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In this work, a magnetic resonance (MR) imaging method for accelerating the acquisition time of two
dimensional concentration maps of different chemical species in mixtures by the use of compressed
sensing (CS) is presented. Whilst 2D-concentration maps with a high spatial resolution are prohibitively
time-consuming to acquire using full k-space sampling techniques, CS enables the reconstruction of
quantitative concentration maps from sub-sampled k-space data. First, the method was tested by recon-
structing simulated data. Then, the CS algorithm was used to reconstruct concentration maps of binary
mixtures of 1,4-dioxane and cyclooctane in different samples with a field-of-view of 22 mm and a spatial
resolution of 344 lm� 344 lm. Spiral based trajectories were used as sampling schemes. For the data
acquisition, eight scans with slightly different trajectories were applied resulting in a total acquisition
time of about 8 min. In contrast, a conventional chemical shift imaging experiment at the same resolution
would require about 17 h. To get quantitative results, a careful weighting of the regularisation parameter
(via the L-curve approach) or contrast-enhancing Bregman iterations are applied for the reconstruction of
the concentration maps. Both approaches yield relative errors of the concentration map of less than
2 mol-% without any calibration prior to the measurement. The accuracy of the reconstructed concentra-
tion maps deteriorates when the reconstruction model is biased by systematic errors such as large inho-
mogeneities in the static magnetic field. The presented method is a powerful tool for the fast acquisition
of concentration maps that can provide valuable information for the investigation of many phenomena in
chemical engineering applications.
� 2015 The Authors. Published by Elsevier Inc. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Maps of chemical compositions can provide valuable informa-
tion for many applications, especially in chemical engineering.
They can be used to gain a rigorous understanding of chemical pro-
cesses and mass transfer phenomena occurring, for example, in
catalyst beds, along interfaces, or in and near membranes. This
understanding is important for a reliable design and scale-up of
chemical processes. Taking samples and analysing them ex situ is
often not feasible because the sampling disturbs the system and
the effort is immense to obtain sufficient spatial resolution to
resolve the processes. In this application, magnetic resonance
imaging (MRI) offers great potential as it is a non-invasive, spa-
tially resolved measurement technique able to probe optically opa-
que environments like reactors. In situ MRI has been successfully
applied to study conversion and composition profiles or local reac-
tion rates along fixed-bed reactors for various reactions using spa-
tially resolved 1H NMR-spectroscopy [1,2] and 13C NMR-
spectroscopy [3–5] also called chemical shift imaging (CSI). The
acquisition time needed to obtain multidimensional, fully sampled
concentration maps, however, may take several hours [3] which
can be detrimental. First, the process has to be operated steadily
for several hours so the consumption of chemicals is high which
is costly and undesirable concerning the safety in laboratories. Sec-
ond, transient phenomena that take place within minutes cannot
be studied with this technique. This paper presents a method for
accelerating the acquisition of spatially resolved concentration
maps by the use of compressed sensing (CS).

CS enables the accurate reconstruction of an under-sampled sig-
nal by utilising the prior knowledge that the signal is compressible
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or sparse with respect to a specific representation [6,7]. As under-
sampled signals can be used, CS provides a method of reducing the
data acquisition times characteristic of many imaging techniques.
CS has been successfully applied to reduce the acquisition time
of MR images [8,9]. Holland et al. [10] and Tayler et al. [11] demon-
strated the potential of CS by reconstructing velocity images in
fixed-bed reactors and of multiphase flow, respectively from fast
and under-sampled phase-encoded MR measurements. Further-
more, Holland et al. [12] and Kazimierczuk and Orekhov [13]
applied CS for fast multidimensional NMR spectroscopy. Hu et al.
[14] and Kampf et al. [15] used CS for the accurate reconstruction
of three dimensional chemical shift imaging (CSI) of 13C and 19F
markers, respectively from under-sampled data sets. When the
chemical shift information of the observed chemical species is
known and is incorporated into the model used for the reconstruc-
tion, images showing different species can be directly recovered
with high resolution from the under-sampled signals by CS. Good
results with a significant reduction of the scanning time compared
to conventional methods have been achieved in medical applica-
tions with this method for imaging water and fat [16–18]. The
focus of these works was to get a good separation of water and
fat in the reconstructed images and not to obtain quantitative
information on the composition.

In this work, we apply CS reconstruction to resolve spatially and
quantitatively the compositions of different species in mixtures.
This method enables the mapping of the composition directly as
a function of space. Only the information about the chemical shift
of the observed species are required for the reconstruction; there is
no need for calibration prior to the analysis. This feature of the pre-
sented method is beneficial for many applications in chemical
engineering where unstable intermediates are formed during the
process that make a calibration impossible. To achieve a high accu-
racy of the concentration map, however, the parameters of the CS
algorithm have to be correctly set. As mentioned above, CS exploits
prior knowledge of the signal. This prior knowledge is integrated in
the CS solver with a regulariser [6,7]. To get quantitative results,
the systematic bias of the CS reconstruction has to be minimised,
either by carefully weighting the regulariser or by applying
contrast-enhancement approaches. Different generic approaches
exist for the identification of good regularisation parameters. In
the present work, two different approaches, the L-curve approach
[19] and the Bregman iterations [20], are applied for the recon-
struction of simulated data of a phantom sample and for the recon-
struction of measured data from binary mixtures in different test
samples. These results are used to assess the robustness of the
approaches to yield concentration maps with a high accuracy.
Finally, we present a discussion of the strengths and limitations
of the method for the spatial quantification of chemical species.

