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Abstract

The behaviour of a fibre subject to a turbulent air flow in the spunbonding process is studied using a three-dimensional

dynamics model in which the fibre is discretised as a chain of beads connected by linear and rotational springs. The

turbulent air drag acting on the fibre is modelled as a random force, as a function of the mean air velocity, the turbulence

intensity, and the spectrum of turbulence. The effect of the air flow parameters and the fibre diameter on the amplitude

and the frequency of the fibre oscillations is analysed to understand how the fibre laydown and web formation is

controlled by the turbulent air flow in spunbonding.
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Introduction

Overview

The spunbonding process is a widely used industrial

technique for the production of nonwoven fabrics, which

combines fibre spinning, web formation, and fibre bonding

in the same process1;2. Material properties such as density,

uniformity, stiffness, strength and anisotropy arise, during

the fibre web deposition, from the dynamic interaction of the

fibres with a turbulent air stream.

In the companion paper, Part I3, we measured the turbulent

air flow in the diffuser of a spunbonding industrial rig, as well

as the amplitude of oscillation of a filament with diameter

200 μm and a spun-bonding fibre with diameter 18 μm. It

was found that the turbulent air flow can be characterised as

a function of the mean and fluctuating air velocity, the energy

spectrum, and the length scale of turbulence. It was observed

also that a thicker filament oscillates with an amplitude

which is larger than that of a thinner fibre, and that the

amplitude of fibre motion increases with the air flow rate in

the diffuser.

Studying fibre-turbulent air flow interaction is crucial to

understanding how fibres move during the laydown and

how this feature can influence the fibre orientation and

uniformity in the nonwoven web. In this paper we present

a mathematical model for the fibre dynamics that allows

prediction the amplitude and frequency of fibre motion

under a turbulent flow, starting from the air flow parameters

measured in Part I. The role of the individual parameters on

the fibre motion is investigated and compared with the data

measured in the companion paper, Part I.

Fibre dynamics modelling

Despite the large amount of experimental and modelling

work that describes fibre spinning in nonwovens2;4;5, it is not

well established how the fibre motion in a turbulent air flow

can influence the development of the random fibre web.

Several fibre models exist that study the dynamics of short

fibres suspended in shear flow at low Reynolds number.

Yamamoto and Matsuoka6 developed the bead-chain model

where the fibre is modelled as a chain of spheres able to

stretch, bend, and twist, through varying the distance and

the bonding angle between two adjacent spheres. Although

this is considered the most comprehensive model for the

dynamics of a flexible fibre, the high computational time

of O(N3)7 limits its application only to fibres with small

axial ratios, defined as the ratio of the fibre length to the fibre

diameter.

The computational time is reduced when fewer elongated

bodies are used in place of indiviual spheres. Ross8 modelled

the fibre as made of 20 spheroids, with aspect ratio of 1.25,

connected through ball and socket joints, while Nyland7 used

a needle-chain model. Wang9 developed a rod-chain model

in which a flexible fibre is composed of a chain of rigid

rods formed by a series of aligned spheres. Although, rod-

chain-like models have a lower computational requirement

compared to that of the bead-chain models, their CPU time,

of the order of O(N2)9, is still too high for such models to be

applied to long fibres. In addition, Xiang10 reports that their

rod-chain code converged only for fibre aspect ratio smaller

than 80.

The simulation time of a rigid bodies model can be further

decreased to O(N) if a reduced coordinate formulation

is used to describe the joint constraints. Hadap11 applied

this method to model the dynamics of hair strands as a

rigid multibody chain, for application in hair animations,

and solved the rigid body dynamics using Featherstone’s
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Articulated-Body Algorithm12. However, Featherstone13

reports, that for an unbranched chain, the inertia matrix of

the system is ill-conditioned, and the solution is affected

by problems of accuracy and stability that become more

significant as the number of bodies in the chain grows. For

a fibre the situation is even worse because of the oscillatory

force resulting from the turbulent flow, and the low inertia of

the fibre, which require very small time steps. As a result, a

large error in the solution is accumulated and the simulation

becomes unstable very quickly.

