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1 Introduction

It is a well known fact in condensed matter and statistical physics that the dynamics

of many systems simplifies drastically in the limit of large space dimensions d − 1 [1–9].

Analytical results are typically obtained for d → ∞ [1, 2] and, in some cases, it is also

possible to compute explicitly small corrections [7] due to a large but finite dimensionality

by a 1/d expansion. A typical example is the Hubbard model in the strong coupling

region where in the large d limit the problem maps onto a mean-field quantum impurity

model that is solved self consistently. Meaningful results are only obtained [1] after the

kinetic energy is properly rescaled so that the trivial non-interacting limit is avoided for
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d→∞. The application of these ideas to the Hubbard model was a key step for the later

development of dynamical field theory [8]. Another problem in which large d expansion

is relevant is that of a particle in a random potential. According to the selfconsistent

theory of localization, [10] explicit analytical results for the critical disorder that induces a

metal-insulator transition are only known for a Cayley tree geometry which corresponds to

a lattice of infinite dimensionality. However, there is still qualitative agreement with the

numerical results in a three dimensional lattice [11].

Similarly, many problems in percolation [9] and spin chains [6] have explicit analytical

results in the limit of large spatial dimensions. In many of these cases just keeping the

leading term in the 1/d expansion is enough to find good agreement with experimental or

numerical results [3] in d = 3. In the context of quantum gravity, large d expansions have

also been employed [12, 13] to simplify Feynman diagrams in a spirit similar to the large N

approximation, broadly used in quantum chromodynamics, N = 3, and other gauge the-

ories. However, renormalization of quantum theories of gravity is even more problematic

as dimensionality increases so it is not clear whether it is a viable approximation scheme.

The situation is different in classical theories of gravity which are finite for any dimen-

sionality. The study of properties of black holes [14] and general relativity [15] in large

dimensions has shown that there are intriguing features that only occur for a sufficiently

large number of dimensions. More recently [16–18] this large d limit was studied in the con-

text of AdS spaces and then applied, by AdS/CFT techniques, to the study of holographic

superconductors [16].

One of the main conclusions of [16] is that it is possible to find an explicit analytical

expression of the critical temperature in the limit of large dimensionality and negligible

backreaction of the scalar on the metric and on the gauge field. Even for d = 2 + 1, this

simple analytical prediction for the critical temperature is already a good approximation

of the numerical results. Moreover, as dimensionality increases the condensation of the

scalar occurs always close to the horizon as the gravitational effects of the black hole are

only important in this region.

In this paper we continue the study of holographic superconductors in the large d limit

with a twofold motivation. Firstly, we aim to emphasize the usefulness of large d expansions

in holography by carrying out analytical calculations of the entanglement entropy and the

conductivity that are only possible in this limit. Secondly, we seek to clarify the qualitative

effect of dimensionality in holography. We have found that as d increases the coherence

peak becomes narrower and the ratio between the energy to break the condensate and the

critical temperature decreases. This is a strong suggestion that the effective coupling that

controls the interactions of the condensate seems to be weaker as dimensionality increases.

The organization of the paper is as follows: in section 2 we introduced the two models

that we employ to study a large d holographic superconductor, then in section 3 we compute

numerically the conductivity up to d = 9. Based on these results we compute in section 4

the superconducting energy gap, roughly the maximum of the conductivity, and the order

parameter 〈O〉 as a function of d. We also discuss certain ambiguity in the relation between

these two quantities. In section 5 we study analytically at T = 0, the low and large

frequency-dependence of the electrical conductivity. Similarly, in section 6, we provide
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simple analytical expressions for the entanglement entropy between a rectangular strip

and its complement in the boundary; we analyze both the case T = 0 and T ∼ Tc.

2 Models

We study the dimensional dependence of holographic superconductivity [19, 20] in two

models, one at T = 0 and other at T > 0.

2.1 d-dimensional holographic superconductivity at T = 0

For the T = 0 limit we choose the model introduced in ref. [21], to describe a quantum

critical point with spontaneous symmetry breaking,

S =

∫
dd+1x

√
−g
[
R− 1

4
F 2 − |∂µψ − iq2Aµψ|2 − V (|ψ|)

]
, (2.1)

where

V (|ψ|) = 2Λ +m2|ψ|2 +
u

2
|ψ|4, (2.2)

Λ = −d(d − 1)/2L2 is the cosmological constant, m2 < 0 is the scalar mass and u > 0.

Symmetry breaking is directly related to the existence of a minimum of the potential at

|ψ| = ψIR =
√
−m2/u 6= 0.

Following [21] we consider the metric ansatz

ds2 = e2A(r)
(
−h(r)dt2 + dxidxi

)
+

dr2

h(r)
, (2.3)

i = 1, . . . , d − 1, such that in the infrared limit A(r) = r/LIR and h(r) = 1 where LIR is

defined through −d(d−1)
L2

IR
≡ V (|ψIR|).

In order to recover the SO(d-1,1) Lorentz symmetry and SO(d,2) conformal symmetry

deep in the IR the metric should approach

ds2
IR = e2r/LIR

(
−dt2 + dxidxi

)
+ dr2 (2.4)

where we have imposed

h(r)→ hIR = 1, A(r)→ r

LIR
, as r → −∞. (2.5)

Similarly, in the UV limit, the appropriate symmetries are restored provided,

h(r)→ hUV, A(r)→ AUV
r

L
, as r →∞, (2.6)

with hUV and AUV constants related by the rr component of the Einstein equations:

(d− 1)(A′h′h+ dh2A′2) + hV (|ψ|)− h2ψ′2 − e−2Aq2ψ2φ2 +
h

2
e−2Aφ′2 = 0, (2.7)

where φ is the t component of the gauge field. Evaluated at the UV boundary, the previous

equation, yields

hUV =
1

A2
UV

. (2.8)
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Moreover, the null energy condition requires hUV > hIR = 1 [21] which means that AUV <

1. At the same time, A(r) must increase monotonically in the whole range −∞ < r < ∞
and the slope in the UV-limit must be lower than in the IR-limit, i.e., AUV/L < 1/LIR, [22].

The resulting equations of motion are,

ψ′′ + ψ′
(
h′

h
+ dA′

)
+ ψ

q2φ2

e2Ah2
+
V ′(|ψ|)

2h
= 0, φ′′ + φ′(d− 2)A′ − φ2ψ2q2

h
= 0,

h′′ + dh′A′ − 2

h
q2φ2ψ2e−2A − φ′2e−2A = 0, A′′ +

1

d− 1
ψ′

2
+
e−2Aq2φ2ψ2

(d− 1)h2
= 0

(2.9)

with boundary conditions in the IR-limit (r → −∞),

φ ∼ φ0e
r

LIR
[∆φIR

−(d−2)]
, ψ = ψIR + aψe

r
LIR

(∆ψIR
−d)

, (2.10)

where ∆φIR
and ∆ψIR

are the larger roots of: ∆φIR
[∆φIR

− (d − 2)] = 2q2ψ2
IRL

2
IR and

∆ψIR
(∆ψIR

− d) = 1
2V
′′(ψIR)L2

IR = −2m2L2
IR. Similarly in the UV limit (r →∞),

φ = µ− ρe−∆φUV
r
L , ψ = ψUVe

− r
L
AUV(d−∆ψUV

), (2.11)

where, ∆φUV
= d−2 and ∆ψUV

is the smaller root of: ∆ψUV
(∆ψUV

−d) = m2L2/(hUVA
2
UV).