2. Reconstruction using compressed sensing

2.1. Model equations

The measured k-space signal S at the echo time t is related to
the concentration maps xk of all species k ¼ 1; . . . ;M via the signal
model [16]

SðtÞ ¼
XM
k¼1

XLk
j¼1

wk;j exp 2pi dk;jt
� �

exp � t þ 2s
T�
2

� � 

�
Z
X
xkðrÞ exp 2pi kðtÞ � rð Þdr

�
þ v ð1Þ

with

kðtÞ ¼ 1
2p

Z t

0
cGðt0Þdt0 and X � R2: ð2Þ
In Eq. (1), v is the noise. dk;j denotes the relative chemical shift
(related to the resonance frequency of the spectrometer) of the j-th
group (peak) that belongs to species k. wk;j is the group weighting
factor that exists for all groups j ¼ 1; . . . ; Lk of species k. It describes
the mole of the nuclei (here 1H: n1H) in the j-th group per mole of

species k (nspecies
k ), see Eq. (3). To get quantitative results from the

measured k-space signal, the group weighting factors have to be
set correctly.

wk;j ¼ n
1H

ngroup
k;j

ngroup
k;j

nspecies
k

: ð3Þ

In Eq. (2), 2s denotes the time from the excitation pulse to the cen-
tre of the echo and T�

2 denotes the apparent T2-relaxation time. G is
the vector of the magnetic field gradient that acts at the echo time t.
Here, we subsample the k-space Sp;q as SðtÞ. Eq. (1) can be abbrevi-
ated with linear operators, see Eq. (4). The explicit equations for the
operators are given in Appendix A.

S ¼ CHS � F u � xþ v: ð4Þ
In Eq. (4), CHS denotes the chemical shift operator, F u is the

undersampled Fourier transform, and x is the concatenated matrix
of all concentration maps xk with k ¼ 1 . . .M. Eq. (4) can only be
applied when spatial and temporal inhomogeneities in the
B0-field are negligible.

2.2. Solving strategy

The goal of the reconstruction is to find well resolved concen-
tration maps x from the under-sampled k-space measurements S
so that the signal model according to Eq. (4) is fulfilled. In CS, the
reconstruction is obtained by solving a Tikhonov-type optimisation
problem of the form (for details, see e.g. Benning et al. [21]):

xreconstructed ¼ arg min
x

1
2

S� CHS � F u � xk k22 þ
XM
k¼1

akJ Wxkð Þ
( )

: ð5Þ

The first term in Eq. (5) is the fidelity term that models Eq. (1). Here

vk k2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

vðiÞj j2
q

is the standard Euclidean 2-norm. The second

term is the regularisation with J Wxkð Þ as regularisation functional
that enables the incorporation of prior information on the recon-
struction. W is a linear operator that transforms the concentration
maps x to another domain where they are sparse. Thus, the solution
of Eq. (5) yields concentration maps that have a sparse representa-
tion in the transform domain and that are, according to Eq. (1), con-
sistent with the measured k-space data in the least squares sense.
The parameter ak is a positive regularisation parameter that
weights the influence of the fidelity and the regularisation term.
We found that quantitative reconstruction results are only obtained
when the parameters a1;a2; . . . ;aM are not chosen independently
but based on the group weighting factors wk;j and a constant posi-
tive regularisation parameter a,

ak ¼ a
XLk
j¼1

wk;j: ð6Þ

The concentration maps of the test samples used in the present
work to test the method contain sharp edges. Thus, a finite-
difference approximation of the gradient operator is used as the
sparsifying transform W for all reconstructions carried out in this
work. For a discrete, isotropic total variation the regularisation
functional becomes JðWxkÞ ¼ kWxkk2;1 ¼ kkWxkk2k1. (details of the
computation of this term are given in Appendix B) Depending on
the features of the concentration maps, further sparsifying trans-
forms, such as wavelet transforms, which are used for smooth
changes in the concentration maps, or other one-norm-based
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Fig. 1. An example of an L-curve. By varying the regularisation parameter a, the
regularisation term can be plotted versus the norm of the fidelity term. The arrow
indicates the corner of the L-curve which corresponds to the optimal regularisation
parameter a.
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regularisers like the Total Generalised Variation can be chosen as
well. A detailed discussion of different regularisers and their imple-
mentation is given, for example, by Benning et al. [21].

To solve Eq. (5), we used an inhouse-code written in MATLAB

(product of MathWorks, Natick, USA) that is based on a scaled
alternating direction method of multipliers (ADMM) [22]. The
under-sampled Fourier transformation was performed using a
non-uniform fast Fourier transform algorithm that had been
developed by Fessler and Sutton [23] and that is accessible online
as an open source toolbox [24]. The concentration map xk obtained
by solving Eq. (5) is given in arbitrary units (a.u.). To get the

concentration map xðnÞ
k in mole fractions, the concentration xkðpÞ

of species k has to be scaled in each pixel p,

xðnÞk ðpÞ ¼ xkðpÞPM
k¼1xkðpÞ

: ð7Þ

If pixel pout lies outside the sample where none of the species are

present, the sum
PM

k¼1xkðpoutÞ of a well reconstructed concentration
map approaches zero and here the concentration of each species

xðnÞk ðpoutÞ is set to zero by default. In this work, the pixels that lie out-
side the sample were identified from the ‘‘best” of the Bregman iter-
ation reconstructions. The same pixels were set to zero in all
reconstructions. It would also be possible and potentially advanta-
geous to identify these pixels from an independent experiment, see
for example [10,25], however that was not done here.

