through open coding: finance (finding economic resources to support innovative projects or

changes).

The study supports the work of Carlo et al. (2011) in highlighting the role of knowledge leverage through

absorptive capacity, extending it to incremental innovation in SMSEs and categorising important knowledge

areas. These support the importance of market and technology knowledge (Brem & Voigt, 2009) for ideation,

and add some complimentary knowledge sources, particular user domains. The study reaffirms the contribution

of users and customers to software innovation (they provide both knowledge and ideas (Marcel Bogers et al.,

2010)) and suggests some mechanisms (absorptive capacity, ideation, prototyping) for how that contribution is

transformed into software features and products. There is evidence of the emergence of varied open innovation

strategies (Chesbrough, 2003) amongst SMSEs, though the majority of companies retain closed strategies and

intellectual property protection for the code they write themselves. Companies have relationships with open

source communities in several ways (Lee & Cole, 2003) and this promotes innovation (Von Hippel & Von

Krogh, 2003); however the mechanisms amongst SMSEs are more to do with innovation speed (through reusing

existing code) and alternative (open) business models than they are to do with community learning. The findings

are in agreement with Zmud (1983) that external information is important for innovation, and that internal

teamwork affects its utilisation, however we offer several mechanisms (experimentation, prototyping, ideation)

which explain how this happens. We focus on some different aspects of teamwork than Hoegl and Gemuenden

(2001), including expertise integration (Tiwana & McLean, 2005). The study supports the relationship between

teamwork and creative cognition theorised by Cooper (2000), adding an ideation perspective as the principal

operational mechanism. In common with Koc (2007) we focus on idea generation, and human resource (in

SMES’s this is organised through team composition) and cross-functional integration (in SMES’s usually taking

the more limited form of expertise integration within the team). We adapt the concept of generative capacity

(Avital & Te’eni, 2009a) for use in software development (which is useful as an antidote to a prevailing belief

that system requirements come perfectly formed from customers and users), by suggesting many moderating

factors and mechanisms. We could also have used their idea of generative fit to investigate how well

developers’ installed base promotes their creativity. The findings offer some empirical evidence of the role of

agile methods in innovation, as claimed by Highsmith and Cockburn (2001) and suggest some mechanisms for

its operation (supporting teamwork, shared understanding, underpinning experimentation through iteration). As

Carlo et al. (2011) argue, experimentation, primarily in the form of low-tech prototyping appears to be a key

element of innovation ideation. Finally, like Gumusluog and Ilsev (2009) we propose a role for innovation

leadership in SMSEs; however more in terms of path creation and providing a creative work environment than in

redefining process.

The fragmented literature on software innovation that forms the starting point for this study explicitly

accommodates neither the innovation characteristics of small and medium enterprises (such as behavioural

advantages, informality, openness, etc.) nor the special characteristics of software (malleability, low market

entry costs, negligible reproduction costs). These were the motivating reasons for the integration study. In the

 25

light of the study’s findings we may therefore identify the distinctive features of software innovation in SMSEs

as follows:

 They are more likely to focus on incremental innovation achieved by adapting, refining and combining

their own (often technical) software ideas with external ideas in a niche market

 They are thus dependent on much external knowledge possessed by customers, users, and their technical

communities – but they have informal processes and strategies for acquiring this knowledge

 They tend to encourage openness (sometimes through the open source movement) and various forms of

cooperation both to improve the acquisition of relevant knowledge and to bootstrap the innovation

process by providing extra resources (for example software libraries for open source projects)

 They rarely have specialist skills or processes for innovation but integrate innovation into the daily work

of software development in a seamless way

 The management of innovation is accomplished in a hands-on, informal way – managers are often

deeply involved in software development as designers, developers and software architects and guide

their teams through mutual engagement rather than deliberate strategies, hierarchical authority or formal

evaluation

 The team process exploits the malleability of software – it is usually flexible, iterative in nature (though

without necessarily formally adopting an agile method), and exploits the power of prototyping for

developing software. It is usually focused on design rather than extensive analysis.