The boundary conditions for h and A are given in eqs. (2.5) and (2.6). Moreover, we will

take the parameters m2 and u such that the operators dual to ψ and φ are irrelevant in

the IR so that the IR AdS space is a fixed point of the RG flow. Repeating the argument

presented in [23] it is straightforward to see this corresponds, in our notation, to:

∆ψIR
> d, ∆φIR

> d− 1. (2.12)

2.2 d-dimensional holographic superconductivity at T > 0

For the study of holographic superconductors at finite temperature we employ the, by now,

standard model introduced in [19, 20] by coupling anti-de Sitter gravity to a Maxwell field

and a charged scalar and a quadratic (in |ψ|) potential. Here we state the action and

equations of motion in d dimensions directly in order to settle down notation and refer to

the reviews refs. [24, 25] for more details. The action is given by,

S =

∫
dd+1x

√
−g
[
R− 1

4
F 2 − |Dµψ|2 − V (|ψ|)

]
, V (|ψ|) = −2Λ +m2|ψ|2, (2.13)

with Dµ = ∂µ − iq2Aµ. In probe limit, corresponding to a negligible backreaction of the

scalar and the Maxwell field on the geometry, is simply given by the planar-Schwarzchild

AdS black hole,

ds2 = − r
2

L2
h(r)dt2 +

L2dr2

r2h(r)
+ r2dxidxi, i = 1, . . . , d− 1, (2.14)

with h(r) = 1− rd0/rd. Assuming for the moment that the only component of the Maxwell

field is At = φ(r) it is straightforward to obtain:

ψ′′ + ψ′
(
h′

h
+
d+ 1

r

)
+ ψ

φ2

r4h2
+
V ′(|ψ|)
2r2h

= 0, φ′′ + φ′
d− 1

r
− φ2ψ2

r2h
= 0. (2.15)
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The boundary conditions are fixed from to the usual expansions:

ψ(r →∞) =
α

r∆−
+

β

r∆+
+ . . . , φ(r →∞) = µ+

ρ

rd−2
+ . . .

ψ(r → r0) = ψ0 + ψ1

(
1− r0

r

)
. . . , φ(r → r0) = φ1

(
1− r0

r

)
+ . . . ,

(2.16)

where ∆± = 1
2

(
d±
√
d2 + 4m2L2

)
and ψ1 is given in terms of the undetermined constants

ψ0, φ1.

3 Electrical conductivity in the large d limit: T > 0 case

We start our analysis by computing the electrical conductivity, σ, at T > 0. For the sake

of completeness we review the procedure to compute it for a general d. To this end one

should add a perturbation to the vector potential δA = Ax as well as one to the metric

δg = gtx. However, we will solve for σ numerically in the probe limit where,

ds2 =
1

z2

(
f(z)dt2 +

1

f(z)
dz2 + dx2

i

)
, f(z) = 1− zd, i = 1, . . . , d− 1, (3.1)

with z = 1/r, and choosing the horizon position z0 = 1 and L = 1. As usual, the linear

response of an operator, in our case the current Jµ(x), to an external source or field

perturbation, Ax, is related, in momentum space, to the retarded Green’s function, [24]:

δJx(k) = G̃xxR (k)δÃx(k), (3.2)

where k = (ω,~k) is the d-momentum and G̃xxR (k) is the Fourier transform of the retarded

Green’s function. Moreover, the charge current response to an electric field is J i(ω) =

σij(ω)Ej(ω), with Ex = −∂tAx(t, z, x), Ax(t, z, x) = eiωtAx(z, x), therefore, it follows that,

σxx(ω) =
G̃xxR (ω, 0)

iω
. (3.3)

We now compute this Green’s function following the procedure first outlined in ref. [26].

First, we write the Fourier transform of the vector potential,

Aµ(z, x) =

∫
ddk

(2π)d
eikxÃµ(z, k) (3.4)

where kx = −ωt + ~k · ~x and Ã
(0)
µ (k) = Ãµ(z = 0, k) is defined from the boundary value

Aµ(z = 0, x). The Fourier transform of the gauge-field-part of the action leads to,

Sgauge =

∫
ddk

(2π)d
F(k, z)

∣∣∣∣z=1

z=0

+ . . . , F(k, z) = −
√
−ggzzgxx

2
Ãx(z,−k)∂zÃx(z, k), (3.5)

where the dots correspond to terms not containing Ax and its derivatives. The final ex-

pression for the conductivity is obtained by combining the proposal of ref. [26] G̃xxR (ω, 0) =

−2 δ2

δÃ
(0)
x (−k)δÃ

(0)
x (k)

limz→0F(k, z) together with eq. (3.3),

Re[σ(ω)] =
1

iω

δ2

δÃ
(0)
x (−ω)δÃ

(0)
x (ω)

lim
z→0

√
−ggzzgxxÃx(z,−k)∂zÃx(z, k)

∣∣∣∣∣
~k=0

. (3.6)
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In order to compute Ãx(z, k) we write the equation for Ax(z, x) in the fixed background

given in eq. (3.1). As was mentioned above, we assume a harmonic time dependence for

Ax. The derivatives are taken with respect to the holographic coordinate, z:

A′′x +

(
−d+ 3

z
+
f ′

f

)
A′x +

(
ω2

f2
− |

~k|2

z2f
− 2ψ2

z2f

)
Ax = 0, f = 1− zd. (3.7)

Finally, we impose the usual boundary conditions, in-falling close to the horizon, Ax ∼
(f/z2)−iω/d(1 + . . . ) and Ax ∼ A

(0)
x + A

(1)
x gd(z, ω) close to the boundary. The function

gd(z, ω) is easily obtained, for each d, by solving the asymptotic expansion of eq. (3.7),

appendix C. By combining eqs. (3.4) and (3.7) we obtain an analytically solvable differential

equation for Ãx(z, k) at zero spatial momentum, which in the z → 0 limit reduces to,

Ã′′x(z, ω) + Ã′x(z, ω)
3− d
z

+ Ãx(z, ω)ω2 = 0. (3.8)

We choose the regular solution at z = 0. We note that at ω = 0 the conductivity Re(σ)

develops a delta function as a consequence of the translational invariance of the system.

For odd d we have now all the ingredients to compute the conductivity σ(ω) (3.6).

However for even d, logarithmic divergences at non-zero ω appear [27]. In order to study

the large-d limit of σ, it is enough to restrict our analysis to odd d. Therefore, in order to

avoid the intricacies of adding the counterterms to the action to remove the divergences

mentioned above, we take the prescription for d = 4 given in [27] and for d = 3, 5, 7, 9 we

employ eq. (3.6).

3.1 Numerical calculation of the conductivity at low temperature for d ≤ 9

In this section we compute numerically the electrical conductivity in the probe limit for

3, 4, 5, 7 and 9 dimensions of the dual boundary theory and for two scalar masses m2 =

0, d+ 1. We follow the procedure described in the previous section and solve the resulting

differential equations by the shooting method. See appendix C for the specific expressions

of the electrical conductivity in each dimension. The results depicted in figure 1 and

figure 2 indicate that as dimensionality increases, the coherence peak becomes narrower

and the position to the peak ωg moves to lower frequencies. The physical interpretation

of these features is clear. The condensate becomes less coupled as it costs less energy to

break it (smaller ωg) as d increases. Moreover, the effective bulk coupling also decreases

as a narrower coherence peak is a signature of a longer life-time of the relevant excitations

around ωg. A tentative explanation of this behaviour in the gravity dual is that [15, 16] as

the dimensionality increases the condensation of the scalar gradually occurs closer to the

horizon which corresponds to the less strongly interacting limit of the dual field theory. A

natural question to ask is whether the gravity dual has a well defined limit for d → ∞.

In order to answer this question in figure 3 we plot ωg/Tc as a function of d. The ratio

decreases monotonically as d increases and it is likely to converge to a finite value in the

d → ∞ limit still above the prediction ∼ 3.528 of the Bardeen-Cooper-Schrieffer (BCS)

theory of weakly coupled superconductors. It seems that this limiting value only depends

weakly on the scalar conformal weight. More specifically we expect this result to hold

– 6 –
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Figure 1. Conductivity (3.6) in different dimensions for a massless scalar field at T/Tc ∼ 0.1.