The correct choice of the regularisation parameter a is not
trivial. In this regard, different approaches have been described
in literature. For example, Holland et al. [10] used simulated data
to determine the regularisation parameter that yielded the best
reconstruction results for a given signal to noise ratio (SNR). The
drawback to this approach is that it is always necessary to simulate
data very similar to the system under investigation. Hansen [19]
suggested the L-curve as a more generic approach to choose a reg-
ularisation parameter. The L-curve plots the regularisation term –

l1-norm, here:
PM

k¼1

PLk
j¼1wk;j Wxkk k2;1 – versus the norm of the fidelity

term – l2-norm, here: S� CHS � F u � xk k2. An example of an L-curve
is depicted in Fig. 1. The L-curve starts at low values of the fidelity
term and high values of the regularisation term. In other words, the
reconstruction fits the measurements precisely but the image
likely contains a lot of noise or artefact as it is not well regularised.
As the value of a increases, the l1-norm of the regularisation term
decreases. Initially large changes in the l1-norm are associated with
only small changes in the data fidelity term, thus the curve is steep.
At some value of a, further increases in a result in small decreases
in the l1 term and large increases in the l2 term, thus the curve
becomes flat. The resulting curve looks approximately ‘‘L”-shaped.
The point at which the curve turns from a sharp decrease to a flat
line is known as the corner of the L-curve, and is indicated by the
arrow on Fig. 1. This L-curve represents the range of possible
solutions that provide a compromise between the two-norm of the
fidelity and the one-norm of the regularization and as such is often
considered as a Pareto frontier [26]. The best regularisation param-
eter corresponds to the reconstruction result that appears on the
L-curve in that corner (or a little bit to the right) [19]. Thus, by
varying the regularisation parameter in a broad range and plotting
the L-curve, a selection criterion for an optimal regularisation
parameter is provided.

Benning et al. [21] applied a different approach called Bregman
iterations to obtain quantitative phase reconstruction from
velocity-encoded MRI measurements. For Bregman iteration, the
regulariser is replaced by its Bregman distance in order to create
an iterative procedure that refines the solution the further one iter-
ates. For this approach, the regularisation parameter a is set to a
value that strongly overweights the regularisation term (cf. Eq.
(5)) and the following iterative procedure is carried out [27]:
xm ¼ arg min
x

1
2

Sm�1 �CHS � F u � x
��� ���2

2
þa
XM
k¼1

XLk
j¼1

wk;j Wxkk k2;1
( )

ð8aÞ

Sm ¼ Sm�1 þ S�CHS � F u � xmð Þ with S0 ¼ S ð8bÞ
The iteration given in Eqs. (8a) and (8b) is repeated until a stop

criterion is satisfied. Benning et al. [21] and Yin et al. [27] demon-
strated that Morozov’s discrepancy principle [28], given in Eq. (9),
yielded satisfactory reconstruction results in combination with the
Bregman iteration.

S� CHS � F u � xk k2 6 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsamples

q
ð9Þ

In Eq. (9), r denotes the standard deviation of the noise and Nsamples

is the number of samples. Thus, the right hand side of Eq. (9) refers
to the noise level. Morozov’s discrepancy principle states that the
error between the sub-sampled Fourier transform of the reconstruc-
tion and the measured k-space data differ by less than the normally
distributed noise (which has mean zero and standard deviation r).
As long as this deviation is larger, data and reconstruction will differ
by more than just noise. This stopping criterion is also applicable for
selecting the optimum a value using the L-curve approach. It has
the advantage that it is mathematically well-defined compared to
the selection criterion ‘‘in the corner of the L-curve”.

The L-curve and Bregman iterations were applied in the present
work to reconstruct quantitatively maps of the composition of sim-
ulated data and data from real measurements of test samples. By
comparing the obtained maps of the composition with the
expected values, the performance of both approaches and the
applicability of the selection criterion (in the corner of the L-curve)
and the stopping criterion (Morozov’s discrepancy principle) is
assessed.

3. Experiments

All experiments were performed on a Bruker AV-400 spectrom-
eter (Rheinstetten, Germany) operating at a 1H resonance fre-
quency of 400.25 MHz with a vertical 9.4 T superconducting
magnet. The spectrometer was equipped with a 25 mm diameter
birdcage radio-frequency coil and with a shielded and water cooled
gradient system producing a maximum gradient strength of 1.46 T/m
in the x, y, and z directions.

