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We study the direct calculation of total energy derivatives for lattice dynamics and electron-
phonon coupling calculations using supercell matrices with non-zero off-diagonal elements. We
show that it is possible to determine the response of a periodic system to a perturbation character-
ized by a wave vector with reduced fractional coordinates (m1/n1,m2/n2,m3/n3) using a supercell
containing a number of primitive cells equal to the least common multiple of n1, n2, and n3. If only
diagonal supercell matrices are used, a supercell containing n1n2n3 primitive cells is required. We
demonstrate that the use of non-diagonal supercells significantly reduces the computational cost of
obtaining converged zero-point energies and phonon dispersions for diamond and graphite. We also
perform electron-phonon coupling calculations using the direct method to sample the vibrational
Brillouin zone with grids of unprecedented size, which enables us to investigate the convergence of
the zero-point renormalization to the thermal and optical band gaps of diamond.
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I. INTRODUCTION

The experimental study of condensed matter usually
involves measuring the response of a system to some ex-
ternal perturbation. Many properties of materials can be
studied theoretically by the calculation of derivatives of
the total energy with respect to applied perturbations,
such as force constants, elastic constants, Born effec-
tive charges, and piezoelectric constants1. First princi-
ples methods have been successfully used to study the
response of a wide range of systems to a variety of per-
turbations2–7, complementing or explaining experimental
discoveries, and predicting novel properties and behavior.

The response of periodic systems to perturbations
characterized by a wave vector can be calculated using
the direct method8,9 or perturbative methods10–12. The
direct method relies on freezing a perturbation into the
system and calculating the total energy derivatives us-
ing a finite difference approach. The result is a trans-
parent formalism, but only perturbations commensurate
with the simulation cell can be calculated exactly. This
presents some difficulties, for example, quantities derived
from electron-phonon coupling matrix elements require a
fine sampling of the vibrational Brillouin zone (BZ)13,14

and converged results are typically not obtainable using
simulation cells of tractable sizes. Perturbative meth-
ods can access perturbations at an arbitrary wave vec-
tor using a single primitive cell, and therefore have been
the method of choice for the vast majority of calcula-
tions, from phonon dispersions11 and electron-phonon
coupling15 to spin fluctuations16.

The simplicity of the direct method means that it typ-
ically plays a central role in early calculations in a given
area. For example, it was used in the first phonon cal-
culations for materials beyond sp-bonded metals17, and
the only available electron-phonon coupling calculations

using many-body perturbation theory rely on this ap-
proach18–22. The direct method is also readily extendable
to situations where large distortions are required, as the
energy is found at all orders. It is therefore desirable to
reduce the computational cost and consequently extend
the range of applicability of the direct method.

In this paper, we prove that in order to calculate
the response of a periodic system to a perturbation
at a wave vector with reduced fractional coordinates
(m1/n1,m2/n2,m3/n3), it is only necessary to consider
a supercell containing a number of primitive cells equal
to the least common multiple (LCM) of n1, n2, and n3.
This is accomplished by utilizing supercell matrices con-
taining non-zero off-diagonal elements. For example, the
sampling of the vibrational BZ with a uniform grid of
size N×N×N can be accomplished with supercells con-
taining at most N primitive cells. In contrast, the size
of the largest supercell that may need to be considered
scales cubically with the linear size of the BZ grid when
only using diagonal supercell matrices.

We find that the use of non-diagonal supercell matrices
reduces the computational cost of obtaining converged
zero-point energies and phonon dispersions for diamond
and graphite by over an order of magnitude. It also en-
ables us to perform electron-phonon coupling calculations
using the direct method with BZ grids of unprecedented
size. In particular, we investigate the convergence with
respect to the number of points used to sample the vibra-
tional BZ of the zero-point renormalization to the ther-
mal and optical band gaps of diamond, a problem that
has previously been considered challenging for the di-
rect approach due to the prohibitive computational cost
of using simulation cells containing sufficient numbers of
primitive cells.

The paper is organized as follows: We introduce the
use of non-diagonal supercell matrices to access pertur-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77409953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

bations at a given wave vector in Sec. II. We describe
the computational details of our calculations in Sec. III.
We illustrate the utility of our approach in the context of
first principles lattice dynamics in Sec. IV and in relation
to electron-phonon coupling calculations in Sec. V. Our
conclusions are drawn in Sec. VI.