As the dimensionality increases the coherence peak is narrower and moves to the region of lower

frequencies.

provided that both the chemical potential, related to the kinetic energy, and the conformal

weight, related to interaction energy, have the same scaling with d. It would be interesting

to explore whether there exists a strict minimum bound for this quantity in the large d

limit. A few comments are in order: a) we omit the case d = 3 for m2L2 = d+ 1 in what

follows since we have observed an anomalous behavior of the AC conductivity similar to

that reported in ref. [27], b) in figure 2, corresponding to m2L2 = d+1, the ‘crossing point’

where all curves meet, ω/Tc ∼ 7, is slightly blurred due to the presence of extra poles,

not shown, at lower frequency [27], c) although for m2L2 = d + 1 we found difficult to

decrease the temperature below T/Tc ∼ 0.6 it is clear, see figure 3, that the behavior for

both masses is strikingly similar.

4 Relation between the order parameter 〈O〉 and ωg in the large d limit

In BCS superconductors the coherence peak in the conductivity is simply two times the

value of the order parameter also referred to as the superconducting energy gap. Physically

it means that since a Cooper pair is composed of two electrons it takes twice the energy

gap to break a Cooper pair and place these two electrons in the first state available above

the Fermi energy. For strongly coupled superconductors there is no clear relation between

these two quantities as the coherence peak broadens substantially and in some materials the
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Figure 2. Conductivity (3.6) in different dimensions for m2L2 = d+ 1 at T/Tc ∼ 0.6. Results are

similar to those of figure 1 for m = 0.

quasiparticle picture based on the Fermi liquid approximation breaks down. However, in

the context of holographic superconductivity it is well known [28] that these two observables

are still comparable, though the relation between them is not universal and different from

the BCS prediction [29]. We now study to what extent this relation still holds in the large

d limit. The order parameter 〈O〉 is computed by following the usual steps. First we find

the numerical solution of the equations of motion eq. (2.15) by the shooting method for a

scalar field, ψ(r), charged under the gauge field At = φ(r) in a non-dynamical Schwarzchild

background, i.e., in the probe limit. We consider a fixed charge density and different scalar

masses. The order parameter is simply 〈O〉
1
∆ = [(2∆− d)β]

1
∆ , where ∆ is the conformal

dimension of the operator dual to ψ, d is the number of dimensions of the dual theory, and

β is given in the boundary condition, eq. (2.16). In table 1 we present results for ωg and

〈O〉 for different dimensions and masses. As dimensionality increases 〈O〉 becomes much

smaller than ωg. Indeed, it seems that the ratio 〈O〉1/∆/ωg → 0 as d→∞. Presently we do

not have a solid explanation for this discrepancy. A finite value of the order parameter 〈O〉
in holographic superconductivity is interpreted as a signature of spontaneously symmetry

breaking rather than a energy gap in the spectrum. It might therefore be that these

two quantities are not related and the similar value in low dimensions is a coincidence.

Another more speculative explanation is that the standard recipe to compute 〈O〉 misses

some dimensionality prefactor. We went over the original derivation of the expression for

the order parameter but we could not find any discrepancy with the expression used above.
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Figure 3. Ratio between the peak of the conductivity ωg and the critical temperature for m2L2 = 0

(∆ = d) at T ∼ 0.1Tc, and m2L2 = d+1 (∆ = d+1) at T ∼ 0.6Tc as a function of the dimensionality.

It always decreases as d increases and only depends weakly on the scalar mass m2, see figures 1, 2.

The horizontal black line indicates the approximate position of the crossing point in figures 1 and 2,

which we also expect to correspond to the location of the peak of the conductivity for d → ∞
limit. We note that even in the d → ∞ limit the ratio is still substantially larger than the BCS

prediction 3.528.

However we found that by rescaling, see figure 4, 〈O〉 by Γ(∆) the ratio seems to converge to

a finite positive value in the d→∞ limit.1 Whether this is just a coincidence or has a deeper

physical meaning remains to be understood. Finally, we note the fact that the rescaling

by Γ(∆) depends on the scalar mass indicates that it is not related to the dimensional

dependence of the coupling constant in the action which is usually set to the unity.

5 Analytical calculation of the conductivity at T = 0 for different

dimensions

We now switch to the background introduced previously in section 2.1 to describe holo-

graphic superconductivity at T = 0. From now the main focus of the paper will be to

compute analylitically the conductivity and later the entanglement entropy in the large d

limit in order to illustrate the interest of large 1/d expansion in holography.

In this section we compute the electrical conductivity at zero temperature. As was

mentioned previously one must consider fluctuations of Ax(t, r) and gtx(t, r), [20], which

source an electric field Ex and carries momentum Ttx. These perturbations are usually

assumed to have a harmonic time dependence, Ax(r)e−iωt, gtx(r)e−iωt. Furthermore, the

1Our numerical results suggest [(2∆− d)β]
1
∆ → constant for d→∞. Thus, a factor depending only on

d such as Γ(d), instead of ∆, does not result in a finite 〈O〉1/∆/Tc in the the limit d→∞.
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ωg
Tc

〈O〉1/∆
Tc

〈Õ〉1/∆
Tc

〈O〉1/∆
ωg

〈Õ〉1/∆
ωg

d = 3 11.3 12.7 16.0 1.1 1.4

d = 4 10.0 8.7 13.6 0.9 1.4

d = 5 9.1 6.4 12.1 0.7 1.3

d = 7 8.4 4.1 10.5 0.5 1.3

d = 9 8.0 2.9 9.4 0.4 1.2

Table 1. Comparison of the position of the conductivity (3.6) coherence peak with the order

parameter 〈O〉 = (2∆ − d)β and the alternate definition 〈Õ〉 = (2∆ − d)Γ(∆)β, for m2L2 = 0

(∆ = d). Convergence for large d is only observed after the order parameter is rescaled by Γ(∆).

We do not have a clear understanding of why the order parameter and ωg have a different parametric

dependence on the dimensionality.

d

3 4 5 6 7 8 9 101

hO
i1

="
=
T

c

2

4

6

8
10
12
14
16
20

m2L2 = 0, " = d

m2L2 = ! d2!1
4 , " = d+1

2

m2L2 = ! 3
16d

2, " = 3
4d

m2L2 = d + 1, " = d + 1

Figure 4. Ratio between the order parameter close to zero temperature and the critical temperature

for different dimensions and scalar masses. Dashed lines correspond to the usual definition: 〈O〉 =

(2∆− d)β, continuous lines include a speculative factor Γ(∆), 〈Õ〉 = (2∆− d)Γ(∆)β. Only in the

latter case convergence of the ratio to a non-zero value in the d→∞ limit is likely.

Einstein and Maxwell equations are expanded in gtx(r) keeping only linear terms in Ax(r),

A′′x(r) +A′x(r)

[
(d− 2)A′ +

h′

h

]
+
Ax(r)

h

[
ω2

he2A
− 2q2ψ2 − φ′2e−2A

]
= 0. (5.1)

We then impose that near the UV boundary Ax(r) = A0 +A1e
−(d−2)A(r). In the infra-red

limit we expect the perturbation Ax to become small. This is indeed the case for d = 3

– 10 –



J
H
E
P
0
9
(
2
0
1
5
)
0
3
3

but not for d ≥ 4 [30] where it grows exponentially for r → −∞. This cast doubts about

the stability of the background to small perturbations in large dimensions. Indeed, it has

been observed that the addition of a gauge field increases the temperature of the dual field

theory [31] even in the limit of an extremal black hole. However a full stability analysis

is beyond the scope of the paper as the main motivation here is to employ the large d

limit as a computation tool to obtain analytical results. As in the d = 4 case studied in

ref. [32] we overlook the potential instability induced by the gauge field and proceed to

solve analytically eq. (5.1) in the following three different limits.