3.1. Sampling scheme and acquisition parameter

The concentration maps were obtained with a slice selective
two-dimensional spin echo pulse sequence using a 90� hard pulse
and a 180� gaussian shaped soft pulse. Spiral trajectories were cho-
sen to subsample k-space. As demonstrated by Tayler et al. [11],
spiral trajectories present a suitable sampling scheme for CS. In
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the present work, however, two different spirals strung together
into a single trajectory were used to ensure the centre of the echo
was formed near the centre of k-space. The spirals were con-
structed using an algorithm that had been developed by Lustig
et al. [29] and that is accessible online as open source toolbox
[30]. Two different basic types of trajectories (type A and type B)
were designed. Type A starts at the centre of k-space, spirals out,
comes back straight, goes through the centre of k-space, out again,
and finally, it spirals back to the centre of k-space. Trajectory B is
simply the opposite. Starting at the centre of k-space, it goes
straight out, spirals back to the centre of k-space, spirals out again,
and comes straight back to the centre of k-space. The entire sam-
pling scheme employed for the concentration map consists of eight
trajectories (four of type A and four of type B). Each trajectory is
turned about the centre of k-space by a different angle so that a
good coverage of k-space is achieved. To increase the randomness
of the sampling scheme, the spirals are distorted with a sinusoidal
oscillation at a higher frequency and lower amplitude than the
main spiral trajectory. The direction of the oscillation was chosen
such that it was perpendicular to the direction of the main spiral
at all times. The amplitude and frequency were different for each
spiral. Furthermore, different numbers of points were added at
the beginning and/or removed at the end of each of the eight tra-
jectories. In this way, all eight trajectories have the same length
(number of points) but the centre of the echo is formed at different
locations that are distributed around the centre of k-space. A better
resolution of the chemical shift information is obtained in experi-
ments using this type of trajectory compared to experiments with
trajectories where the echo is always formed in the centre of
k-space. The trajectories were then further processed using the
algorithms of Lustig et al. [29]. By adding and removing points
within the trajectories the algorithm ensures that the trajectories
yield the desired field-of-view (FOV) and that they do not exceed
the maximum gradient strength and slew rate achievable by the
hardware. Other sampling schemes based on Lissajou curves or
lemniscates were tested as well but gave significantly worse
results compared to the results obtained with the spiral based
trajectories.

For a good reconstruction of the concentration maps, the trajec-
tories generated by the gradients during the acquisition have to be
known very precisely. For that reason, the trajectories were mea-
sured using the technique of Duyn et al. [31]. To reduce errors in
the phase measurement associated with inhomogeneities in the
B0-field, the technique was slightly modified and a volume selec-
tive excitation was used as suggested by Tayler et al. [32].

In the present work, a sampling scheme designed as described
above was employed with 8� 551 complex data points and a dwell
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Fig. 2. (a) Spiral based sampling scheme with 8� 551 data points. The bullets indicate
repeated measurements (þ=�). The measured points in k-space are indicated by the sym
time of 2:5 ls. The sampling scheme is depicted in Fig. 2. The con-
centration maps were obtained with a field-of-view of
22 mm� 22 mm and a resolution of 344 lm� 344 lm for a slice
thickness of 0.5 mm. The repetition time of the experiment was
approximately 15 s and a 4 step phase-cycle was used, giving a
total acquisition time of about 8 min.

The sampling scheme is obtained by integration (cumulative
summation) of the acquire data as describe by Duyn et al. [31].
Thus the small measurement errors add up so that points at the
end of the sampling scheme are subjected to larger errors than
points earlier in the sampling scheme. For that reason, the repro-
ducibility in the measurements at the same values of kx and ky is
better in the part of the sampling scheme shown in Fig. 2 (b) at
kx � 7:5 cm�1 and ky � �6 cm�1 when compared to the part of
the sampling scheme at kx � 8 cm�1 and ky � �5 cm�1; the latter
points being acquired much later during the acquisition.

3.2. Generation of simulated data

To generate simulated data, first, phantom concentration maps
of a binary mixture of species A and B were created. In the present
work, the concentrations were set to a constant value

(xðnÞA ¼ 0:667 mol/mol, xðnÞB ¼ 0:333 mol/mol). The relative chemical
shifts and group weighting factors of species A were
dA ¼ ð800 Hz; 200 Hz;� 400 HzÞ and wA ¼ ð3=8;1=4;1=8Þ, respec-
tively. The relative chemical shift and weighting factor of species
B was dB ¼ 0 Hz and wB ¼ 1=4, respectively. The image size was
set to 64� 64 pixels. The phantom concentration map of species
A is shown in Fig. 3.

By means of Eq. (4), simulated data were generated for these
phantom concentration maps. The noise v was Gaussian dis-
tributed and the noise level was set according to the experimental
noise level determined by repeated measurements.

3.3. Preparation of test samples

To test the reconstruction method experimentally, two different
test samples of about 5 ml were prepared in vials (inner diameter:
19 mm). Test sample A was a binary homogeneous mixture of
cyclooctane and 1,4-dioxane (xdioxane ¼ 0:761 mol=mol). For the
preparation of test sample B, a small vial (inner diameter:
11 mm) was inserted into the large vial. Both vials were filled with
binary homogeneous mixtures of cyclooctane and 1,4-dioxane
with different compositions. The concentration of 1,4-dioxane in
the small, inner vial was xinnerdioxane ¼ 0:666 mol=mol and in the large,
outer vial xouterdioxane ¼ 0:415 mol=mol. Additionally, a Teflon tube
7 7.5 8
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(b)

the location of the centre of the spin echo. (b) Zoomed view of a comparison of
bols; the lines are linear interpolations to guide the eye.
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(inner diameter 4 mm) was inserted into the large, outer vial to
test the resolution of the reconstruction method. As the Teflon tube
was open at the ends, the composition of the liquid inside the
Teflon tube was the same as the composition of the liquid con-
tained in the large, outer vial.