II. SUPERCELLS AND K-POINT SAMPLING

A. Supercell matrices

A simulation cell that contains multiple primitive cells
of a given crystal lattice is known as a supercell and is it-
self the unit cell of a superlattice, whose basis vectors are
constructed by taking linear combinations of the primi-
tive lattice basis vectors with integer coefficients23. This
can be expressed algebraically asas1

as2
as3

 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

ap1

ap2

ap3

 , (1)

where asi are the superlattice basis vectors, api
are the

primitive lattice basis vectors, and Sij ∈ Z. The super-
cell contains |S| primitive cells and we refer to the matrix
S as the supercell matrix. For the purposes of brevity, we
shall henceforth refer to supercells generated by diagonal
supercell matrices as diagonal supercells and those gener-
ated by non-diagonal supercell matrices as non-diagonal
supercells.

The set of wave vectors that describe plane waves with
the same periodicity as the primitive lattice define the
reciprocal primitive lattice with basis vectorsbp1

bp2

bp3

 = 2π

ap1

ap2

ap3

−T , (2)

and the set of wave vectors that describe plane waves
with the same periodicity as the superlattice define the
reciprocal superlattice with basis vectorsbs1

bs2

bs3

 =

S̄11 S̄12 S̄13

S̄21 S̄22 S̄23

S̄31 S̄32 S̄33

bp1

bp2

bp3

 , (3)

where S̄ij = (S−1)ji. An arbitrary k-point can be ex-
pressed in terms of both the reciprocal primitive lattice
basis vectors and reciprocal superlattice basis vectors,
and these fractional coordinates are related byks1ks2

ks3

 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

kp1

kp2

kp3

 . (4)

If the reciprocal superlattice fractional coordinates are all
integers, perturbations characterized by the wave vector

k are commensurate with the supercell generated by S.
There are a finite number of unique superlattices whose

supercells contain a given number of primitive cells, but
there are an infinite number of sets of basis vectors that
can be used to describe each superlattice. Two different
supercell matrices S and S′ generate different bases for
the same superlattice if S′ can be reduced to S by ele-
mentary unimodular row operations24, which consist of
the following:

• Adding an integer multiple of one row of the matrix
to another row.

• Interchanging two rows of the matrix.

• Multiplying a row of the matrix by −1.

The canonical form for such operations is the upper-
triangular Hermite normal form (HNF):S11 S12 S13

0 S22 S23

0 0 S33

 , (5)

with 0 ≤ S12 < S22 and 0 ≤ S13, S23 < S33. This means
that all inequivalent supercell matrices can be written
in the form given by Eq. (5). Note that the product
S11S22S33 fixes the determinant |S| and therefore the
number of primitive cells contained within the supercell.

B. Commensurate supercells

We now show that a k-point with fractional coordi-
nates kp1

kp2

kp3

 =

m1

n1
m2

n2
m3

n3

 , (6)

where 0 ≤ kp1
, kp2

, kp3
< 1 and m1/n1, m2/n2, and

m3/n3 are reduced fractions, is commensurate with a su-
percell containing l123 primitive cells, where l123 is the
LCM of n1, n2, and n3. That is to say, we are able to
solve the equations

ks1 =
S11m1

n1
+
S12m2

n2
+
S13m3

n3
(7)

ks2 =
S22m2

n2
+
S23m3

n3
(8)

ks3 =
S33m3

n3
(9)

for integer ks1 , ks2 , and ks3 with S11S22S33 = l123 and
S12, S13, and S23 satisfying the conditions stated above.
The proof that follows uses properties of complete and
reduced residue systems, which are detailed in the Ap-
pendix.

We trivially solve Eq. (9) by setting S33 = n3. We
solve Eq. (8) by setting S22 = n2/g23 and S23 = pn3/g23,
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where g23 is the greatest common divisor (GCD) of n2
and n3, and p is a non-negative integer, which results in

ks2 =
m2

g23
+
pm3

g23
. (10)

The condition S23 < S33 requires that p < g23. If g23 = 1,
p = 0, and if g23 > 1, m3 mod g23 is a generator for
the additive group of integers modulo g23. This follows
since m3/n3 is a reduced fraction and g23 divides n3. We
can therefore always choose p < g23 such that (m2 +
pm3) mod g23 = 0 and obtain an integer solution for ks2 .