 Ideation is often conducted away from the programming interface - in notes, sketches, conversations and

low tech prototypes

 SMSEs rarely engage with the innovation industry (whether innovation consultancy or academic

theories), but adapt their own engineering tools to support their innovation

8. CONCLUSIONS

SMSEs are significant contributors to national economies, and dependent on their capacity to innovate to survive

and grow. The innovation literature is extensive, and several researchers have investigated aspects of innovation

processes in the context of software development, leaving a fragmented literature in need of integration. We

focused on the smaller software firm, synthesized a set of drivers and outputs for software innovation from

literature that deals directly with software companies, and investigated it empirically through a study located in

the Silicon Fen. We found that the most significant innovation drivers were knowledge, innovation management

and the team process. Few of the innovation industry’s practices or the tools and techniques recommended in

the academic literature had found their way into practice in smaller companies. However companies are adept at

leveraging knowledge from their surroundings, adapting the engineering tools that they work with to support

iterative ideation and experimentation in teams, and transferring those ideas into code and accompanying

business models. These abilities are complemented by a focus on improving their development process – also a

form of innovation. Patterns revealed in the dataset underpin overview and detailed models of SMSE

innovation, and the accompanying set of exploratory propositions. The principal contributions of the article,

therefore, are to provide an integrated account of organisational drivers for software innovation in smaller

companies, and a set of propositions with both theoretical and empirical grounding. These contributions can

serve to focus future research initiatives in an evolving research area. Further contributions add to developing

understandings in the supporting literature in the ways described in the discussion section.

Some significant limitations of this exploratory study should also be noted. The internal validity of the study

may be limited by the sample size and selection method, and more extensive data collection is required. The

study reflects the perceptions of appropriate research subjects with dual strategic and development roles, and a

broader selection of respondents might influence its outcomes. The study’s external validity and generalizability

may be affected by particular characteristics of high tech clusters such as the Silicon Fen. This means that the

importance of the knowledge and networking factors in SMSEs’ innovation noted in this study may not be

 26

generalizable to companies working outside the high tech cluster environments. Although the study exposes

generalities in the way Silicon Fen SMSEs innovate, individual companies obviously differ considerably; an

interesting research question for future research is whether different types of companies (for instance pure

consultancy companies, and own-product companies) deploy different combinations of drivers to marshal

innovation. The exploratory nature of the study also limits its application by practitioners; however a good

descriptive theory of how SMSEs organise innovation (to which this study contributes) is clearly a precursor for

normative theories, and a pre-requisite for sound prescriptive advice for developers and managers.

ACKNOWLEDGEMENTS

This research work is supported by the Danish Research Council: grant no. 12-133180. Many thanks to the

interviewees and the participating companies.

REFERENCES

Aaen, I. (2008). Essence: facilitating software innovation. European Journal of Information Systems, 17(5),

543–553.

Aaen, I., & Rose, J. (2011). A Software Entrepreneurship Course Between Two Paradigms. In 15th Annual

Interdisciplinary Entrepreneurship Conference. St. Gallen and Zurich.

Adams, M. E., Day, G. S., & Dougherty, D. (1998). Enhancing new product development performance: An

organizational learning perspective. Journal of Product Innovation Management, 15(5), 403–422.

Aerts, A. T. M., Goossenaerts, J. B. M., Hammer, D. K., & Wortmann, J. C. (2004). Architectures in context: on

the evolution of business, application software, and ICT platform architectures. Information &

Management, 41(6), 781–794.

Amoroso, D. L., & Couger, J. D. (1995). Developing Information Systems with Creativity Techniques: An

Exploratory Study. In Proceedings of the 28th Annual Hawaii International Conference on System

Sciences (pp. 720–728).

April, A., & Busse, D. K. (2007). Fast-tracking Product Innovation. In CHI ’07 Extended Abstracts on Human

Factors in Computing (pp. 1703–1708).

Athaide, G. A., Meyers, P. W., & Wilemon, D. L. (1996). Seller-buyer interactions during the commercialization

of technological process innovations. Journal of Product Innovation Management, 13(5), 406–421.

Avital, M., & Te’eni, D. (2009). From generative fit to generative capacity: exploring an emerging dimension of

information systems design and task performance. Information Systems Journal, 19(4), 345–367.

Berelson, B. (1952). Content analysis in communicative research. New York: Free Press.

Bogers, M., Afuah, a., & Bastian, B. (2010). Users as Innovators: A Review, Critique, and Future Research

Directions. Journal of Management, 36(4), 857–875.