The chemical shift of interest in these reconstructions is the
chemical shift relative to the resonant frequency of the acquisition.
This chemical shift is measured relative to one of the frequencies in
the sample, and not relative to a standard reference species, such
as tetramethylsilane. In this case, we set the resonant frequency
of the instrument to the frequency of the peak for 1,4-dioxane.
The relative chemical shift for the binary mixture of 1,4-dioxane
and cyclooctane was then determined by the acquisition of a stan-
dard 1H-spectrum of the sample. The results are summarised in
Table 1.
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4. Results and discussion

4.1. Reconstruction of simulated data

Fig. 4(a) shows the relative error of the reconstructed concen-
tration map of species A compared to the concentration map that
was input to the simulation as shown in Fig. 3. In Fig. 4(b), a com-
parison of the reconstructed concentration profile compared to the
input concentration profile in the middle of the sample is depicted.
The reconstruction was carried out with a regularisation parameter
a ¼ 0:004 determined by the L-curve approach (for details, see
below). The results demonstrate that both a good spatial resolution
is achieved in the reconstructed image and that the reconstruction
yields almost perfect quantitative results. Only at the corners and
edges larger deviations occur in the reconstructed concentration
map. The reason for this behaviour is a systematic error that is
introduced because of the discretisation of the gradient operator
W with finite differences (cf. Eq. (5)). Other discretisation
approaches exist with a lower systematic error [33]. The optimisa-
tion of the gradient operator, however, is not in the scope of this
paper. The reconstruction results using 19 Bregman iterations give
similar results (not shown here).
Table 1
Measured relative chemical shift and weighting factor (mole of 1H per mole of the
species).

Species Group Rel. chem. shift (Hz) Weighting

1,4-Dioxane CH2 0 8
Cyclooctane CH2 �814 16
4.1.1. Optimisation of reconstruction
As mentioned above, both the L-curve approach and Bregman

iterations were applied to reconstruct the simulated data of the
phantom concentration maps. The reconstruction results are sum-
marised in Fig. 5 for the L-curve approach and in Fig. 6 for the Breg-
man iterations. Figs. 5(a/b) and 6(a/b) show the reconstructed
mean mole fraction of species A and the standard deviation of
the mole fraction of species A (related to the true value) as a func-
tion of the regularisation parameter and number of Bregman iter-
ations, respectively. Fig. 5(c) shows the L-curve and Fig. 6(c) shows
the l2-norm as a function of the number of Bregman iteration. As
expected, the reconstruction results depend strongly on the chosen
regularisation parameter a and on the number of Bregman itera-
tions mBregman, respectively. However, when the stop or selection
criteria discussed above are applied, a parameter (a and mBregman,
respectively) can be found for both approaches that yield a concen-
tration map which represents an almost perfect reconstruction of
the phantom concentration map.

The regularisation parameter that corresponds to the corner in
the L-curve (cf. Fig. 5(c)) is about a ¼ 0:004. This regularisation
parameter was used for the reconstruction of the concentration
map shown in Fig. 4. Morozov’s discrepancy principle (cf. Eq. (9))
is also applicable for the L-curve approach as the noise level inter-
sects with the corner of the L-curve. For this value of the regulari-
sation parameter (a ¼ 0:004), the relative error in the
reconstructed mean mole fraction of species A is 0.05% and the
standard deviation of the reconstructed mole fractions (related to
Radius
0

0.1

Fig. 4. (a) Relative error of the reconstructed concentration map compared to the
set concentration map of species A in the phantom. (b) Radial concentration profile
of species A through the sample at the location indicated with a dotted line in the
part (a) of the figure. The reconstruction was carried out with a ¼ 0:004 (L-curve
apporach). � reconstructed mole fraction, – set mole fraction.
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the set mole fraction) exhibits a minimum with a value of
4� 10�4 mol/mol. The same is true for the approach using
Bregman iterations. After 19 iterations, the l2-norm intersects the
noise level and the stop criterion given in Eq. (9) is fulfilled. Here,
the relative error in the reconstructed mean mole fraction of
species A and the standard deviation of the reconstructed mole
fractions show again a minimum (cf. Fig. 6(a/b)). The relative error
in the mean mole fraction is 0.3% and the standard deviation of the
reconstructed mole fractions is 5� 10�4 mol/mol showing that an
almost perfect reconstruction of the concentration map is
achieved.

With respect to the robustness of the two approaches, it is
important to evaluate the sensitivity of the reconstruction results
on the chosen regularisation parameter and number of Bregman
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iterations, respectively. As can be seen in Figs. 5 and 6, the mean
mole fraction and the standard deviation are almost constant for
a range near the regularisation parameter or number of Bregman
iterations that are chosen according to the selection criterion.
Hence, the quality of the reconstruction results is not very sensitive
to the choice of the regularisation parameter or the number of
Bregman iterations, as long as this choice is in a range near the
optimal values. This low sensitivity of the reconstruction results
on the regularisation parameter near the optimal regularisation
parameter is a very important feature of the L-curve approach,
since the corner in the L-curve shown in Fig. 5 is not sharp and thus
its location is not exactly defined.

Additionally, the optimal range of regularisation parameters or
the number of Bregman iterations can be quite well estimated by
evaluating the reconstructed images. If the regularisation parame-
ter is chosen too high or the number of Bregman iterations are too
few, the image is oversmoothed and the spatial resolution deterio-
rates significantly caused by the overweighted TV operator. On the
other hand, if the regularisation parameter is chosen too small or
the number of Bregman iterations are too many, the fidelity term
is overweighted and the resulting image looks pixelated. Thus, as
expected, when an image with good spatial resolution is obtained
(neither oversmoothed nor pixelated) the quantitative informa-
tion, i.e. the concentration map, is correctly recovered.
4.1.2. Sensitivity to systematic errors
To test the sensitivity of the reconstruction, the simulated data

was reconstructed with systematic errors introduced to the model.
First, the concentration map was reconstructed with a biased
relative chemical shift of species A and B (dbiasedA ¼ dA � 20 Hz,