5.1 Low frequencies

The small frequency dependence of σ is studied by solving eq. (5.1) in the IR limit. The

scalar is now locked around its minimum, ψIR. By using the asymptotic values of A and h

in the IR limit eq. (5.1) simplifies to,

A′′x(r) +A′x(r)
d− 2

LIR
+Ax(r)

(
ω2

e2r/LIR
− 2q2ψ2

IR

)
= 0, (5.2)

where we have assumed that e
2r
LIR φ′(r)→ 0 as r → −∞. The solution of the above equation

can be written in terms of a Hankel function as:

Ax(r) = e
− d−2

2LIR
r
H(1)
α

(
ωLIRe

− r
LIR

)
, α = ∆φIR

−d− 2

2
=

1

2

√
(d− 2)2 + 8q2ψ2

IRL
2
IR. (5.3)

As was pointed out previously, [21, 28], the frequency dependence of the conductivity at

zero temperature is extracted from the conservation of the flux (∂rF = 0) with F =
−he(d−2)A

2i A∗x
←→
∂rAx,

Re (σ) ∝ F
ω|A0|2

. (5.4)

Notice that, modulo a factor i/2, the flux F coincides with the definition of F(k, z)

given in eq. (3.5), namely F(k, z) = −
√
−ggzzgxx

2 Ãx(z,−k)∂zÃx(z, k), where in this case

the metric is given by eq. (2.3). In the latter the holographic coordinate is r, instead of

z = 1/r, and we take the gauge field in position space instead of momentum space.

To obtain A0 we need to match the solution given in eq. (5.3) to Z(r), the solution of

eq. (5.1) with ω = 0, which is assumed to satisfy Z(r)→ e
− r
LIR

( d−2
2
−α)

as r → −∞.

For ω small enough, such that r∗ � rIR, where r∗ = LIR logωLIR and rIR is the scale

at which the geometry is significantly deformed from eq. (2.4), the convergent part of the

solution, eq. (5.3), is matched to Z(r) in the region r∗ � r � rIR:

Ax(r) ' C Z(r)(ωLIR)−α, (5.5)

where C is a constant. Therefore, taking the limit of the previous expression when r →∞
results in

A0 ∝ ω−α, (5.6)

and, from eq. (5.4), the conductivity is,

Re (σ) ∝ ω2α−1, (5.7)
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with α = ∆φIR
− d−2

2 = 1
2

√
(d− 2)2 + 8q2ψ2

IRL
2
IR. The exponent α that controls the

strength of the low energy excitations increases with d. This is a strong suggestion that,

in agreement to the results at finite temperature, high dimensionality suppress low energy

excitations and therefore make the system less strongly interacting. The d dependence of

the conductivity in low frequency limit was previously investigated in ref. [30]. However the

expression for the conductivity in [30] is not the same as eq. (5.7). We note that eq. (5.7)

agrees with the results of refs. [21, 32] for d = 3, 4 as well as with our numerical results up

to d = 9. We observe that as d increases, the region where eq. (5.7) is a good approximation

is restricted to smaller frequencies. Moreover, since for larger d the divergence in Ax is

stronger, see eq. (5.3), the numerical results become less reliable, and harder to obtain, in

this limit.

Finally we also note that, in Lifshitz backgrounds with hyperscaling violation, the DC

conductivity for small frequencies shows a similar power law behavior [33, 34]. It would be

interesting to carry out a 1/d expansion in these type of backgrounds in order to explore

universal features in the large d limit.

5.2 Large frequencies

We now explore the large frequency limit of the conductivity corresponding to the region

where the frequency ω is the largest energy scale in the problem, namely, it is much larger

than the chemical potential or the condensate. Since the conductivity has units of energy

to d−3 we expect that in this limit its real part ∝ ωd−3. This can be confirmed explicitly by

rewriting the prefactor in front of Ax in the third term of the left hand side of eq. (5.1) as:

1

h

(
ω2

h
e−2A − 2q2ψ2 − φ′2e−2A

)
. (5.8)

For ωL→∞ and r →∞ such that ωLe−r/L ∼ O(1), the last two terms are negligible with

respect to the first,

2q2ψ(r)2 + e−2A(r)φ′(r)2 ∼ 2q2ψ2
UVe

− r
L
AUV(d−∆ψUV

) +
ρ2(d− 2)2

L2
e−2d r

L , (5.9)

by virtue of the boundary conditions given in eq. (2.11). These terms are negligible com-

pared to the term ∝ ω2, which by assumption is

ω2

he2A
∼ O(1), (5.10)

in the region of r considered. For even larger r, the previous term becomes arbitrarily

small and no additional ω dependence is introduced. Thus, all the frequency dependence

of Ax is obtained, in this region of frequency, by setting the scalar to zero and h ' 1 and

A ' r/L. This leads to

Ax(r) = e−
d−2
2L

r

[
H

(1)
d−2

2

(
ωLe−

r
L

)
+ C2H

(2)
d−2

2

(
ωLe−

r
L

)]
, C2 ∈ R. (5.11)

C2 has to be determined from the solution in the bulk, however since we set h ' 1 and

A ' r/L in the whole domain of r, the solution in the IR is approximatively given by setting
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the solution above. Therefore, the ingoing boundary conditions imply C2 ∼ 0. Physically,

for large enough ω the perturbation is insensitive to the flow between the two AdS spaces,

and, in particular, to the presence of a nonzero scalar field in the degenerate horizon.

Close to the boundary, eq. (5.11) reads

Ax(r) ∼ Cω
2−d

2 + . . . , (5.12)

where C is a constant and the dots stand for terms which depend on ω but decay expo-

nentially with r. Therefore,

A0 = lim
r→∞

Ax(r) ∝ ω
2−d

2 (5.13)

and, as before, using eq. (5.4) leads to,

Re (σ) ' C−1
d ωd−3 (5.14)

with

Cd =
π

2
[Γ(2− d/2)]−2 2d−2. (5.15)

We note that this result is strictly valid for odd dimensions only. The case d = 4 has been

discussed in [27] where, it was found σ ' ω[π/2 + i(γ + log ω
2Tc

)] for large frequencies.

6 Analytical calculation of the entanglement entropy in d� 1

dimensions

The entanglement entropy is a valuable source of information of strongly interacting sys-

tems including the classification of the different quantum phases, the estimation of the

effective number of degrees of freedom of the theory, the rate of propagation of information

after a perturbation or the location and characterization of phase transitions even in cases

where there is no order parameter. In the context of holography it has also been intensively

investigated after the landmark conjecture of ref. [35] provided a relatively straightforward

procedure to compute it. Several papers [36–40] have already discussed the entanglement

entropy in holographic superconductors [37, 38], metal-superconductor transitions [39],

metal-insulators transitions [36] or in a superconducting interface [40]. It has been found

that the entanglement is a good observable to characterize these transitions. Its value is

always smaller in the condensed phase and has a discontinuity or a kink (discontinuous

derivative) that signals the transition point. It is also sensitive to a mass gap or to the

proximity effect in an interface. These calculations in holographic superconductors are

numerical as the calculation of the entanglement entropy requires to compute the backre-

action of the scalar and gauge fields on the background. The main goal of this section is

to show that explicit analytical results are possible in certain T = 0 backgrounds and also

around the critical temperature but only in the limit of large spatial dimensions. This is

a strong indication that 1/d expansions in holography broadens substantially the scope of

the problems that can be addressed analytically.
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6.1 Entanglement entropy at zero temperature

We now calculate analytically the entanglement entropy at zero temperature related to

the background eqs. (2.1)–(2.6). According to the usual prescription [35] proposed by

Takayanagi and Ryu, given a field theory in d dimensions, the entanglement entropy of a

region of space Ã and its complement is calculated from the gravity dual by finding the

minimal d− 1-dimensional surface γÃ which extends into the bulk such that ∂γÃ = ∂Ã. In

other words, the boundary of γÃ at the AdSd+1 boundary is equal to the boundary of Ã.

To illustrate the calculation we choose Ã to be a d − 1 dimensional strip of width `:

Ã = {x ∈ Rd−1 : −`/2 < x1 < `/2, −a/2 < xi < a/2, i = 2, . . . , d − 2}, where a is the

“length” of the strip. The entanglement entropy related to the metric eq. (2.3) is,

SÃ =
2ad−2

4Gd+1
N

∫ l/2

0
dxe(d−1)A(r)

√
1 +

e−2A(r)

h(r)
r′(x)2, (6.1)

where, x = x1, ad−2 results from integrating xi with i = 2, . . . , d − 2 and Gd+1
N is the

d+ 1-dimensional Newton’s constant.