Shambaugh et al. developed a model that predicts the fibre

formation and vibration in the melt-blowing process14;15 in

which the mass is concentrated in beads which are subject to

an air drag force and a surface tension. This model cannot

be directly used to study the dynamics of solidified fibres

as the elasticity of the fibre was not considered. Recently

a similar fibre formulation was used to understand the

whipping motion of microfibres in electrospinning16.

In this work we develop a fibre bead model that describes the

motion of fibres in a turbulent air flow, and we study how the

air flow parameters that were measured in Part I influence the

behaviour of a fibre in the spun-bonding process. Compared

to existing fibre bead models, the elasticity of the fibre is

here included for both tensile and bending deformation, and

the air drag produced by a turbulent flow is modelled as

a function of the mean velocity, the energy of turbulence

and the turbulent length scale. In Section 2 an air drag

formulation for the fibre-turbulent air flow interaction is

presented, Section 3 describes the mathematical formulation

of the fibre dynamic model, in Section 4 the accuracy of the

fibre model is investigated, and Section 5 the model is used

to obtain the amplitude and frequency of the fibre and motion

under different air flows and fibre parameters. This is crucial

to understand how the fibre deposition and the nonwoven

web properties can be influenced by different turbulent air

flow regimes.

Air drag model

Fibre air drag

Fibres are spun by an high-speed air flow that applies a skin

friction load and stretches the fibres to the final diameter.

Sakiadis17 studied the air drag on a cylindrical surface

moving at constant velocity in a fluid using boundary layer

theory to find an expression for the skin friction force.

Although his prediction matched the results of experiments

conducted in laminar flows, the theory poorly estimated the

drag on a filament in melt spinning because of the turbulence

in the air flow. Later, Matsui18 solved the problem in terms

of the Reynolds Averaged Navier Stokes (RANS) equation

along the radial direction of the cylinder, approximating the

Reynolds stress with Prandtl theory for the turbulent mixing

length. He found that the skin friction force per unit length

is:

ff =
1

2
π dρa Cf U

2 (1)

where U is the relative velocity fibre-air stream, d is the

fibre diameter, ρa the density of air, and Cf is a friction

coefficient which is a function of the local Reynolds number

Red = Ud/ν as

Cf = βRe−0.61
d (2)

V
t V

n

V

f
t f

n

f

Figure 1. Air drag on a fibre oriented at an angle tilted to the air

stream

where β is a constant that depends on the experimental

conditions20.

Ju and Shambaugh19 obtained empirical relations for the

air drag force on a fibre tilted with respect to the air stream,

along the direction tangent and normal to the fibre axis. In

this study different fibres were tested with a diameter that

ranged from 13 μm to 390 μm. They found that, if Vt is the

tangential component and Vn is the component normal to the

fibre axis, as shown in Figure 1, the tangential air drag ft
is still the friction force given by Equations 1-2 (with Vt in

place of U ), while the normal force per unit length is

fn =
1

2
dρa Cn V

2
n (3)

with a normal drag coefficient Cn

Cn = ARe−b
n

(
d

d0

)c

(4)

where, for d = 13− 390 μm, A = 6.96, b = 0.440,

c = 0.404, d0=78 μm, the normal Reynolds

number is Ren = Vnd/ν, with the viscosity of air

ν = 1.51 · 10−5 m2/s.

Fibre-turbulent flow interaction

In a turbulent flow the velocity of the fluid varies in time

and space in a non-deterministic way. An example of the

velocity history of a turbulent flow is shown in Figure 2. As

in random data analysis21, also here it is convenient to split

the flow velocity vector U(t, r) into a mean and a fluctuating

component

U(t, r) = U(r) + u
′(t, r) (5)

where U(r) is the time average of U(t, r) and u
′(t, r)

is a random fluctuation, assumed isotropic in space. u′ is

characterized by the root mean square (rms) of U and by the

energy spectrum of the random process.