Boland Jr., R. J., Lyytinen, K., & Yoo, Y. (2007). Wakes of innovation in project networks: the case of digital

3-D representations in architecture, engineering, and construction. Organization Science, 18(4), 631–647.

Brem, A., & Voigt, K.-I. (2009). Integration of market pull and technology push in the corporate front end and

innovation management-Insights from the German software industry. Technovation, 29(5), 351–367.

Briggs, R. O., & Reinig, B. A. (2010). Bounded Ideation Theory. Journal of Management Information Systems,

27(1), 123–144.

Carayannis, E., & Coleman, J. (2005). Creative system design methodologies: the case of complex technical

systems. Technovation, 25(8), 831–840.

Carlo, J., Lyytinen, K., & Rose, G. (2011). A knowledge-based model of radical innovation in small software

firms. MIS Quarterly, 36(3), 865–895.

Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and profiting from technology.

Boston, MA.: Harvard Business School Publishing.

 27

Compeau, D. R., Meister, D. B., & Higgins, C. A. (2007). From prediction to explanation: Reconceptualizing

and extending the Perceived Characteristics of Innovating. Journal of the Association for Information

Systems, 8(8), 409–439.

Cooper, R. B. (2000). Information technology development creativity: A case study of attempted radical change.

MIS Quarterly, 24(2), 245–276.

Cooper, R. G. (2011). Perspective: The Innovation Dilemma: How to Innovate When the Market Is Mature.

Journal of Product Innovation Management, 28, 2–27.

Couger, J., Higgins, L., & McIntyre, S. C. (1993). (Un)structured creativity in information systems

organizations. MIS Quarterly, 17(4), 375–397.

De Jong, J. P. J., & von Hippel, E. (2009). Transfers of user process innovations to process equipment producers:

A study of Dutch high-tech firms. Research Policy, 38(7), 1181–1191.

Doel, C. (2011). Cambridge Cluster at 50; The Cambridge economy, retrospect and prospect. Cambridge.

doi:http://www.stjohns.co.uk/wp-content/uploads/2011/04/Cambridge-cluster-report-FINAL-210311.pdf

Florida, R., & Goodnight, J. (2005). Managing for creativity. Harvard Business Review, 83(7), 124–131.

Franke, N., & Von Hippel, E. (2003). Satisfying heterogeneous user needs via innovation toolkits: the case of

Apache security software. Research Policy, 32(7), 1199–1215.

Gassmann, O., Sandmeier, P., & Wecht, C. H. (2006). Extreme customer innovation in the front-end: learning

from a new software paradigm. International Journal of Technology Management, 33(1), 46–66.

Gray, P. H., Parise, S., & Iyer, B. (2011). Innovation Impacts of Using Social Bookmarking Systems. MIS

Quarterly, 35(3), 629–643.

Gumusluog, L., & Ilsev, A. (2009). Transformational Leadership and Organizational Innovation: The Roles of

Internal and External Support for Innovation. Journal of Product Innovation Management, 26(3), 264–

277.

Hanninen, S. (2007). The “perfect technology syndrome”: sources, consequences and solutions. International

Journal of Technology Management, 39(1-2), 20–32.

Heirman, A., & Clarysse, B. (2007). Which tangible and intangible assets matter for innovation speed in start-

ups? Journal of Product Innovation Management, 24(4), 303–315.

Henkel, J. (2006). Selective revealing in open innovation processes: The case of embedded Linux. Research

Policy, 35(7), 953–969

Hesmer, A., Hribernik, K. A., Hauge, J. M. B., & Thoben, K. D. (2011). Supporting the ideation processes by a

collaborative online based toolset. International Journal of Technology Management, 55(3-4), 218–225.

Higgins, L. F. (1996). A Comparison of Scales for Assessing Personal Creativity in IS. In Proceedings of the

Twenty-Ninth Hawaii International Conference on System Sciences (pp. 13–19). Hawaii: IEEE.

Highsmith, J., & Cockburn, A. (2001). Agile software development: the business of innovation. Computer,

34(9), 120–127.

Hocova, P., E Cunha, J. F., & Staníček, Z. (2009). Design and management of an innovative software enterprise:

A case study of a spin-off from University. In D. F. Kocaoglu, T. R. Anderson, T. U. Daim, A. Jetter, &

C. M. Weber (Eds.), PICMET 2009. Portland International Conference on Management of Engineering &

Technology (pp. 2704–2713).