We now consider Eq. (7) and proceed by setting
S11 = g123n1/(g12g31), S12 = qg123n2/(g12g23), and
S13 = rg123n3/(g31g23), where g12 is the GCD of n1 and
n2, g31 is the GCD of n3 and n1, g123 is the GCD of n1,
n2, and n3, and q and r are non-negative integers, which
results in

ks1 =
g123
g31g23

[
(g23/g123)m1

g12/g123
+
q(g31/g123)m2

g12/g123

]
+
rg123m3

g31g23
.

(11)

The condition S12 < S22 requires that q < g12/g123 and
the condition S13 < S33 requires that r < g31g23/g123.
If g12/g123 = 1, q = 0, and if g12/g123 > 1,
m2 mod (g12/g123) is an element of the multiplicative
group of integers modulo g12/g123. This follows since
m2/n2 is a reduced fraction, g12 divides n2, and g123 di-
vides g12. (g31/g123) mod (g12/g123) is also an element
of the multiplicative group of integers modulo g12/g123.
This follows since g123 is the GCD of g12 and g31, which
means that (g31/g123)/(g12/g123) is a reduced fraction.
The product (g31/g123)m2 mod (g12/g123) is a generator
for the additive group of integers modulo g12/g123 and
we can therefore always choose q < g12/g123 such that
((g23/g123)m1+q(g31/g123)m2) mod (g12/g123) = 0. Both
of these cases lead to

ks1 =
z

g31g23/g123
+

rm3

g31g23/g123
, (12)

where z is an integer. If g31g23/g123 = 1, r = 0, and if
g31g23/g123 > 1, m3 mod (g31g23/g123) is a generator for
the additive group of integers modulo g31g23/g123. This
follows since m3/n3 is a reduced fraction, g31 and g23
both divide n3, and g123 divides both g31 and g23. We
can therefore always choose r < g31g23/g123 such that
(z + rm3) mod (g31g23/g123) = 0 and obtain an integer
solution for ks1 .

Given the choice of S11, S22, and S33 stated above, the
number of primitive cells contained within the supercell is
g123n1n2n3/g12g23g31 = l123. In particular, we can access
all k-points on a uniform N ×N ×N grid by considering
supercells containing at most N primitive cells.

2π
a

S̄ =

(
1 0
−1

2
1
2

)
S =

(
1 1
0 2

)

S̄ =

(
1 0
0 1

2

)
S =

(
1 0
0 2

)

S̄ =

(
1
2 0
0 1

)
S =

(
2 0
0 1

)

FIG. 1. (color online) Example of the use of non-diagonal
supercells to access all points on a 2×2 grid sampling the BZ
(red shaded area) of a square lattice (black dots). The black
arrows indicate the reciprocal superlattice vectors and the red
dots indicate the points in the first BZ that are accessible to
them.

C. Two-dimensional example

We now describe a two-dimensional example of the use
of non-diagonal supercells to access any point on a 2× 2
grid sampling the BZ of a square lattice with spacing
a. The reciprocal lattice is also square, but with lattice
parameter 2π/a.

In Fig. 1, we show the reciprocal lattice together with
the first BZ (shaded red area). The points of a 2×2 grid
on the BZ have fractional coordinates (0, 0), ( 1

2 , 0), (0, 12 ),

and ( 1
2 ,

1
2 ). The centre of the BZ, (0, 0), is commensurate

with a primitive cell. Diagonal supercells with |S| = 2
may be used to access the points ( 1

2 , 0) and (0, 12 ), as

shown in Fig. 1. The point ( 1
2 ,

1
2 ) cannot be accessed

with a diagonal supercell of size |S| = 2, and instead the
smallest diagonal supercell that provides access to this
point has size |S| = 4. However, as shown in Fig. 1, a
non-diagonal supercell of size |S| = 2 provides access to
the point (− 1

2 ,
1
2 ), which is equivalent to the point ( 1

2 ,
1
2 ).

D. Other uses of non-diagonal supercells

Non-diagonal supercells have been previously used
for the calculation of phonon dispersion curves along
high symmetry lines using the planar force constant
method25,26. In this context, supercells are constructed
by hand to capture the force constants arising from fi-
nite displacements of entire planes of atoms. Interatomic
force constants may, in principle, be obtained from a set
of such interplanar force constants using a least-squares
fit procedure27. A similar procss may be carried out us-
ing a combination of supercells that maximizes the cut-
off radius of the force constants28. In Sec. IV below, we
show how non-diagonal supercells can be used to directly
construct the dynamical matrices required for lattice dy-
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namics calculations in the harmonic approximation, thus
generalizing and systematizing previous approaches.