dbiasedB ¼ dB þ 30 Hz). The line widths of the NMR samples studied
were typically about 100 Hz, therefore the combined shift of
50 Hz in the estimated frequency corresponds to a worst case esti-
mate of the expected error in the chemical shift. Second, the con-
centration map was reconstructed assuming that there were
errors in the measured trajectory map. In order to simulate error
in the trajectory map, the reconstructions were performed using

an effective sampling scheme given by keff ¼ kþ v with v as Gaus-
sian distributed noise. The standard deviation of the noise was
determined by repeated measurements of the sampling trajecto-
ries as shown in Fig. 2(b). Also the influence of the apparent T2-
relaxation time on the reconstruction results was examined. Since
the time to acquire data along a sampling trajectory is only 1.4 ms
(i.e. short compared with the T2-relaxation time of the samples

considered in this work), the term exp � tþ2s
T�2

� 	
can be neglected

and the chosen value of the apparent T2-relaxation time has no
effect on the reconstruction results. The reconstruction results
biased by systematic errors are included both for the L-curve
approach and for the Bregman iteration approach in Figs. 5 and
6, respectively.

An error in the chemical shift has a large impact on the recon-
structed mole fractions (cf. Figs. 5(a) and 6(a)) whilst the spatial
resolution is nearly unaffected. To demonstrate the effect of a sys-
tematic error in the chemical shift on the spatial resolution, Fig. 7
shows the sum of the unscaled concentration maps of species A
and B when the reconstruction is carried out without systematic
errors (Fig. 7(a)) and with a systematic error in the chemical shift
(Fig. 7(b)). In both figures the spatial resolution is good and the
sum of the concentration maps of species A and species B is almost
the same. The systematic error of the chemical shift results in a
small amount of signal being incorrectly assigned outside the sam-
ple and changes the ratio of species A to species B. These changes
cause the concentration of species A and B to be estimated incor-
rectly (cf. Fig. 5(a)), though the effect is not too severe (1%); the
spatial resolution of the image is almost unaffected by a systematic
error in the chemical shift.

A systematic error in the sampling scheme causes the recon-
struction results to deteriorate compared to the reconstruction
without systematic error. The systematic error in the k-space tra-
jectory causes a large shift in the l2-norm, and hence the L-curve
(cf. Figs. 5(c) and 6(c)). The shift of the L-curve does not effect
the shape of the L-curve (cf. Fig. 5) and the optimum regularisation
parameter a is still located in the corner of the L-curve. The value of
a that corresponds to the corner of the L-curve is about 0.007 (the
optimal value of a in the corner of the L-curve obtained without
systematic error is 0.004). Thus the change of the optimal value
of a caused by an introduction of a systematic error is only minor
(the overall variation of the value of a along the L-curve is from
1� 10�1 to 5� 10�5). By contrast, Morozov’s discrepancy principle,
cf. Eq. (9), is not applicable now since the l2-norm and the noise
level do not intersect. However, the L-curve approach can be
adapted for use with Bregman iterations. A plot of the l2-norm ver-
sus the number of Bregman iterations shows a corner, as with the
L-curve. Here, the optimal range for the number of Bregman itera-
tions is located a little bit to the right of that corner (cf. Fig. 6(c)).
The optimal range for the number of Bregman iterations can also
be identified by evaluating the reconstructed images. To the left
of the optimal range in (i.e. mBregman < 10), where the l2-norm has
a steep slope (cf. Fig. 6 (c)), the reconstructed images are over-
smoothed and to the right of the optimal range (i.e.
mBregman > 30), where the l2-norm reaches a constant level, the
reconstructed images are pixelated. Within the range
(10 < mBregman < 30), little change is seen between images.

4.1.3. Conclusions from simulations
The simulations demonstrate the potential of this Compressed

Sensing based technique to reconstruct concentration maps accu-
rately from significantly less data than would be required to obtain
a full chemical shift image. The correct weighting of the fidelity
term and the regularisation term is important for a good recon-
struction result both concerning the spatial resolution and the
quantitative information (concentration). Both approaches used
in the present work facilitate the identification of an optimal range
for the weighting that yield a good reconstruction result for the
concentration maps. These two approaches are still applicable
when the model used for the reconstruction is biased by system-
atic errors. An error in the relative chemical shift has a large effect
on the reconstructed concentration map but only a minor effect on
the l2-norm of the fidelity term. In contrast, small deviations of the
sampling schemes cause a large shift of the l2-norm of the fidelity
term but only minor shift of the reconstructed concentration.

4.2. Reconstruction of measured data

Fig. 8 shows the reconstructed concentration map of dioxane
for the experimental test sample A (a binary homogeneous mixture
of cyclooctane and 1,4-dioxane) that was obtained using Bregman
iterations in combination with the selection criterion discussed
above. The results are similar when the L-curve approach is applied
and they are not shown here. The relative error of the recon-
structed mean mole fraction of dioxane is 1.3% and the spatial
deviations are low. This result demonstrates that the composition
of samples can be spatially resolved with a high accuracy with the
presented method.

As described above, the total acquisition time to obtain a con-
centration map was approximately 8 min. The recycle delay of
15 s before each acquisition had the main contribution to the total
acquisition time along a sampling trajectory. The recycle delay was
chosen to allow sufficient relaxation (5� T1) such that quantitative
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Fig. 8. Reconstructed concentration map of dioxane for test sample A using
Bregman iteration. The resolution of the image was 344 lm� 344 lm. The
concentration of dioxane in the sample was 0.761 mol/mol.
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measurements were obtained. In some cases other approaches
might be available to reduce the total acquisition time further.
For example, a shorter phase cycle may be used or if the
T1-relaxation time of all species is approximately constant, a
shorter recycle delay can be chosen.