6.1.1 Sharp domain wall approximation

As was mentioned above, the background given in eq. (2.3) interpolates between two copies

of AdS space in the IR and UV regions, eqs. (2.5) and (2.6). Since there is no analytical

expression for h(r) and A(r) in the whole range of r we follow [41] and assume a sharp

transition between the two AdS domains at a position denoted by rDW. Numerical results

show that there exists a −∞ < rm < 0 such that ψ′(rm) = 0. It is therefore natural to

choose rDW = rm. Even though we will not be interested in the specific value of rDW we will

require rDW < 0 in the following sections. Moreover, numerical results suggest rm ∝ d−1.

More specifically the sharp domain wall approximation consists in taking A(r) and

h(r) as the asymptotic values given in eq. (2.5) for r < rDW. Similarly, for r > rDW we

take those given in eq. (2.6).

As usual in the calculation of SÃ with Ã a strip, eq. (6.1) does not depend on the

integration variable x explicitly. Therefore, the Euler-Lagrange equations that minimize

SÃ reduce to the Beltrami identity which states that, given a Lagrangian L, if ∂L/∂x = 0,

then L− r′∂L/∂r′ is a constant. In our case:

e(d−1)A(r)√
1 + e−2A(r)r′(x)2/h(r)

=

{
e(d−1)AUV

r∗
L , r > rDW

e
(d−1) r∗

LIR , r < rDW

. (6.2)

In the previous equation we took into account the different AdS radii, L and LIR in each

region, and r∗ is the “turning” point of the surface γÃ which occurs for x = 0. We will

consider the general case r∗ < rDW, i.e. the minimal surface extends into the IR region.

With the previous considerations eq. (6.2) is easily integrated,∫ `/2

0
dx =

`

2
= IIR + IUV, (6.3)
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where

IIR =

∫ rDW

r∗

dr

e
r

LIR

√
e

2(d−1) r−r∗
LIR −1

, IUV =

∫ rUV

rDW

dr

√
hUVe

AUV
r
L

√
e2(d−1)AUV

r−r∗
L −1

, (6.4)

rUV being the UV cutoff. IIR is calculated with the change of variables t = e
2(d−2)

r−rDW
LIR ,

IIR = −LIRe
− r∗
LIR

−√π
d

Γ(3d−2
2d−2)

Γ(2d−1
2d−2)

+
e
d
r∗−rDW
LIR

d
2F1

(
1

2
,

d

2d− 2
,

3d− 2

2d− 2
, e

2(d−1)
r∗−rDW
LIR

) ,
(6.5)

while an analogous change of variables, t = e2(d−2)AUV
r−rDW

L in IUV yields

IUV = L
e[(d−1)r∗−drDW]

AUV
L

d
2F1

(
1

2
,

d

2d− 2
,

3d− 2

2d− 2
, e2(d−1)AUV

r∗−rDW
L

)
, (6.6)

where we used the relation between hUV and AUV given in eq. (2.8). Similarly, inserting

eq. (6.2) into eq. (6.1), the entanglement entropy can be calculated by integrating in r in

the two domains (r < rDW and r > rDW):

SÃ =
2ad−2

4Gd+1
N

[SIR + SUV] , (6.7)

SIR =

∫ rDW

r∗

e
(d−2) r

LIR dr√
1− e−2(d−1) r−r∗

LIR

=
LIRe

(d−2) r∗
LIR

2(d− 1)

∫ 1

0
du
y1/2

u1/2

1

(1− yu)
3d−4
2d−2

=

=
LIRe

(d−2) r∗
LIR

2(d− 1)
2
√
y 2F1

(
1

2
,
3d− 4

2d− 2
,

3

2
, y

)
,

(6.8)

where we made the change of variables: u(r) = 1
y

(
1− e−2(d−1)(r−r∗)/LIR

)
, y = 1 −

e−2(d−1)(rDW−r∗)/LIR . Eq. (6.8) can be rewritten using the following Hypergeometric func-

tion identities,

2F1(a, b, c, z) =
Γ(1−a)Γ(1−b)(1−z)c−a−b

Γ(1− c)Γ(c− a− b+ 1)
2F1(c− a, c− b, c− a− b+ 1, 1− z)+

+
Γ(1− a)Γ(1− b)Γ(c)

Γ(2− c)Γ(c− a)Γ(c− b)
z1−c

2F1(a− c+ 1, b− c+ 1, 2− c, z),

(6.9)

with b = 0, c = 3d−4
2d−2 , a = c− 1/2 and

c 2F1(a− 1, b, c, z)− c 2F1(a.b− 1, c, z)− (a− b) 2F1(a, b, c+ 1, z) = 0, (6.10)

with a = 1/2, b = c = d
2d−2 , as follows

SIR = LIR

[
−
√
πe

(d−2) r∗
LIR

d(d− 2)

Γ(3d−2
2d−2)

Γ(2d−1
2d−2)

+
e

(d−2)
rDW
LIR

d− 2

√
1− e−2(d−1)

rDW−r∗
LIR +

+
e
−d rDW

LIR
+2(d−1) r∗

LIR

d(d− 2)
2F1

(
1

2
,

d

2d− 2
,

3d− 2

2d− 2
, e

2(d−1)
r∗−rDW
LIR

)]
,

(6.11)
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On the other hand, for SUV, one must take care of the usual divergence for r → ∞.

Defining the auxiliary variables t = e−2(d−1)AUV
r−rDW

L , the cutoff in the t variable tUV =

e−2(d−1)AUV
rUV−rDW

L and y = e−2(d−1)AUV
rDW−r∗

L we integrate SUV:

SUV =
1√
hUV

∫ rUV

rDW

e(d−2)AUV
r
Ldr√

1− e−2AUV(d−1) r−r∗
L

=
Le(d−2)AUV

rDW
L

2(d− 1)

∫ 1

tUV

dt

t
3d−4
2d−2

1√
(1− yt)

=

=
Le(d−2)AUV

rDW
L

2(d− 1)

[
−2y

d−2
2(d−1)

√
1− ty 2F1

(
1

2
,

3d− 4

2d− 2
,

3

2
, 1− yt

)]t=1

t=tUV

=

= L

[
e(d−2)AUV

rUV
L

d− 2
− e(d−2)AUV

rDW
L

d− 2

√
1− e−2(d−1)AUV

rDW−r∗
L +

−e
[−drDW+2(d−1)r∗]

AUV
L

d(d− 2)
2F1

(
1

2
,

d

2d− 2
,
3d− 2

2d− 2
, e2(d−1)AUV

r∗−rDW
L

)]
. (6.12)

In the last equality we used the relations given in eqs. (6.9) and (6.10) and left the cutoff

rUV explicit in the divergent term.

We stress eqs. (6.7), (6.11) and (6.12) are an approximation to the entanglement en-

tropy between a strip of width ` and its complement in the d-dimensional boundary when

the scalar field condensates. It is interesting to compare these results with the entangle-

ment entropy between a strip of the same width ` and its complement in the situation in

which the scalar is absent, [42]. To do so we should express SÃ in terms of `, however,

from eqs. (6.3), (6.5) and (6.6) it is clear that r∗ cannot be expressed in terms of ` in a

closed form and thus the comparison cannot be made easily. Instead, in the next section

we make this comparison only in UV and IR limits of SÃ. Additionally, we also study the

large-d limit of SÃ.