More widely, non-diagonal supercells have been used
in real space methods such as quantum Monte Carlo for
the study of solids from first principles29,30, or the Lanc-
zos method for the study of model systems31,32. In these
cases, non-diagonal supercells are used to construct ap-
propriate simulation cells to facilitate the extrapolation
of finite system size results to the infinite system limit,
as well as for the calculation of total energy derivatives
to evaluate susceptibilities.

III. COMPUTATIONAL DETAILS

A. Non-diagonal supercell generation

We now describe how we use non-diagonal supercells to
perform calculations of total energy derivatives using the
direct method in practice. We express each k-point of in-
terest in reduced fractional coordinates and calculate l123
to determine the size of supercell |S| commensurate with
it. We choose the appropriate supercell matrix in HNF
and then perform elementary unimodular row operations
on it until the superlattice basis vectors are the shortest
possible. We have found this to reduce the total number
of points required to sample the electronic BZ for a fixed
Monkhorst-Pack33 grid spacing criterion, which helps to
minimize the computational cost of our first principles
calculations. A fortran 90 program implementing this
procedure is included in the Supplemental Material34.

B. First principles calculations

We have studied diamond and graphite using plane
wave pseudopotential density functional theory35,36, as
implemented in version 8 of the castep code37. We used
the local density approximation38,39 to the exchange-
correlation functional and an “on-the-fly” ultrasoft pseu-
dopotential40 generated by castep with valence states
2s22p2. We used a plane wave energy cutoff of 800 eV
and sampled the electronic BZ with a Monkhorst-Pack33

grid of density 2π × 0.03 Å−1, which was sufficient to
converge the energy differences between different frozen
phonon configurations to better than 10−4 eV per atom.
We relaxed the structures at zero pressure until the forces
on each atom were smaller than 10−4 eV/Å and the com-
ponents of the stress tensor were smaller than 10−4 GPa,
which resulted in a lattice constant of 3.532 Å for di-
amond, and an in-plane lattice parameter of 2.445 Å
with c/a = 2.707 for graphite. These values are slightly
smaller than the experimental ones41–43, which is because
the local density approximation favors uniform charge
densities and therefore tends to overbind. The lattice
constant of diamond is also different to that obtained
with version 7 of castep used for Ref. 44, which is due
to a change in the default “on-the-fly” pseudopotential.

IV. LATTICE DYNAMICS

A. Formalism

Assuming Born-von Karman periodic boundary condi-
tions45 applied to an N1 × N2 × N3 array of primitive
cells, the central question of first principles lattice dy-
namics in the harmonic approximation46 is how to deter-
mine the so-called dynamical matrix at each k-point on
an N1 ×N2 ×N3 grid sampling the vibrational BZ. The
dynamical matrix is defined as

Dij(αβ |k) =
1

√
mαmβ

∑
Rp

Φij(αβ |Rp)e
−ik·Rp , (13)

where Latin indices label Cartesian coordinates, Greek
indices label the atoms within a primitive cell, mα is
the mass of atom α, Rp are the position vectors of the
primitive cells that make up the simulation cell, and

Φij(αβ |Rp −Rp′) =
∂2EBO

∂ui(α |Rp)∂uj(β |Rp′)
, (14)

where EBO is the Born-Oppenheimer (BO) potential en-
ergy surface47 and ui(α |Rp) is the ith component of
the displacement from its equilibrium position of the αth
atom in the primitive cell located at Rp, is the matrix
of interatomic force constants. The eigenvectors of the
dynamical matrix can be used to rewrite the harmonic
vibrational Hamiltonian in terms of normal coordinates
qnk, where n is the phonon branch index. The Hamilto-
nian then takes the form of a sum of terms corresponding
to non-interacting simple harmonic oscillators with fre-
quencies ωnk equal to the square root of the eigenvalues
of the dynamical matrix. The resulting vibrational eigen-
states can be found analytically.