Hoegl, M., & Gemuenden, H. (2001). Teamwork quality and the success of innovative projects: A theoretical

concept and empirical evidence. Organization Science, 12(4), 435–449.

Hoegl, M., & Proserpio, L. (2004). Team member proximity and teamwork in innovative projects. Research

Policy, 33(8), 1153–1165.

Holmquist, L. (2004). User-driven innovation in the future applications lab. In CHI EA ’04 CHI '04 Extended

Abstracts on Human Factors in Computing Systems (pp. 1091–1092).

Hung, S.-C., & Whittington, R. (2011). Agency in national innovation systems: Institutional entrepreneurship

and the professionalization of Taiwanese IT. Research Policy, 40(4), 526–538.

Igira, F. T. (2008). The situatedness of work practices and organizational culture: implications for information

systems innovation uptake. Journal of Information Technology, 23(2), 79–88.

 28

Jansen, H. (2010). The Logic of Qualitative Survey Research and Its Position in the Field of Social Research

Methods. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, 11(2).

Jenkins, A. M. (1985). Research Methodologies and MIS Research. In E. Mumford (Ed.), Research Methods in

Information Systems. Amsterdam, Holland: Elsevier Science Publishers B.V.

Koc, T. (2007). Organizational determinants of innovation capacity in software companies. Computers &

Industrial Engineering, 53(3), 373–385.

Koepp, R. (2003). Clusters of creativity: enduring lessons on innovation and entrepreneurship from Silicon

Valley and Europe’s Silicon Fen. Chichester: John Wiley & Sons.

Krippendorff, K. H. (2004). Content Analysis: An Introduction to Its Methodology. Thousand Oaks, CA: Sage

Publications Ltd.

Kristensson, P., Magnusson, P. R., & Matthing, J. (2002). Users as a Hidden Resource for Creativity: Findings

from an Experimental Study on User Involvement. Creativity and Innovation Management, 11(1), 55–61.

Lamastra, C. R. (2009). Software innovativeness. A comparison between proprietary and Free/Open Source

solutions offered by Italian SMEs. R&D Management, 39(2), 153–169.

Lee, G. K., & Cole, R. E. (2003). From a firm-based to a community-based model of knowledge creation: The

case of the Linux kernel development. Organization Science, 14(6), 633–649.

Leimeister, J. M., Huber, M., Bretschneider, U., & Krcmar, H. (2009). Leveraging Crowdsourcing: Activation-

Supporting Components for IT-Based Ideas Competition. Journal of Management Information Systems,

26(1), 197–224.

Leonardi, P. M. (2011). Innovation Blindness: Culture, Frames, and Cross-Boundary Problem Construction in

the Development of New Technology Concepts. Organization Science, 22(2), 347–369.

Lippoldt, D. & Stryszowskli, P. (2009). Innovation in the Software Sector. OECD.

Lobert, B., & Dologite, D. G. (1994). Measuring creativity of information system ideas: an exploratory

investigation. In Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences

(pp. 392–402).

Love, J. H., & Roper, S. (2015). SME innovation, exporting and growth: A review of existing evidence.

International Small Business Journal, 33(1), 28–48.

Lu, I.-Y., & Wang, C.-H. (2007). Technology innovation and knowledge management in the high-tech industry.

International Journal of Technology Management, 39(1-2), 3–19.

Lyytinen, K., & Rose, G. (2003). The disruptive nature of information technology innovations: the case of

internet computing in systems development organizations. MIS Quarterly, 27(4), 557–596.

Maccrimmon, K. R., & Wagner, C. (1994). Stimulating ideas through creativity software. Management Science,

40(11), 1514–1532.

Maiden, N., Gizikis, A., & Robertson, S. (2004). Provoking creativity: Imagine what your requirements could be

like. Ieee Software, 21(5), 68–75.

Maiden, N., Manning, S., Robertson, S., & Greenwood, J. (2004). Integrating creativity workshops into

structured requirements processes. In DIS ’04 Proceedings of the 5th conference on Designing interactive

systems: processes, practices, methods, and techniques (pp. 113–122).

Martin, R. L. (2011). The Innovation Catalysts. Harvard Business Review, 89(6), 82–87.

Massetti, B. (1996). An empirical examination of the value of creativity support systems on idea generation. MIS

Quarterly, 20(1), 83–97.