6.1.2 UV, IR and large-d limits

UV limit. We first consider r∗ > rDW, i.e. the minimal surface γÃ is embedded in the

AdS copy that contains the boundary r →∞. In this situation IIR = SIR = 0 and rDW = r∗
in eqs. (6.6) and (6.12):

`

2
= Le−AUV

r∗
L

√
π

d

Γ(3d−2
2d−2)

Γ(2d−1
2d−2)

,

SUV
Ã
∼ 2ad−2L

4Gd+1
N

e
(d−2)AUV

rUV
L

d− 2
−
(

2

`

)d−2 Ld−2π
d−1

2

d− 2

Γ
(

d
2d−2

)
Γ
(

1
2d−2

)
d−1

 .

(6.13)

As was expected we recover the result for the infinite strip in an AdS space, found

in [43]. It is observed the strip width tends to zero following e−AUV
r∗
L , while the “finite”

part of the entanglement entropy diverges as e(d−2)AUV
r∗
L .
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IR limit. In case r∗ � rDW, i.e. the γÃ extends deeply into the IR region. From

eqs. (6.5), (6.6), (6.11) and (6.12)

`

2
= LIRe

− r∗
LIR

√
π

d

Γ(3d−2
2d−2)

Γ(2d−1
2d−2)

,

SIR
Ã
∼ 2ad−2

4Gd+1
N

Le
(d−2)AUV

rUV
L

d− 2
−
(

2

`

)d−2 Ld−1
IR π

d−1
2

d− 2

Γ
(

d
2d−2

)
Γ
(

1
2d−2

)
d−1

+

+
LIRe

(d−2)
rDW
LIR − Le(d−2)AUV

rDW
L

d− 2

 .

(6.14)

In this limit, the strip width, `, diverges and the finite part of the entanglement entropy

saturates to a constant value given by the first term in the following expression:

lim
r∗→−∞

SIR
Ã

=
2ad−2

4Gd+1
N (d−2)

[
LIRe

(d−2)
rDW
LIR −Le(d−2)AUV

rDW
L

]
+

2ad−2

4Gd+1
N

e(d−2)AUV
rUV
L

d−2
. (6.15)

At this point, it is easy to compare eq. (6.14) to the entanglement entropy between

the strip Ã (of same width `) and its complement in the d-dimensional AdS boundary

when ψ = 0. Were the scalar field be zero, there would be a single AdS space and SÃ
would be given by the first two terms of eq. (6.14) while the last term would be zero for all

d. In the presence of the condensate, the third term in the previous equation corresponds

to the contribution of the flow from one AdS copy to the other. Indeed it is easy to

see that this term is negative. From the definition of LIR: −d(d − 1)/L2
IR ≡ V (|ψIR|) =

−d(d− 1)/L2−m4/(2u), it follows LIR < L. Since we require rDW < 0, the term in square

brackets of eq. (6.15)

LIRe
(d−2)

rDW
LIR − Le(d−2)AUV

rDW
L < e(d−2)AUV

rDW
L (LIR − L) < 0. (6.16)

The conclusion is that the entanglement entropy between a strip of length ` and its

complement is lower if the scalar is present. This means the theory has less degrees of

freedom in this case. In the limit of a strip of infinite width (`→∞), the finite contribution

of SÃ reaches the maximum value given by the first term in eq. (6.15). These results are

expected as the entanglement entropy counts the degree of freedom of the theory. It is

therefore natural that it is smaller in the condensed phase.

Let us turn to the study of the large-d limit of SÃ. Before we do so, we must analyze

the behavior of the strip length as d→∞. From eqs. (6.3), (6.5) and (6.6) it is clear that if

r∗ either remains constant or increases, as d increases, both IIR and IUV would tend to zero

and ` → ∞. In order to compare SÃ for different d we must keep ` constant. Therefore,

r∗ → −∞, as d→∞, which corresponds to the IR limit (r∗ � rDW) studied above. Taking

d large and ` constant in eq. (6.14) yields,

r∗(d→∞) ∼ −LIR log
`d

πLIR
, (6.17)
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and

SÃ(d→∞) ∼ 1

4Gd+1
N

[
2ad−2Le(d−2)AUV

rUV
L

d− 2
−

πd−1Ld−1
IR

(d− 2)(d− 1)d−1

(a
`

)d−2
+

+2ad−2LIRe
(d−2)

rDW
LIR − Le(d−2)AUV

rDW
L

d− 2

]
.

(6.18)

The second term of the previous equation corresponds to the universal contribution for the

infinite strip in an AdS space, [43] which is strongly suppressed in the d → ∞ limit as it

is proportional to d−d. The third term has some interesting features. It is independent

of ` as it is expected in gapped systems where the typical length, the numerator in this

case, is closely related to the coherence length of the holographic superconductor. Its

d-dependence, arising from the flow of one AdS space to another, is dictated by the d-

dependence of rDW and AUV. As mentioned before, numerical results for d ≤ 9 suggest
rDW
LIR
∝ d−1 and rDW < 0 which implies a behavior like d−1 for these contributions. In the

limit of a vanishing scalar field, the third term vanishes for all d and the result of ref. [43]

is recovered.

Let us simplify eq. (6.18) for the particular set of parameters: m2L2 = −3d2/16,

ψIR =
√

d−1
d , u = −m2L2

ψ2
IR

, L = 1. These values, together with the definition of LIR:

−d(d−1)
L2

IR
≡ V (|ψIR|), yield a constant, in d, LIR =

√
32/35L. Moreover, as discussed

earlier, AUV
L < 1

LIR
. These considerations allow a further simplification of eq. (6.18),

SÃ(`, a, d→∞) .
ad−2

4Gd+1
N

[
Sdiv −

πdLd−1
IR

dd
1

`d−2
+ 2e

α
LIR

LIR − L
d

]

∼ ad−2

4Gd+1
N

[
Sdiv −

πd

dd

(
32

35

) d−1
2 1

`d−2
+ 2∆Leα

1

d

]
,

(6.19)

where ` and a are the width and the characteristic length (infinite) of the transverse

dimensions of the strip. The radius of curvature of the IR asymptotic AdS space, LIR,

does not depend on d, α is the constant of proportionality in rDW ' α
LIRd

which can only

be obtained numerically and ∆L = LIR−L =
√

32/35−1 < 0. Sdiv is the (divergent) part

containing the UV integration cutoff.

As we mentioned previously, were the condensate vanish, the last term in eq. (6.19)

would be identically zero, since the asymptotic IR and UV AdS radii would be the same,

LIR = L. Moreover, this term is negative, which means the finite part of the entanglement

entropy is lower, and thus indicates less degrees of freedom in the presence of the conden-

sate. Finally, as d → ∞, this contribution is smaller, suggesting the difference between

the entanglement entropy in the presence and absence of the condensate is smaller. The

latter is an indication that, in agreement with the conductivity results, the condensate

interactions become weaker as d increases.
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6.2 Entanglement entropy close to the transition

In this section we compute analytically the entanglement between the semi-infinite strip,

Ã, defined in the previous section and its complement at finite temperature. We employ

the action eq. (2.13) but we have to go beyond the probe limit. We assume the following

parametrization of the metric:

ds2 =
1

L2z2

(
−f(z)e−χ(z)dt2 +

L4

f(z)
dz2 + dx2

i

)
, (6.20)

where i = 1, . . . , d − 1, z = 1/r. Above the transition, the metric corresponds to the AdS

planar Reissner-Nordström in d + 1 dimensions. More precisely, χ(z) = 0, the gauge field

At = φ = µ[1 − (z/z0)d−2] and f(z) = fRN ≡ 1 − (1 + Q2)
(
z
z0

)d
+ Q2

(
z
z0

)2d−2
, where

Q2 = µ2z2
0γ

2, γ2 = d−2
d−1

L4

2 and z0 is the inverse of the outer horizon r0.

Throughout this section we take d to be large so we can get explicit analytical results.

We also consider strips of length ` for which the minimal surface γÃ, associated to the

strip, does not extend too deeply into the bulk, such that the turning point, z∗, satisfies

(z∗/z0)d � 1. This is in general a good approximation in the d → ∞ limit, even for

z∗ . z0. Moreover we restrict ourselves to the region T ∼ Tc and therefore, the dual

order parameter 〈O〉 is very small compared to the typical energy scale Tc. This regime

restricts the generality of the results for the entanglement entropy but allows to estimate

analytically the correction in the presence of the scalar field close to the phase transition.