A fully deterministic investigation of the fibre-turbulent

flow interaction needs to account for all the turbulence

time and length scales associated with the turbulent

eddies. Unfortunately this approach is not feasible because

it requires geometric meshes and time steps that are

computationally too expensive. A reasonable approximation

is to consider only the energy containing range of the energy

spectrum22 at low frequency, which is related to the large-

scale eddies. Figure 3 shows the energy spectrum measured

in Part I of this paper in a spunbonding diffuser at a distance
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Figure 2. Example of measured air velocity history for a

turbulent air flow with mean velocity U= 10 m/s and fluctuating

velocity u′(t).

along the axis of x = 350 mm. It can be observed that

most of the energy is contained at the lowest frequencies in

the highlighted constant region, associated with the largest

turbulence scales.

If the energy spectrum E(ω) is known, a random signal

can be simulated as a sum of harmonic functions whose

amplitude is derived from the energy spectrum, and random

lag phase φn uniformly distributed in the interval [0, 2π]21.

In this study the fluctuating air velocity u′(t) is reproduced

using23:

u(t) =
√
2

N−1∑
n=0

An cos(ωn t+ φn) n = 0, 1, . . . , N

(6)

The amplitude of each harmonic component An is obtained

from the energy spectrum as:

An =
√
2E(ωn)Δω (7)

where Δω is calculated from the cut-off frequency ωc and

the total number of harmonics N as Δω = ωc/N , and the

discrete frequency is ωn = nΔω. As can be observed from

 Frequency  [Hz]

E
n

e
rg

y
 [

m
2
/s

]

ωc

E

Energy-containing 

range

Figure 3. Energy spectrum of the air velocity measured within

the diffuser of the spunbonding rig at x = 350 mm (see Part I).

LT

Fibre

Figure 4. Schematic of a portion of fibre in a turbulent flow with

integral length scale LT .

the energy spectrum in the diffuser (Figure 3), a reasonable

simplification is to consider only the low-frequency portion

of the spectrum where the energy is constant up to a cut-off

frequency ωc

E(ω) =

{
Ē 0 ≤ ω ≤ ωc

0 ω > ωc
(8)

Once ωc is known the constant energy component Ē is

obtained from the turbulent kinetic energy u2 of the velocity

signal by means of

u2 = 〈u(t)2〉 =
∫ +∞

0

E(ω) dω (9)

which leads to u2 = Ē ωc.

So far we considered only the time scale of the turbulent

velocity in Equation 5 without mentioning how the signal

varies in space. The integral time of turbulence, which is

defined as the time lag necessary for two velocity data

measured at one point to become uncorrelated, can be

estimated from the velocity history as

TI =

∫ ∞

0

RU (τ)

RU (0)
dτ (10)

where RU (τ) is the autocorrelation function of a single

velocity time-history record

RU (τ) = lim
T→∞

1

T

∫ T

0

U(t)U(t+ τ) dt (11)

Once TI is calculated by Equation 10 the length scale

of the fibre-turbulence interaction can be defined through

Taylor’s hypothesis of frozen turbulence24, which states

that turbulent eddies are dragged by the mean air flow

and therefore travel at the mean flow velocity. Under this

assumption the turbulent length scale is LT = TI U , which

corresponds to the distance at which two air velocity signals

are uncorrelated. Using this technique the turbulence length

scale was measured in Part I, and it was shown that in the

spun-bonding diffuser LT is in the range 19 - 23 mm.

Figure 4 shows this picture for a fibre immersed in a turbulent

air flow characterized by mean velocity U and turbulence

length scale LT . In this formulation uncorrelated eddies

interact with the fibre at intervals of LT along the fibre

length, which can be modelled as a turbulent air drag force

that acts at regular intervals LT along the fibre.
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x

y
z

mi

Ft

Fb

Fgrav

Fair

Ei

kb mi+1

kt

Figure 5. Schematic of a fibre subject to gravity and an air drag

force (left), modelled as a series of beads connected by linear

and rotational springs (right).