McLean, E. R., & Smits, S. J. (1993). The I/S leader as `innovator’. In Proceeding of the Twenty-Sixth Hawaii

International Conference on System Sciences (pp. 352–358).

Mich, L., Berry, D. M., & Anesi, C., (2005). Applying a pragmatics-based creativity-fostering technique to

requirements elicitation. Requirements Engineering, 10(4), 262–275.

Morrison, P. D., Roberts, J. H., & von Hippel, E. (2000). Determinants of User Innovation and Innovation

Sharing in a Local Market. Management Science, 46(12), 1513–1527.

Müller, S. D., & Ulrich, F. (2012). Creativity and Information Systems in a Hypercompetitive Environment : A

Literature Review. Communications of the Association for Information Systems, 32, 175-201.

 29

Nambisan, S., Agarwal, R., & Tanniru, M. (1999). Organizational mechanisms for enhancing user innovation in

information technology. MIS Quarterly, 23(3), 365–395.

Napier, N. P., Mathiassen, L., & Robey, D. (2011). Building contextual ambidexterity in a software company to

improve firm-level coordination. European Journal of Information Systems, 20(6), 674–690.

Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization Science, 5, 14–37.

Oakey, R. (2012). High-Technology Entrepreneurship. London: Routledge.

Ojala, A., & Tyrväinen, P. (2006). Business models and market entry mode choice of small software firms.

Journal of International Entrepreneurship, 4(2), 69–81.

Oliveira, P., & Von Hippel, E. (2011). Users as service innovators: The case of banking services. Research

Policy, 40(6), 806–818.

Pikkarainen, M., Codenie, W., Boucart, N., & Alvaro, J. A. H. (eds). (2011). The Art of Software Innovation:

Eight Practice Areas to Inspire your Business. Berlin, Heidelberg: Springer.

Pisano, G. P., & Verganti, R. (2008). Which Kind of Collaboration Is Right for You? Harvard Business Review,

86(12), 76–8.

Quintas, P. (1994). A product-process model of innovation in software-development. Journal of Information

Technology, 9(1), 3–17.

Raasch, C. (2011). The sticks and carrots of integrating users into product development. International Journal of

Technology Management, 56(1), 21–39.

Raffa, M., & Zollo, G. (1994). SOURCES OF INNOVATION AND PROFESSIONALS IN SMALL

INNOVATIVE FIRMS. International Journal of Technology Management, 9(3-4), 481–496.

Roberts, E. B. (1988). Managing invention and innovation. Research Technology Management, 31(1), 11–27.

Romijn, H., & Albaladejo, M. (2002). Determinants of innovation capability in small electronics and software

firms in southeast England. Research Policy, 31(7), 1053–1067.

Rose, J. (2010). Software Innovation - Eight work-style heuristics for creative system developers. Aalborg

University, Aalborg: Software Innovation.

Santanen, E. L., Briggs, R. O., & De Vreede, G. J. (2004). Causal relationships in creative problem solving:

Comparing facilitation interventions for ideation. Journal of Management Information Systems, 20(4),

167–197.

Sas, C., & Zhang, C. (2010). Investigating emotions in creative design. In DESIRE ’10: Proceedings of the 1st

DESIRE Network Conference on Creativity and Innovation in Design (pp. 138–149).

Sherif, K., Zmud, R. W., & Browne, G. J. (2006). Managing peer-to-peer conflicts in disruptive information

technology innovations: The case of software reuse. MIS Quarterly, 30(2), 339–356.

Shneiderman, B. (2007). Creativity support tools: Accelerating discovery and innovation. Communications of the

ACM, 50(12), 20–32.

Shneiderman, B. (2000). Creating Creativity: User Interfaces for Supporting Innovation. ACM Transactions on

Computer-Human Interaction (TOCHI), 7(1), 114–138.

Silverman, D. (2001). Interpreting qualitative data. London: SAGE Publications Ltd.

Snow, C. C., Fjeldstad, O. D., Lettl, C., & Miles, R. E. (2011). Organizing Continuous Product Development and

Commercialization: The Collaborative Community of Firms Model. Journal of Product Innovation

Management, 28(1), 3–16.

Sosa, M. E. (2011). Where Do Creative Interactions Come From? The Role of Tie Content and Social Networks.

Organization Science, 22(1), 1–21.