The entanglement between the strip and its complement is given by:

sÃ ≡ SÃ
4Gd+1

N

ad−2Ld−1
= 2

∫ l/2

0
dx

1

zd−1

√
1 +

z′(x)2

f(z)
=

= 2zd−1
∗

∫ z∗

zUV

dz

zd−1

1√
f(z)

(
z2d−2
∗ − z2d−2

) , (6.21)

where we have rescaled z → z/L2 in order to compare with the results in ref. [37]. We

have also introduced the UV cutoff zUV → 0 and, as before, we have used the fact that

the integral does not depend on x. The turning point, z∗, of the surface γÃ embedded into

the bulk is given by zd−1
∗ = zd−1

√
1 + z′(x)2/f(z). The strip width, ` is related to z∗ as

follows:

`

2
=

∫ z∗

0
dz

zd−1√
f(z)

(
z2d−2
∗ − z2d−2

) . (6.22)

Even in the absence of the scalar field in eq. (2.1), i.e., the Reissner-Nordström back-

ground, the previous two integrals cannot be computed analytically for arbitrary d. How-

ever, an analytical calculation is possible in the large d limit.
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First, we calculate the width of the strip from eq. (6.22), by setting f(z) = fRN(z) and

expanding
√
fRN(z) in powers of z/z0:2

`

2
=
z∗
√
π

d

Γ
(

3d−2
2d−2

)
Γ
(

2d−1
2d−2

) + z∗

∞∑
n=1

n∑
l=0

Cnlα
l(−β)n−l

(
z∗
z0

)bnl
, (6.23)

where,

Cnl =
(2n− 1)!!

2n(n− l)!l!

Γ
(

2d+anl−1
2d−1

)
Γ
(
anl+d
2d−2

) √
π

anl + 1
, (6.24)

α = 1 + Q2, β = Q2 and anl = 2dn + d(1 − l) + 2(l − n) − 1, bnl = (2d − 2)(n − l) + dl.

In the large d limit, assuming ` fixed, it is enough to keep only the terms corresponding to

n = 1 in the series above. The resulting expression of the strip length, `, as a function of

the turning point of the minimal surface, z∗, is,

`

2
' z∗

d

[
π

2
+

1 +Q2

2d

(
z∗
z0

)d
− Q2π

8d

(
z∗
z0

)2d−2

+ . . .

]
. (6.25)

Similarly, from eq. (6.21), with f(z) = fRN(z),

sÃ =
2

(d− 2)zd−2
UV

− 2
√
π

(d− 2)zd−2
∗

Γ
(

d
2d−2

)
Γ
(

1
2d−2

) +
2

zd−2
∗

∞∑
n=1

n∑
l=0

Cnlα
l(−β)n−l

(
z∗
z0

)bnl
, (6.26)

where Cnl is given in eq. (6.24), anl = (2d−2)(n− l)+d(l−1)+1, bnl = (2d−2)(n− l)+dl.

For large d, taking the first two terms of the series,

sÃ '
2

dzd−2
UV

− π

d2zd−2
∗

+
1 +Q2

2zd−2
∗

(
z∗
z0

)d
− πQ2

2zd−2
∗

(
z∗
z0

)2d−2

+ . . .

' 2

dzd−2
UV

− πd−1

dd
1

`d−2
+

1 +Q2

2zd0

d2

π2
`2 − Q2

2πd−1z2d−2
0

dd`d + . . . ,

(6.27)

where, in the last equality we substituted z∗ ∼ d`
π , which is a good approximation as

long as z∗ � z0 (small `) and d fixed or, for a fixed z∗ . z0, and sufficiently large d.

In the latter case, ` should also be small, which means that as d increases the minimal

surface Ã should reach the near-horizon region for smaller strip lengths. Q is related to the

chemical potential and the position of the outer horizon, through µ and z0, Q2 = µ2z2
0γ

2,

γ2 = d−2
d−1

L4

2 .

In the presence of the scalar field, ψ, analytical results are harder to obtain close to

the phase transition T . Tc since f(z) is subject to the backreaction of ψ, and, in general,

cannot be written in a closed form.

However, we show below that it is still possible to find an explicit analytical expression

in the large-d limit.

2For simplicity it is more convenient to expand in δ = −(1 +Q2)
(
z
z0

)d
+Q2

(
z
z0

)2d−2

.
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In order to proceed we solve perturbatively the equations of motion close to the tran-

sition. To do so we expand the fields in the equations of motion (see the appendix A for

more details) in a power series in a quantity related to the VEV of the operator dual to

the scalar field. More specifically, from the UV boundary condition of the scalar field,

ψ ∼ α
r∆− + β

r∆+
+ . . . , given in eq. (2.16), we set α = 0 and define ε ≡ β. Close

to the transition this expansion parameter is related to temperature in the usual way,

ε∆+ ∝ 〈O〉 ∝ (T − Tc)1/2, with ∆+ being the conformal dimension.

The blackening function can be expanded as f(z) ' fRN + ε2(fa2 (z) + . . . ) with

fa2 (z) = −µ0κz
2
0

[(
z
z0

)d
−
(
z
z0

)2d−2
]

and the dots indicate subleading terms, see appendix

eq. (A.10), where µ0 is the chemical potential at the phase transition and κ is an integra-

tion constant which is calculated from the perturbative analysis of the equations of motion,

eq. (A.12). It is negative κ < 0 for d ≥ 3.

The calculation of the entanglement entropy including the leading correction ε2fa2 (z) is

totally analogous to the one corresponding to the Reisnner-Nordström case given in detail

above. The main difference is that α and β in eqs. (6.23) and (6.26) are replaced by,

α̃ = 1 + Q̃2 + ε2µ0κz̃
2
0 , β̃ = Q̃2 + ε2µ0κz̃

2
0 . (6.28)

Here, Q̃2 = µ2
0z̃

2
0γ

2 6= Q2 and z̃0 6= z0, in order to take into account the different horizon

radius with respect to a pure Reissner-Nordström black hole at the same temperature.

Consequently, in the large-d limit, the relation between the strip width and the turning

point of γÃ in the hairy black hole background is,

`

2
' z̃∗

d

[
π

2
+
α̃

2d

(
z̃∗
z̃0

)d
− β̃π

8d

(
z̃∗
z̃0

)2d−2

+ . . .

]
. (6.29)

Similarly, s̃A is

s̃A '
2

dzd−2
UV

− π

d2z̃d−2
∗

+
1+Q̃2+µ0κε

2z̃2
0

2z̃d−2
∗

(
z̃∗
z̃0

)d
− π Q̃

2 + µ0κε
2z̃2

0

2z̃d−2
∗

(
z̃∗
z̃0

)2d−2

+ . . . , (6.30)

where, κ < 0 is given in the appendix A. In order to compare the entanglement entropy

between the strip and its complement in the condensed phase with the one in the symmetry

unbroken phase one needs, in principle, to compute the charge, Q, and horizon position,

z0, of a Reisnner-Nordström black hole at the same temperature, eq. (6.31). However it is

important to note that the contribution due to the condensate, contained in the ε2 term,

always leads to less entanglement in the condensed phase (µ0 > 0 and κ < 0).

To compute the Reissner-Nordström black hole parameters at the same temperature

as the hairy black hole we fix the horizon in the superconducting phase, z̃0 = 1, and solve

the following equations in the horizon, z0, and charge, Q:

µ =
Q

z0γ
,

T

ρ
1
d−1

=
1

4π

d− (d− 2)Q2

(Q/γ)
1
d−1

, (6.31)

where T/ρ
1
d−1 is a function of ε (proportional to 〈O〉1/∆), the metric components at the

horizon and the chemical potential at the the transition, µ0, eq. (A.13), and µ = µ0+ε2(κ+
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φb2(0)) > µ0, where κ and φb2(0) are integration constants given in the appendix A. From

eq. (6.31) it follows that z̃0 > z0 and Q̃ < Q, and solving eqs. (6.25) and (6.29) one obtains

z̃∗ > z∗. Consequently, comparing the finite contributions in eqs. (6.27) and (6.30), we

conclude that below, but close, to the phase transition the number of degrees of freedom

in the dual field theory is smaller than in the normal phase (no condensate, ε = 0, µ = µ0).