The matrix of force constants decays with distance be-
tween primitive cells and consequently it is possible to
obtain an excellent approximation to the exact dynamical
matrix at an arbitrary wave vector if the simulation cell
is sufficiently large25. Therefore, the standard approach
is to determine the dynamical matrix at each symmetry-
inequivalent k-point on the N1×N2×N3 grid (typically
referred to as the coarse grid), construct the matrix of
force constants corresponding to theN1×N2×N3 array of
primitive cells using the inverse of Eq. (13), and then cal-
culate phonon frequencies and atomic displacement pat-
terns at a large number of k-points, which can be used
to compute structural, vibrational, and thermodynamic
properties of the system. The first step of this process
can be achieved either by using density functional per-
turbation theory5 to determine the linear response of the
charge density to an atomic displacement characterized
by a wave vector k, or by directly calculating the matrix
of force constants using a supercell commensurate with k
and performing the Fourier transform given by Eq. (13).
The direct approach takes advantage of the fact that the
dynamical matrix is exact at a given k-point, in the sense
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FIG. 2. (color online) Zero-point energy as a function of the
number of normal modes (coarse grid size) for diamond (red
circles) and graphite (blue squares). The solid lines are a
guide to the eye.

that it is equal to its infinite system counterpart, if it is
constructed using force constants calculated with a su-
percell commensurate with the wave vector k. It is con-
venient to restrict the exact calculation of the dynamical
matrix to k-points in the irreducible wedge of the BZ
(IBZ) and obtain it at all other points by exploiting the
crystal symmetries48. Numerical noise can slightly break
the symmetry of the dynamical matrix elements at each
wave vector but this is corrected by symmetrizing them
with respect to the point group operations of the crystal
that leave the wave vector unchanged49.

B. Results

In Fig. 2, we show the convergence with respect to
the number of normal modes included on the coarse grid
used to sample the vibrational BZ of the zero-point en-
ergy for diamond and graphite. The zero-point energy
is converged to better than 0.1 meV per atom using a
4× 4× 4 grid with 384 normal modes for diamond and a
6× 6× 3 grid with 1, 296 normal modes for graphite.

We have also investigated the convergence of phonon
dispersion relations along lines between high symmetry
points in the vibrational BZ, as shown in Figs. 3 and 4.
With the exception of acoustic branches in the immediate
vicinity of Γ, which have negligible frequencies and are
absolutely converged to better than 5 cm−1, we find that
the phonon dispersions are converged to 1 − 2% using a
4×4×4 grid for diamond and a 6×6×3 grid for graphite.
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FIG. 3. (color online) Convergence with respect to coarse grid
size of phonon dispersions along symmetry lines for diamond.

In Table I, we compare the computational cost when
using diagonal and non-diagonal supercells of obtaining
the dynamical matrix at all k-points in the IBZ for di-
amond and graphite, respectively. The use of a non-
diagonal supercell can reduce the symmetry of the su-
perlattice, which determines the number of atomic dis-
placements required to obtain the full matrix of force
constants. However, the ability to perform the necessary
calculations at smaller systems sizes when using non-
diagonal supercells results in a lower overall computa-
tional cost. More detailed timing information is included
in the Supplemental Material34.

Considering diamond with a 4 × 4 × 4 coarse grid,
the most expensive calculation is that required to de-
termine the dynamical matrix at the fractional k-point
(1/4, 1/2,−1/4). This can be achived by employing a di-
agonal 4 × 2 × 4 supercell containing 32 primitive cells.
Therefore, the full 4 × 4 × 4 supercell does not actually
need to be constructed, as it is computationally cheaper
to calculate the dynamical matrices at all points in the
IBZ using multiple diagonal supercells. When using non-
diagonal supercells, the largest supercells required con-
tain just 4 primitive cells, and the overall speedup is
greater than a factor of ten.



6

A Γ M K Γ
0

250

500

750

1000

1250

1500

1750
ν

n
k
 (

c
m

-1
)

2x2x1
4x4x2

A Γ M K Γ
0

250

500

750

1000

1250

1500

1750

ν
n
k
 (

c
m

-1
)

4x4x2
6x6x3

A Γ M K Γ
0

250

500

750

1000

1250

1500

1750

ν
n
k
 (

c
m

-1
)

6x6x3
8x8x4

FIG. 4. (color online) Convergence with respect to coarse grid
size of phonon dispersions along symmetry lines for graphite.