Supyuenyong, V., Islam, N., & Kulkarni, U. (2009). Influence of SME characteristics on knowledge

management processes. Journal of Enterprise Information Management, 22(1/2), 63–80.

Thomke, S. (2001). Enlightened experimentation - The new imperative for innovation. Harvard Business

Review, 79(2), 66–75.

Tiwana, A., & McLean, E. R. (2005). Expertise integration and creativity in information systems development.

Journal of Management Information Systems, 22(1), 13–43.

 30

Tjornehoj, G., & Mathiassen, L. (2010). Improvisation during process-technology adoption: a longitudinal study

of a software firm. Journal of Information Technology, 25(1), 20–34.

Trott, P. (1998). Innovation management and new product development. Harlow: Pearson.

Turner, S. F., Mitchell, W., & Bettis, R. A. (2010). Responding to Rivals and Complements: How Market

Concentration Shapes Generational Product Innovation Strategy. Organization Science, 21(4), 854–872.

doi:10.1287/orsc.1090.0486

Van den Ende, J., & Wijnberg, N. (2003). The organization of innovation and market dynamics: Managing

increasing returns in software firms. IEEE Transactions on Engineering Management, 50(3), 374–382.

Von Hippel, E., & Von Krogh, G. (2003). Open Source Software and the “Private-Collective” Innovation

Model: Issues for Organization Science. Organization Science, 14(2), 209–224.

Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, joining, and specialization in open source

software innovation: a case study. Research Policy, 32(7), 1217–1241.

West, J., & Gallagher, S. (2006). Challenges of open innovation: the paradox of firm investment in open-source

software. R & D Management, 36(3), 319–331.

Weterings, A., & Boschma, R. (2009). Does spatial proximity to customers matter for innovative performance?

Evidence from the Dutch software sector. Research Policy, 38(5), 746–755.

Weterings, A., & Koster, S. (2007). Inheriting knowledge and sustaining relationships: What stimulates the

innovative performance of small software firms in the Netherlands? Research Policy, 36(3), 320–335.

Wilkinson, S. (1997). Focus group research. In D. Silverman (Ed.), Qualitative research: Theory, method and

practice. London: Sage Publications Ltd.

Wong, K. Y., & Aspinwall, E. (2004). Characterizing knowledge management in the small business

environment. Journal of Knowledge Management, 8(3), 44–61.

Yang, H.-L., & Hsiao, S.-L. (2009). Mechanisms of developing innovative IT-enabled services: A case study of

Taiwanese healthcare service. Technovation, 29(5), 327–337.

Zmud, R. (1983). The effectiveness of external information channels in facilitating innovation within software

development groups. MIS Quarterly, 7(2), 43–59.

 31

Appendix 1. List of participating companies and interviewees

Amino Communications http://www.aminocom.com/ Paul Fellows, Gareth Crocker

ARK CLS Ltd http://www.arkcls.com/

Adrian Bennetton, Tony Benn, John

Watson

ArtVPS Ltd http://www.artvps.com/ Matthew Bentham

Cambridge Cognition http://www.camcog.com Ricky Dolphin

Digital Locksmiths Ltd.