To reconstruct the data acquired for the experimental test sam-
ple A, both the L-curve approach and Bregman iterations were
applied. The reconstruction results are summarised in Fig. 9 for
the L-curve approach and in Fig. 10 for the Bregman iteration.
Figs. 9(a/b) and 10(a/b) show the reconstructed mean mole frac-
tion of dioxane and the standard deviation of the mole fraction
of dioxane (related to the expected mole fraction of dioxane) as a
function of the regularisation parameter and number of Bregman
iterations, respectively. Fig. 9(c) shows the L-curve and Fig. 10(c)
the l2-norm as a function of the number of Bregman iterations.
The plots are very similar to the plots shown in Figs. 5 and 6 that
were obtained for the simulated data. Also here, a range of regular-
isation parameters are given by the corner in the L-curve that yield
good reconstruction results both concerning the spatial resolution
and the accuracy of the concentration (cf. Fig. 9). For a regularisa-
tion parameter of about a ¼ 0:012, which corresponds to a result
located in the corner of the L-curve, the relative error of the mean
mole fraction of dioxane is 1.3% and the standard deviation shows
a minimum.

The concentration maps that were reconstructed using
Bregman iterations are also well resolved and a parameter set
(12 < mBregman < 30) exists that yields a relative error in the mean
fraction of dioxane of 1.4% and that has a minimum in the standard
deviation of the mole fractions. The l2-norm of the reconstruction
result, however, is significantly larger than the estimated noise
level (cf. Fig. 10) and hence the stopping criterion (Morozov’s dis-
crepancy principle) as defined in Eq. (9) is not applicable. As
demonstrated in Section 4.1, the deviations in the reconstructed
concentration and the large values for the l2-norm of the fidelity
term are attributable to systematic errors in the model. To verify
this, the relative chemical shift of cyclooctane used in the model
to reconstruct the concentration maps was decreased by 5%, which
corresponds to 41 Hz. The results are included for both approaches
in Figs. 9 and 10. The reconstructed concentration map when using
a chemical shift that was 41 Hz lower than that measured relative
chemical shift matches the known concentration more closely than
the original chemical shift value. This change in chemical shift is
attributed to errors in the shim of the sample making it difficult
to identify the true chemical shift accurately. Interestingly, this
small change of the chemical shift has no significant influence on
the l2-norm as shown in Figs. 9(c) and 10(c). However, when the
sampling trajectory is slightly disturbed by noise, the whole curve
of the l2-norm is shifted significantly but there is almost no effect
on the reconstructed concentration. In this case, the noise in the
sampling trajectory was estimated from repeated measurements
(see Fig. 2(b)). These results indicate that the quality of the recon-
struction would likely be improved by more accurate measure-
ment of the k-space trajectory.

Nevertheless, the Bregman iteration approach can still be used
even though the stopping criterion is not applicable. As discussed
above, the optimal range for the number of Bregman iterations
can be identified both by evaluating the plot of the l2-norm versus
the number of Bregman iterations (the optimal range is here
located a little bit to the right of the corner) or by evaluating the
reconstructed images. The concentration map that has the best
spatial resolution is also the concentration map that yields the best
agreement with the expected concentration. As mentioned above,
the reconstructed image is oversmoothed if the number of Breg-
man iterations is chosen too low and it becomes pixelated if it is
too high.

Fig. 11 shows the reconstructed concentration map of dioxane
for test sample B that was obtained using Bregman iterations in
combination with the selection criterion discussed above. The
results are similar when the L-curve approach is applied and they
are not shown here. Table 2 lists a comparison of the reconstructed
mean mole fraction with the expected mole fraction of dioxane.
The results show that the concentration in the inner vial is well
recovered (relative error less than 1%). In the outer vial, however,
the error is larger (about 11%). Two reasons are presented for the
larger error of the reconstructed concentration in the outer vial
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compared to the inner vial. First, sharp corners are present in the
outer vial, and as shown in Fig. 4 and by Benning et al. [21], sharp
corners and confined spaces are challenging for the reconstruction
algorithm and thus they are often not correctly recovered even
though no systematic error is present in the model. Second, spatial
inhomogeneities are present in the B0-field. These inhomogeneities
are interpreted by the model as a relative chemical shift and thus
they have a similar effect on the reconstruction result as an error
in the chemical shift, namely the accuracy of the quantitative
information, i.e. the concentration, deteriorates whilst the spatial
resolution remains good. Thus, these inhomogeneities cause differ-
ences in the reconstructed concentration between the upper part
of the image and the lower part of the image where there should
be none.
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Fig. 11. Reconstructed concentration map of dioxane for test sample B using
Bregman iteration. The resolution of the image was 344 lm� 344 lm.

Table 2
Comparison of the mean mole fraction in the reconstructed concentration map with
the expected mole fraction of dioxane in test sample B. The error of the expected
value is estimated based on the accuracy of the used scale.