Considering graphite with a 6 × 6 × 3 coarse grid,
the most expensive calculation is that required to de-
termine the dynamical matrix at the fractional k-point
(1/6, 1/6, 1/3). In this case, a diagonal 6 × 6 × 3 super-
cell containing 108 primitive cells must be constructed,
which generates the force constants required to calculate
the dynamical matrices at all points in the IBZ that are
not present on the smaller grids. When using multiple
non-diagonal supercells, the largest supercells required
contain just 6 primitive cells, and the overall speedup is
greater than a factor of ten.

For both the zero-point energy and phonon dispersion
relations, converged results are obtained using a 4×4×4
coarse grid for diamond and a 6 × 6 × 3 coarse grid for
graphite. As shown in table I, the cost of performing
these calculations is reduced by over an order of mag-
nitude when non-diagonal supercells are used instead of
only diagonal supercells.

The harmonic approximation relies on the assumption
that the displacement of atoms from their equilibrium
positions is sufficiently small for the BO potential energy
surface to be accurately approximated by a Taylor series
expansion around the equilibrium atomic configuration
that is truncated at second order. Therefore, it breaks

TABLE I. Comparison of total computational cost of calcu-
lating force constants for diamond and graphite in order to
construct the dynamical matrix at different grid sizes when
using diagonal and non-diagonal supercells.

Diamond Grid
Ratio of CPU time

(Diagonal : Non-diagonal)

2× 2× 2 2.23

4× 4× 4 15.3

6× 6× 6 16.8

Graphite Grid
Ratio of CPU time

(Diagonal : Non-diagonal)

2× 2× 1 1.15

4× 4× 2 5.29

6× 6× 3 13.8

down when the atomic vibrational amplitudes are large.
A number of different approaches based on the direct
method have recently been proposed for studying anhar-
monicity in solids from first principles50–54. A common
feature of these methods is that they require the sampling
of the BO potential energy surface at a large number of
atomic configurations, which is a process that may be
greatly expedited by the use of non-diagonal supercells.

V. ELECTRON-PHONON COUPLING

A. Formalism

The effect of electron-phonon coupling on the band gap
of a semiconductor can be calculated by determining the
change in the electronic band structure due to the dis-
placement of atoms from their equilibrium positions55,56.
We calculate the vibrationally averaged band gap 〈Eg〉
at zero temperature in the BO approximation as

〈Eg〉 =

∫
dq |Φ(q)|2Eg(q) , (15)

where q is a collective vibrational coordinate with el-
ements qnk and Φ(q) is the vibrational wave function.
Within the harmonic approximation, Φ(q) is a product
over normal modes of simple harmonic oscillator eigen-
states. The expression in Eq. (15) can be evaluated using
Monte Carlo sampling57,58, molecular dynamics59, path
integral methods60,61, or by using a series expansion of
the form14,44,53,55,56,62

Eg(q) = Eg(0)+
∑
n,k

c
(1)
nkqnk+

∑
n,k
n′,k′

c
(2)
nkn′k′qnkqn′k′ , (16)

where we have retained terms up to second order. Within
the harmonic approximation, the vibrational wave func-
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tion is even and the only non-zero terms in the expec-
tation value of Eq. (15) using the expression given by
Eq. (16) are the quadratic diagonal terms with coupling

constants c
(2)
nknk. Within the BO approximation, the cou-

pling constants are independent of temperature and we
therefore focus on the zero-point renormalization (ZPR)
to the band gap, which can be written as

EZPR =
∑
n,k

c
(2)
nknk

2ωnk
. (17)

This expression excludes terms with powers of qnk higher
than two and any description of coupling between differ-
ent vibrational modes, but it has been found to produce
good agreement with experimental results for a range of
materials14,22,62.

B. Results

We used the harmonic wave functions, obtained as de-

scribed in Sec. IV, to determine each c
(2)
nknk by performing

frozen phonon calculations for each of the k-points in the
IBZ. The frozen phonon calculations for the vibrational
mode labelled (n,k) were performed using a vibrational

amplitude of magnitude
√
〈q2nk〉/2, and we averaged over

positive and negative displacements.
In Fig. 5, we show the ZPR to the thermal and op-

tical band gaps of diamond as a function of the linear
size of the BZ grid. It is well-known that these quanti-
ties converge slowly with respect to the number of points
used to sample the vibrational BZ14 and highly converged
results have previously only been obtained using pertur-
bative methods. The largest grids explored so far using
the direct method for diamond are of sizes 4 × 4 × 422

and 6× 6× 644. Here, we report results calculated using
vibrational BZ grids of size up to 48 × 48 × 48, vastly
increasing the capabilities of the direct method for this
type of calculation. We find that the ZPR to the thermal
gap converges within 1 meV to a value of −343 meV at a
grid size of 24×24×24. The ZPR to the optical gap has
a value of about −430 meV at a grid size of 48× 48× 48
and this value differs by 15 meV from that calculated
using a 32× 32× 32 grid.