http://www.digitallocksmiths.com/i

ndex.html Sean Kelly

Eagle Genomics Ltd. http://www.eaglegenomics.com/ William Spooner, Glenn Proctor

LeoTel Software Systems

Limited http://www.leotel-software.co.uk

James Bridson, Justine Jackson,

Jonathan Reichert

Linguamatics Ltd

http://www.linguamatics.com/index

.html Jason Trenouth

McMillan Technology www.mcmillantech.co.uk John McMillan

Metail Ltd http://www.metail.com/ Jim Downing

NationSoft http://nationsoft.co.uk/ Ivar Jenssen

OpenDCU http://opendcu.org Kim Spence-Jones

PARIS Transport Management

Solutions

http://www.paris-

tms.com/home.htm Darren Shaw

Plextek Ltd http://www.plextek.com/ Jon Lewis

Product Technology Partners

Ltd http://www.ptpart.co.uk/ Kevin Snelling

Sentec Ltd http://www.sentec.co.uk/ Katie Smith

Speedwell http://www.speedwell.co.uk/ David Yeneralski

Synthetix Ltd

http://www.synthetix.com/index.ph

p Peter McKean

TriSys Business Software http://www.trisys.co.uk/ Garry Lowther

http://www.aminocom.com/
http://www.arkcls.com/
http://www.artvps.com/
http://www.camcog.com/
http://www.digitallocksmiths.com/index.html
http://www.digitallocksmiths.com/index.html
mailto:http://www.eaglegenomics.com/
http://www.leotel-software.co.uk/
http://www.linguamatics.com/index.html
http://www.linguamatics.com/index.html
http://www.mcmillantech.co.uk/
http://www.metail.com/
http://nationsoft.co.uk/
http://www.paris-tms.com/home.htm
http://www.paris-tms.com/home.htm
http://www.plextek.com/
http://www.ptpart.co.uk/
http://www.sentec.co.uk/
http://www.speedwell.co.uk/
http://www.synthetix.com/index.php
http://www.synthetix.com/index.php
http://www.trisys.co.uk/

 32

Appendix 2. List of in-depth interviews

No. Date Role

1 20/03/2013 Chief Executive Officer

2 21/03/2013 Chief Technical Officer

3 26/03/2013 Technical Director

4 27/03/2013 Chief Innovation Officer

5 02/04/2013 Senior Consultant

6 04/04/2013 Programme Director

7 05/04/2013 Director

8 08/04/2013 Operations Director

9 17/04/2013 Chief Executive Officer

10 19/04/2013 Systems Manager

11 22/04/2013 senior developer

12 22/04/2013 senior developer

13 22/04/2013 Managing Director

14 30/04/2013

Head of Product

Development

15 30/04/2013 Chief Technical Officer

16 07/05/2013 Chief Technical Officer

17 22/05/2013 Chief Executive Officer

18 23/05/2013 Managing Director

19 31/05/2013 senior developer

20 31/05/2013 senior developer

21 31/05/2013

Director and Technical

Lead

22 14/06/2013 Chief Technical Officer

23 14/06/2013 senior developer

24 17/06/2013 Head of Software

25 02/07/2013 Chief Technical Officer

 33

Appendix 3. Interview protocol

Interview protocol

Introduce self

Explain:

 Purpose and organization of project, expectations and benefits, eventual outcomes

 Interview will be recorded and later transcribed, material may be used in research articles but will not be

attributed to individuals or companies without your permission.

 Semi-structured interview around a pre-determined list of topics, room for interpretation and divergence,

not an administered questionnaire, length

Ask:

interviewee’s name, contact details and role, general details about the software operation: what they build and

how

Explain:

types of software innovation: process, product/service

Ask:

Can you offer some examples of innovation that you’ve been involved with? Tell us a story, develop a narrative.

Question areas (as presented to interviewees):

 Knowledge Leverage: gaining and exploiting knowledge about technologies, markets competitors, and

users and integrating and deploying that knowledge in development projects

 Development Framework: the governing frameworks for ways of working with innovative

development projects for example with methods, agility, creative requirements gathering or prototyping

 Supporting Tools & Techniques: aimed at underpinning innovation and creativity – creativity

techniques, software tools, user toolkits

 Creative cognition: the psychology of individual creativity in software design and how it is enhanced –

idea generation and selection

 Teamwork: the structure and performance of an innovative team – how it is supported and developed

 Community and Network: links with outsides collaborators and partners, open innovation, working

with open source and crowd sourcing 

 Innovation Leadership: creating and sustain and innovation climate, choosing directions and focus and

managing portfolios of projects, conflict resolution

 Software Design Capability: developing concepts and feature sets for new products

 User Involvement:   involvement of users in design and development, customization, user-driven

innovation

 Infrastructure/Installed Base: influence of already installed software and hardware, existing

ecosystem

 Innovation Evaluation: assessing innovation and creativity

Explore other important innovation factors not already discussed.