Location Mean mole fraction dioxane

Expected Measured

Inner vial 0.666 ± 0.001 0.66
Outer vial 0.415 ± 0.002 0.46
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It may be possible to improve the reconstruction shown in
Fig. 11 by incorporating the spatial inhomogeneities of the mag-
netic field in the model. In this case, the concentration map and
the map of the field inhomogeneities have to be reconstructed
from the measured signal data by the solution algorithm. This
additional reconstruction of the map of the field inhomogeneities
is numerically expensive as the order of the chemical shift operator
and the undersampled Fourier transform in Eq. (4) have to be chan-
ged and thus the Fourier transform has to be performed not only M
times (M – number of species, here 2) as it is done in Eq. (4) but Nt

times (Nt – number of data points in each trajectory, here 551).
Furthermore, when the map of the field inhomogeneities is
included in the model, the equation becomes non-linear which
makes the solution algorithm more challenging compared to the
algorithm used in the present work. As the scope of this paper is
to show the principle of quantitative concentration mapping with
MRI using compressed sensing, we refrain from a detailed discus-
sion on solution algorithms for non-linear equations which include
the reconstruction of the map of the field inhomogeneities. More
details on that topic are given for example by Doneva et al. [16].
5. Conclusion

A fast MR imaging method is presented that enables the compo-
sition of mixtures of chemical species to be resolved. The method
enables acquisition of quantitative maps of the chemical composi-
tion in as little as 8 min, when a full chemical shift image at the
same resolution would require 17 h. The method is fast because
it is based on a compressed sensing algorithm that uses prior-
knowledge to obtain the concentration image from under-
sampled data. Further reductions in acquisition time may be
possible through optimisation of the pulse sequence. No calibra-
tion is necessary prior to the analysis in order to get quantitative
information with an accuracy of ±2 mol-%. Therefore, the method
is valuable for many applications, e.g. in chemical engineering
where unstable intermediates may form during the process and
hence prohibit a calibration or in medical sciences and biology.

The prior-knowledge that is necessary for the reconstruction of
information from under-sampled data is incorporated in the algo-
rithm via a regularisation term. In this work, a spatial finite differ-
ences (‘‘total variation”) based regularisation is used as images are
piece-wise constant. For other systems, regularisers such as Total
Generalised Variation or wavelets may be preferable. Regardless
of the form of the regularisation function, the weighting has to
be carefully chosen in order to get both a good spatial resolution
and a high quantitative accuracy in the concentration map. In the
present work, the L-curve approach and Bregman iterations, and
different selection and stop criteria were used to find an optimal
weight for the regularisation term. The two approaches and the
selection and stop critera were tested by reconstructing both sim-
ulated data from a phantom concentration map and measured data
from different samples of binary mixtures.

The mathematically well-defined stopping criterion that is
based on Morozov’s discrepancy principle is not applicable to the
experimental data owing to systematic errors in the model, mainly
deviations in the measured sampling trajectories. Nevertheless, the
selection criterion that is based on a graphical evaluation of the
reconstruction results enables well resolved concentration maps
to be obtained using both the L-curve and the Bregman iteration
approaches. Furthermore, the fact that the optimal parameters
for the regularisation are based on a selection criterion that
requires a graphical evaluation of the reconstruction results is
not disadvantageous for the quality of the results because the
reconstruction result is insensitive to the choice of these parame-
ters in an interval near the optimal parameters. Thus, both the
L-curve and the Bregman iteration are generic and robust approaches
to achieve quantitative results.

To conclude, the presented method is a powerful tool for the
fast acquisition of concentration maps. These concentration maps
can provide valuable information for the investigation of many
phenomena in chemical engineering applications.
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Appendix A. Description of the linear operators

The transformation of theM concentration maps xk into the sig-
nal S shown in Eq. (1) can be abbreviated by linear operators, see
Eq. (4). First, the concentration maps are subjected to a Fourier
transformation,

S�k ¼ F u xkf g with : xk 2 RN�N; S�k 2 C Nsamples�1½ 	 and k¼ 1; . . . ;M

F u is the discrete non-uniform Fourier transform operator that is
described in detail by Fessler and Sutton [23]. N � N is the size
(number of pixels) of the concentration map xk. Nsamples is the num-
ber of samples.

To get the signal S, the chemical shift operator CHS is applied to
the Fourier transformed concentration map S�k:

S ¼ CHS �
S�1
..
.

S�M

0
BB@

1
CCA with : S 2 CNsamples�1

The chemical shift operator CHS is a matrix:
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CHS ¼ diag CHS1ðt1Þ; . . . ;CHS1ðtNsamples
Þ

� 	
; . . . ;diag CHSMðt1Þ; . . . ;ð

h
CHSMðtNsamples

Þ
	i

with : CHS 2 CNsamples�Nsamples �M

Here, the operator CHSkðtjÞ is defined as

CHSkðtlÞ ¼
XLk
j¼1

wk;j exp 2pi dk;jtl
� �

exp � tl þ 2s
T�
2

� �
:

Appendix B. Description of the total variation regularisation

Total variation regularisation is the 1-norm penalty on a
discrete finite difference approximation of the two-dimensional
gradient r [21]. The two-dimensional gradient is defined as

r1xkði; jÞ ¼
xkðiþ 1; jÞ � xkði; jÞ if i < n1

0 if i ¼ n1




r2xkði; jÞ ¼
xkði; jþ 1Þ � xkði; jÞ if j < n2

0 if j ¼ n2




for i ¼ 1; . . . ;n1 and j ¼ 1; . . . ; n2.
Thus the discrete total variation functional is given by

JðWxkÞ ¼ kWxkk2;1 ¼ krxkk2;1 ¼
X
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1xkði; jÞj j2 þ r2xkði; jÞj j2

q
:
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