Model description

Fibre formulation

In the spunbonding process the fibre-air flow interaction can

be divided into two steps. In the first stage, which takes

place in the contraction, molten filaments are aligned with

the accelerated air stream and solidify into fibres under a

skin friction drag force. Then, in the diffuser, the increase of

turbulence intensity produces random fibres oscillation with

an amplitude that grows downstream in the diffuser. In this

study we focus on the behaviour of a fibre in the diffuser.

In the model the fibre has length L, diameter d, and is

discretised into N elements Ei with a length l equal to the

turbulent length scale LT characteristic of the turbulent flow,

as shown in Figure 5. The mass of a fibre element Ei is

Δm = ρf lπd
2/4, where ρf is the density of the fibre, and

is concentrated at the element ends i and i+ 1. As a result

the fibre is formed by a chain of N + 1 beads with mass

mi = Δm for i = 2, . . . , N , and mi = Δm/2 for i = 1 and

i = N + 1.

Dynamic equations of fibre motion

With reference to Figure 5 the position of the i-th bead is

described by ri = xii+ yij+ zik where i, j,k are the unit

vectors aligned with the Cartesian frame x, y, z. The fibre

beads are subject to (1) an air drag force Fair, (2) a gravity

force Fgrav, as external forces, and (3) a tensile elastic force

Ft, and (4) a bending elastic force Fb, as internal forces. The

dynamic equations that govern the fibre motion are

mi

d2ri
dt2

= Fair,i + Ft,i + Fb,i + Fgrav,i (12)

In the simulations the fibre starts aligned with i and the

gravity force at the ith bead is Fgrav,i = migi where

g = 9.81 m/s2 is the gravity acceleration.

Air drag force

The air drag force is evaluated at the centre of a fibre element

Ei in terms of the velocity of the air flow relative to the fibre

u

v

w

mi

mi+1

ti

ui

ni

Vi

Figure 6. Fibre element subject to air flow velocity with the

local frame where the air drag force is defined.

element evaluated at the element centre of mass

Vi = Ui − 1

2

(
dri
dt

+
dri+1

dt

)
(13)

where Ui is the air flow velocity obtained using Equations 5-

6. To calculate the air drag force with Equations 1-4, is

necessary to decompose the relative velocity Vi into two

directions ti and ni respectively tangential and normal to the

fibre axis, as shown in Figure 6. The tangential direction is

defined as

ti =
ri+1 − ri

|ri+1 − ri| (14)

while for the normal direction it is necessary first to define

the plane that contains both the fibre axis and the air velocity

ui = ti ×Vi (15)

then the normal direction is calculated as

ni =
ti × ui

|ti × ui| (16)

It follows that the tangential and normal air velocity are

Vt =(V · t) t (17)

Vn =(V · n)n (18)

and the tangential skin friction force and the normal drag

force from Equations 1-3 are

Ft =
1

2
πdlρaCfV

2
t t (19)

Fn =
1

2
dlρaCnV

2
nn (20)

where Cf is calculated using β = 0.9 for a single fibre in

a tube20. The total drag force in the fibre element is F =
Ft + Fn and, since each bead mi shares two elements Ei−1

and Ei, the air drag force acting on the i-th bead is

Fair,i =
1

2
(Fi−1 + Fi) (21)

Tensile force

An internal elastic force that restores the initial length l of

a fibre element along the tangential direction t is included

in the model. This is modelled by a linear spring that
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applies at the two ends of the fibre element a force which

is proportional to the elongation of the element

ft,i = kb (|ri+1 − ri| − l) (22)

where the spring constant is

kb =
Eπd2

4l
(23)

and E is the Young modulus of the material. As a result the

tangential force on the i-th bead is the sum of the contribution

from the elements Ei−1 and Ei

Ft,i = −ft,i−1ti−1 + ft,iti (24)