 34

Appendix 4. Coding steps for reliability

Table 3: Coding steps

Step Activity Actor(s) Outcomes

Coding scheme

development

Concepts from the theoretical

model articulated as Dedoose

codes and sub-codes

Coders 1,2,3, Coding scheme

Pilot coding Three interviews from the same

company coded from the initial

codes and sub-codes

Coders 1,2,3, working

synchronously and discussing

evolving scheme over Skype

Coding scheme

revised

Evaluation of the

pilot study

The pilot study was evaluated to

ensure coding reliability

Coders 1, 2 Refined coding

scheme and

interview coding

Coding of the

remaining dataset

Remaining interviews coded

using the coding scheme

Coders 1,2,4 All interviews

coded

Evaluation of the

coded dataset

Complete coding evaluated Coders 2,4 Reliably coded

dataset

 35

Appendix 5. Coding frequency (>20 codings) organized in order of coding frequency

italics = code introduced during open coding

User Involvement 101

User Domain Understanding 78

Community and Network 75

Market Understanding 72

Technology Trajectory Understanding 66

Installed base 64

Experimentation/Prototyping 60

Generative Capacity 58

Ideation Expertise 44

Feature Set 44

Absorptive Capacity 42

Shared Understanding 41

Knowledge Leverage 40

finance 37

Innovation Leadership 36

Open Source 36

Expertise Integration 36

Concept 33

Path Creation 32

Teamwork 32

Development Framework 32

Creative cognition 30

Innovation Evaluation 29

Work Environment 28

Agility 27

Competitor Understanding 26

Creativity Support Tools 25

Software Design Capability 24

Team Composition 23

Open Innovation 22

 36

Appendix 6. Distribution of codings for top-level codes

0
50

100
150
200
250
300
350

Innovation

Leadership

Innovation

Evaluation

Knowledge

Leverage

Community and

Network

User

Involvement

Creative

cognition

Software Design

Capability

Teamwork

Innovation

Tools &

Techniques

Development

Framework

codings

 37

Appendix 7. Significant code co-occurrences (n>20) signalling possible associations between concepts

code related code no. of co-

occurrences

explanation related

propositions

evidence

sources

Product/Service

Innovation

User Domain Understanding 44 User Domain Understanding

improves software design

capability (14 co-occurrences),

leads to P/S innovation

P11, P16 i24, i22,

i21, i17,

i18, i11,

i16, i5,

i8, i2,

i11

Product/Service

Innovation

User Involvement 34 User involvement promotes

user domain understanding,

stimulates creative cognition

(23 co-occurrences), increases

learning through prototyping

(18 co-occurrences), thus

leading to improved software

design capability (11 co-

occurrences), and leads to P/S

innovation

P2, P3, P4,

P16

i24, i11,

i23, i22,

i21, i17,

i18, i5,

i9, i7, i1,

i3, i10,

i11, i12

Product/Service

Innovation

Market Understanding

32 Market understanding

improves software design

capability (9 co-occurrences)

leads to P/S innovation

P11, P16 i24, i17,

i18, i16,

i5, i7, i4,

i13, i11

Product/Service

Innovation

Concept 30 Software design capability

(concept/feature) improves

P/S innovation

P16 i24, i22,

i21, i18,

i5, i14,

i9, i7, i1,

i3, i4,

i11, i8,

i12, i13

Product/Service

Innovation

Feature Set 28 Software design capability

(concept/feature) improves

P/S innovation

P16 i24, i22,

i21, i18,

i5, i14,

i9, i7, i1,

i3, i4,

i11, i8,

i12, i13

Product/Service

Innovation

Technology Trajectory

Understanding

28 Technology Trajectory

Understanding, mediated,

improves software design

capability (11 co-occurrences),

leads to P/S innovation

P11, P16 i24, i22,

i21, i17,

i16, i1,

i3, i4,

i11, i13

Process

Innovation

Product/Service Innovation 24 Process innovation is often a

driver for product and service

innovation, occasionally

necessary as a result of them

P17 i11, i6,

i23, i22,

i16, i14,

i9, i3, i2,

i4, i11

Product/Service

Innovation

Experimentation/Prototyping 30 Experimentation/Prototyping

improves ideation expertise

(11 co-occurrences) and

software design capability,

leading to P/S innovation

P13, P16 i24, i22,

i20, i17,

i18, i16,

i5, i1, i3,

i2, i4

 38

Product/Service

Innovation

Generative Capacity 23 Generative capacity improves

software design capability and

thus P/S innovation

P10, P16 i11, i21,

i16, i15,

i5, i14,

i6, i10,

i11, i13,

Generative

Capacity

Ideation Expertise 22 Generative capacity is

supported by the ideation

expertise through teamwork

(17 co-occurrences) in a

recursive process which

improves the quality of

creative cognition

P7 i21, i16,

i5, i8, i3,

i10, i4,

i12