We have shown that we are able to use the direct
method to calculate a value of the ZPR to the ther-
mal band gap of diamond that is converged to better
than 1 meV with respect to the number of points used to
sample the vibrational BZ. The ZPR to the optical gap
converges more slowly, and the results from the largest
grids we consider have an uncertainty about an order of
magnitude greater, of the order of 10 meV. The choice of
pseudopotential63, higher-order terms in Eq. (16)58, and
many-body effects22 are known to change the values of
the ZPR by amounts greater than these levels of conver-
gence. The computational cost of investigating some of
these effects may also be greatly reduced by the use of
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FIG. 5. (color online) ZPR to the thermal (red circles) and
optical (red squares) band gaps of diamond as a function of
the linear size of the BZ grid. The solid lines are a guide to
the eye.

non-diagonal supercells.

VI. CONCLUSIONS

We have described the use of non-diagonal supercells
to study the response of periodic systems to perturba-
tions characterized by a wave vector. We have shown
that, for a wave vector with reduced fractional coordi-
nates (m1/n1,m2/n2,m3/n3), there exists a commensu-
rate supercell containing a number of primitive cells equal
to the least common multiple of n1, n2, and n3. This
compares favourably with the n1n2n3 primitive cells re-
quired if only diagonal supercells are used.

We have compared the use of diagonal and non-
diagonal supercells for performing first principles lattice
dynamics calculations using the direct method. We find
over an order of magnitude reduction in the computa-
tional cost of obtaining converged zero-point energies and
phonon dispersions for diamond and graphite when us-
ing non-diagonal supercells. We have also investigated
the zero-point renormalization to the thermal and opti-
cal band gaps of diamond arising from electron-phonon
coupling. Utilizing non-diagonal supercells has allowed
us to perform these calculations with Brillouin zone grids
of sizes up to 48 × 48 × 48. Our results show unprece-
dented levels of convergence for the values of the zero-
point renormalization to the thermal and optical gaps
calculated using the direct method, of the orders of 1 meV
and 10 meV, respectively.

The responses of condensed matter systems to per-



8

turbations characterized by a wave vector are central
in probing a wide range of physical properties, such as
phonon dispersions11, electron-phonon coupling15, spin
fluctuations16, nuclear magnetic resonance J-coupling6,
and many-body dispersion effects7. Perturbative meth-
ods have provided a computationally efficient manner of
determining these responses using first principles meth-
ods. The direct method has previously been considered
computationally expensive due to the need to use simu-
lation cells containing multiple primitive cells. However,
it is more transparent, easier to implement in computer
codes, and can be used in situations when it is necessary
to go beyond the linear response regime. The use of non-
diagonal supercells described in this paper significantly
reduces the computational cost of the direct method, and
therefore expands its applicability to problems that were
previously only tractable using perturbative methods.
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Appendix: Complete and reduced residue systems

Here we summarize some properties of complete and
reduced residue systems. Further details can be found in
Ref. 64.

If amodn = bmodn, then a is said to be congruent to
b modulo n.

Numbers which are congruent modulo n form an equiv-
alence class modulo n.

Any member of an equivalence class is said to be a
residue modulo n with respect to all the members of the
equivalence class. Taking one residue from each equiva-
lence class, we obtain a complete residue system modulo
n.

If the GCD of a and n is equal to unity, and x runs over
a complete residue system modulo n, then ax also runs
over a complete residue system modulo n. a is therefore
a generator for the additive group of integers modulo n.

The members of an equivalence class modulo n all
have the same GCD relative to the modulus. Taking
one residue from each class for which the GCD relative
to the modulus is equal to unity, we obtain a reduced
residue system modulo n.

If the GCD of a and n is equal to unity, and x runs over
a reduced residue system modulo n, then ax also runs
over a reduced residue system modulo n. ax is therefore
a generator for the additive group of integers modulo n.
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