Bending force

From slender beam theory the curvature κ of the centreline of

a beam is related to the applied bending moment Mb through

κ =
Mb

EI
(25)

where the curvature is κ = dθ/ds and θ(s) is the orientation

of the centreline. In the model the bending stiffness is

modelled by a rotational spring at node i that applies a

bending moment which is proportional to the misalignment

of two adjacent fibre elements, namely

Mi = −kbΔθiun,i (26)

where kb = EI/l, un,i is the normal to the plane that

contains the tangents vectors ti−1 and ti

un,i =
ti−1 × ti

‖ti−1 × ti‖ (27)

and the misalignment between adjacent fibre elements is

Δθi =
ti−1 · ti

‖ti−1‖‖ti‖ (28)

In the lumped mass formulation the rotational dynamic

equations are suppressed and moments are converted into

forces applied at the node positions. From beam theory the

bending moment is related to the shear force by S = dM/ds.

Following a similar approach to van den Boom et al. 25 the

discrete shear forces on the fibre elements are

Si−1 = (Miu
(i−1)
b,i −Mi−1u

(i−1)
b,i−1)/l (29)

Si = (Mi+1u
(i)
b,i+1 −Miu

(i)
b,i)/l (30)

where the bi-normal vector

u
(j)
b,i = un,i × tj (31)

defines the direction of the shear force applied to element j
by the bending moment at node i, as shown in Figure 7. The

force component acting on the i-th node is obtained from the

shear force vectors on adjacent elements:

Fb,i = Si−1 − Si (32)

u

v

w

mi-1

mi

mi+1

θi

ti-1

ti

un, i

ub, i+1,i

ub, i-1,i

Figure 7. Schematic of two adjacent fibre elements and the

unit vectors used for the bending forces definition.

Accuracy and convergence of dynamic

simulations

Dynamic simulations of fibre motion in a turbulent flow

were undertaken by integrating Equation 12 in the time

interval [0, 1 s] using a semi-implicit Euler scheme and the

parameters listed in Table 1. The energy of turbulence is

given by the non-dimensional turbulent intensity Tu, which

represents the ratio between the rms u and the mean velocity

U . The boundary conditions were r1 = (0 0 0)T , at the first

node, and a free end boundary condition at the end node, to

reproduce the configuration of the experiments in Part I.

The accuracy of an explicit integration scheme strongly

depends on the length of time step h; in particular if the

solution has an oscillatory behaviour it is necessary to use

very small time steps26. A solution that is often adopted

is to include physical damping in the model to reduce

the amplitude of the oscillations. This however has two

drawbacks: it modifies the natural dynamic solution if the

system is over damped, and it requires even smaller time

steps to reach a stable solution27. Therefore, it was decided to

exclude damping from the governing dynamics of the fibre.

According to the theorem of energy of a dynamical system28

the kinetic energy of the system is equal to the work done

by the applied forces. This equality was used to verify

the accuracy and convergence of a simulation through the

difference between the total work done on the masses and

kinetic energy of the fibre during the simulation. The kinetic

energy of the fibre at time tk is

T (tk) =
N∑
i=1

1

2
mi‖vk,i‖2 (33)

where vk,i = vi(tk) is the instantaneous velocity of the i-th
bead. The work done on the fibre is given by the sum of the

contribution on each bead. By definition the work done on

the i-th bead that moves along the path Γ as a results of the

applied force Fi is

Wi =

∫
Γ

Fi · dri (34)

where Fi is the total force on bead i. During the simulation,

the work at time tk can be evaluated through the trapezoidal
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(a)

h = 2 x10
-6 

s

h = 1 x10
-6 

s

h = 0.5 x10
-6

 s

(b)

Figure 8. Accuracy of the model, (a) fibre at the end of the simulation and (b) evolution of the error ε for three different time steps.

Note the magnification along the X-Z axes in (a)

Table 1. Parameters used for the simulations

d U Tu LT f E ρf
(μm) (m/s) (-) (mm) (Hz) (GPa) (kg/m3)

50 10 0.1 50 100 2 950

rule as

W (tk)i =
k−1∑
j=1

1

2
(Fj,i + Fj+1,i) · (rj+1,i − rj,i) (35)

and the total work on the fibre is obtained as the sum over the

N beads.

Figure 8a shows the profile of the fibre at the end of a

simulation carried out in Matlab R2012a using a time step

h = 10−6 s, which required 2.7 hours of CPU time on an

Intel 1.97 GHz, 3.25 GB of RAM. The evolution of the error

εk =
|Wk − Tk|

Tk

× 100 (36)

is presented for three different time steps in Figure 8b.

This demonstrates the good stability of the model, and that

the accuracy of the simulation increases by decreasing the

time step, as shown by the tendency of ε to offset towards

lower error values for smaller time steps. Since decreasing

the time step increases the CPU time proportionally, the

simulations presented in the next section were carried with

a time step h = 10−6 s, which correspond to an error of less

than 1%.

Fibre behaviour in turbulent flows

In Part I the amplitude of motion of a filament with diameter

200 μm and a fibre with diameter 18 μm were measured

in a spunbonding diffuser. In this section we extend the

investigation numerically, using the fibre model to predict

the amplitude and frequency of fibre oscillation as a function

of the measured air flow parameters and the fibre diameter.

The effect of mean air velocity, turbulent intensity, frequency

of turbulence, fibre diameter, and turbulent length scale

was studied by varying individually the parameters listed in

Table 1, for a fibre of length 1 metre. The turbulent drag

force was calculated using the air velocity components along

the x, y and z directions independently generated using

Equations 5-6.

The random fibre oscillatory motion was characterised in

terms of the end node position r(t)N+1. The amplitude

of motion was measured by the standard deviation of the

displacement along the y and z directions, and the frequency

of the random oscillations as the number of times the node

crosses the planes x− z and x− y divided by 215. All the

results are presented as mean values calculated over ten

simulations obtained with different turbulent air velocity

histories.

Figure 9 shows that both the amplitude and the frequency

of the fibre motion grow almost linearly with the mean

air velocity, due to the increased air drag force acting

on the fibre. A similar behaviour is observed also when

the fluctuating turbulent velocity is increased, as shown in

Figure 10. In this case however, the frequency of oscillation

increases until Tu = 0.15 and then is nearly constant. The

results for the amplitude are in line with the observation for

the single fibre in Part I, although in the simulations the mean

and the fluctuating air velocity are varied independently,

whereas in the spun-bonding diffuser they are connected.

The fibre diameter has a twofold effect on the behaviour of

the fibre. By increasing the diameter of the fibre the area of

the elements exposed to the air flow increases, so increasing

the air drag force. However, as the fibre diameter grows,

the inertia and the gravity force become progressively more

significant, and the amplitude of oscillation is reduced. This

explains the sigmoidal shape of the plot in Figure 11a. Again,

the results are in agreement with the measurement in Part I,

where the amplitude of motion for the filament with diameter

200 μm is bigger than the amplitude of motion for the fibre
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Figure 9. Role of the mean air velocity in the fibre dynamics: (a) standard deviation of the end node motion, and (b) frequency of

oscillation of the end node, along the y direction (circles) and the z direction (triangles).
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Figure 10. Role of the turbulent intensity in the fibre dynamics: (a) standard deviation, and (b) frequency of oscillation of the end

node, along the y direction (circles) and the z direction (triangles).

with diameter 18 μm.

The turbulent length scale LT represents an estimate of

the interval at which turbulent drag forces are uncorrelated

along the fibre. Figure 11b shows that, as the turbulent

length scale LT increases, the amplitude of fibre motion

increases. Note that by increasing LT the number of fibre

elements decreases, and a reduced fibre displacement could

be expected as a result of apparent geometrical stiffness9.

However, due to tensile force applied by the air flow, the

fibre is mainly straightened along the mean flow direction,

which confirms the results of the model and the validity of

our turbulent force formulation.

Figure 11c shows the effect of varying the cut-off frequency

in the energy spectrum, while keeping constant the total

energy, i.e. for a constant value of the turbulent velocity

u. The amplitude of fibre motion strongly decreases when

increasing the frequency of turbulence. This is in line

with the expected role of the the turbulent length scale,

as decreasing LT is equivalent to increasing the spatial

frequency of turbulence.

Concluding discussion

Fibre dynamics in turbulent flows

In the spun-bonding process the fibre web develops during

the laydown as a result of the fibre motion at the exit of

the diffuser and the interaction with the conveyor belt. In

the companion paper, Part I, it was observed that before

deposition the fibres oscillate randomly with an amplitude

of motion that depends on parameters of the air flow in the

diffuser, and on the diameter of the fibre.

In this paper, Part II, we presented a three-dimensional

model that simulates the dynamics of fibres in turbulent

flows. The model guarantees good accuracy and stability

which allows for applications in nonwoven textiles fibres,

where the large magnitude and frequency of oscillation of
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Figure 11. Standard deviation of oscillation of the end node, along the y direction (circles) and the z direction (triangles), as a

function of (a) the fibre diameter, (b) the turbulent length scale, and (c) the frequency of turbulence.

the air drag, compared to the low inertia of the fibre, make it

difficult to obtain realistic numerical simulations.

The amplitude and frequency of fibre oscillation have been

studied at the free end of the fibre, as a function of the

measured air flow parameters. The amplitude of fibre motion

increases with the mean air flow velocity, the turbulent

intensity, the fibre diameter, and the turbulent length scale,

whereas it decreases with the frequency of turbulence.

The results for the flow velocity and fibre diameter agree

qualitatively with those measured in the first part of this

paper, and are a crucial prerequisite for understanding the

development of the fibre geometry during deposition.

Fibre laydown and future work

The coiling of ropes laying on to a horizontal plane

has been studied both mathematically and experimentally.

Mahadeven29 showed numerically that the coiling radius of

the rope is a function of the feeding velocity, the stiffness,

and the density of the rope. Previously Hearle30–32 found in

his experiments that a thread which is laid on to a moving

belt assumes the form of a modified cycloid whose shape

is a function of the feeding height, the elasticity of the

thread, and the velocity of the belt. Unfortunately, it is not

possible to translate directly these results to the laydown

of nonwoven fibres due to the predominant effect that the

air drag force has over the fibre stiffness, and the effect of

the air suction towards the conveyor belt that affects the

fibre-belt contact forces. However, there is no doubt that

the oscillation of the fibre that exits the diffuser is directly

related to the motion of the fibre point of deposition, and that

this determines the geometry of the web. In the spunbonding

process turbulence is used to enhance the fibre motion and

increase the isotropy of fibre orientation in the web, but if the

intensity of turbulence is too high then the areal density of

the web becomes progressively less uniform and the quality

of the material is compromised.

A full investigation of the web formation requires a detailed

study of the fibre laydown which combines fibre motion

with the fibre coiling and the effect of the fibre-belt contact.

This paper and its companion, Part I, have shown how the

fibre displacement is influenced by the fibre diameter and the

parameters of the air flow. Further air flow measurements and

computational fluid dynamics simulations are necessary for
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a better understanding of how to control these parameters in

the spunbonding process, these topics are beyond the scope

of this paper. A detailed dynamic model for the fibre laydown

is under development, which will use the result of amplitude

and frequency of fibre motion outlined in this work to study

the pattern of fibres laying on to the web33.
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