This is again consistent with the theoretical expectation that the entanglement entropy

is closely related to the effective number of degrees of freedom of the system at a given

temperature.

For completeness, we express s̃Ã in terms of the strip length `, the expansion parameter

ε ∝ 〈O〉1/∆, µ0 and κ. From eq. (6.29), z̃∗ ∼ d`
π

[
1 +O(d−2d)

]
. Substituting z∗ = d`

π in

eq. (6.30), the final expression of the entanglement entropy in terms of the strip length is

given by,

s̃Ã '
2

dzd−2
UV

− πd−1

dd
1

`d−2
+

1 + Q̃2 + µ0κ ε
2z̃2

0

2z̃d0

d2

π2
`2 − Q̃2 + µ0κ ε

2z̃2
0

2πd−1z̃2d−2
0

dd`d + . . . . (6.32)

Before we compare eq. (6.32) with numerical results we discuss the limits of applica-

bility of the linear approximation z∗ ∼ z̃∗ ∝ `.
In figures 5, 6 we depict the dependence of the tip of the surface Ã on ` resulting from

solving eqs. (6.22) and (6.23). For small `, the linear approximation agrees well with the

exact result, eq. (6.22). As ` grows this agreement worsens substantially. Additionally, as

d increases, the approximation z∗ = z̃∗ = `
d Γ( 2d−1

2d−2)
2
√
πΓ( 3d−2

2d−2)
is valid for smaller values of ` but, at

the same time, since the corrections O(d−2d) are smaller, it remains a good approximation

closer and closer to the horizon for both the normal (T < Tc), figure 5, and the condensed

phase close to the transition, figure 6. This is nothing else but a consequence of the

simplification of general relativity in the large-d limit. For a black hole, as dimensionality

increases, its region of influence shrinks to a neighbourhood of the horizon [15].

Another relevant feature of the entanglement entropy eq. (6.32), that requires clari-

fication, is that it does not obey the volume law. It is well known that for a sufficiently

large `, the finite contribution of the entanglement entropy at finite temperature satisfies

the volume-law, not the area, i.e., a linear-in-` term is expected. The analytical prediction

eq. (6.32) does not reproduce such behavior since we are neglecting terms (z∗/z0)d � 1 in

eqs. (6.23), (6.26). This is fine for small ` or, for a fixed ` and T , and a sufficiently large

d. However, for a large, but fixed d, the approximation breaks down for large ` since z∗
eventually becomes sufficiently close to the horizon z0 so that (z∗/z0)d ≈ 1. As seen in

figures 5, 6, in principle a remedy to this problem is to include more terms in the expan-

sions given in eqs. (6.23), (6.26). The first correction, proportional to (z∗/z0)d+1, coming

from the n = 1 term, still leads to an analytical, but cumbersome, expression for z∗(`) in

the case of d = 3. Indeed, as is shown in figures 5, 6, by including this term, the analytical

expression agrees with the numerical results up to larger values of `, however we do not

yet observe the expected area law for and ` → ∞. Indeed, for any finite number of terms

the approximation inevitably still breaks down at some finite `, and, already for d = 3, the

subleading correction, ∝ (z∗/z0)2d−1, coming from the n = 1 term in eq. (6.23), leads to a
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Figure 5. Position of the tip, z∗, of the minimal surface in the Reissner-Nordström background

for d = 3 and d = 6. For d = 3, µ = 2.02, Q2 = µ2z2
0γ

2, γ2 = d−2
d−1

L4

2 and z0 = 0.992 (dotted

line), while for d = 6, µ = 0.38 and z0 = 0.988 (dashed line). The “numerical” results are obtained

from the numerical integration of eq. (6.22) with f(z) = fRN. The linear approximation z∗ ∝ `

corresponds to n = 0 in eq. (6.23) and α = 1 + Q2, β = Q2. The analytical solution of the

fourth degree polynomial in z∗ contains the leading correction, the first term of the series given in

eq. (6.23). The linear approximation z∗ ∝ ` is clearly only valid for small ` and, for larger d, it

becomes gradually better deep in the bulk. Including more corrections in higher powers of z∗/z0

gives a better approximation but requires, in general, numerical methods.

fifth degree polynomial whose roots cannot in general be found numerically. Consequently

we keep only the leading correction in the equations for z∗ and z̃∗ so our results are fully

analytical. As is shown in figure 7, by including this additional term only, the analytical

expression for the finite part of the entanglement entropy agrees well with the numerical

results in the range of ` shown. However, as was mentioned previously, we do not yet

observe the expected area law for `→∞. If, on the other hand, we carry out an analogous

expansion in the parameter 1 − (z∗/z0)d, see appendix B, we obtain the expected linear

dependence of the entanglement entropy s ∝ `.
We also note that the finite subleading contribution, second term of eq. (6.32), that

does not depend on the scalar, has already been reported in refs. [35, 42]. The dependence

on the scalar, proportional to κ < 0, is consistent with previous numerical results [37]. It

is smaller in the symmetry broken phase and its temperature dependence is not analytical

at Tc due to the different prefactors in the temperature dependence of the entanglement

entropy in the broken and unbroken phase. We note the temperature enters both through

z̃0 and µ and it depends quadratically on the strip length `, for small `. These results
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Figure 6. Position of the tip, z̃∗, of the minimal surface in the superconducting phase for d = 3,

µ = 2.00 and d = 6, µ = 0.37. In both cases the horizon is fixed at z0 = 1 (dashed line) and

Q2 = µ2
0z̃

2
0γ

2, γ2 = d−2
d−1

L4

2 . Similarly to figure 5 the numerical results are obtained from eq. (6.22)

with f(z) = fRN + ε2f2 and f2 given in eq. (A.10). The rest of the lines are obtained by truncating

the series in eq. (6.23) at linear and quartic powers of z∗ with α and β given in eq. (6.28). Similarly

to the symmetry unbroken phase, figure 5, the linear approximation z̃∗ ∝ ` is better for larger d.

illustrate the potential of 1/d expansions to obtain analytical results in problems where

only numerical calculation were available.

7 Conclusions

We have studied the entanglement entropy and the conductivity in holographic supercon-

ductors at zero and finite temperature in the limit of large spatial dimensionality. The

coherence peak of the conductivity becomes narrower and the ratio between the energy

needed to break the condensate and the critical temperature decreases as the spatial di-

mensionality increases and have a well defined d → ∞ limit. This is a clear indication

that the coupling of the scalar with the bulk is weaker in the large dimensionality limit.

It would be interesting to explore whether there is a bound for these quantities in theories

with gravity duals. We have computed the dependence on the dimensionality d on the en-

tanglement entropy at zero and close to the critical temperature and for the conductivity

at zero temperature. Our results confirm the expectation that the entanglement entropy

is smaller in the symmetry broken phase with a difference that increases with the spatial

dimensionality. These results are a strong indication that large d expansions are a helpful

tool to obtain analytical results in holography.
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Figure 7. Finite part of the entanglement entropy, s, of a rectangular strip, Ã, of width ` in 2

spatial dimensions (d = 2 + 1), where sÃ = sdiv + s and sdiv contains the UV-cutoff. The blue

dots are obtained by numerical integration of eqs. (6.21) and (6.22) in the Reissner-Nordström

background with f(z) = fRN, z0 = 0.992, µ = 2.02, Q2 = µ2z2
0γ

2, γ = d−2
d−1

L4

2 . Similarly, the

red dots, hardly indistinguishable from the blue, correspond to the integration of these equations

in the superconducting phase where f(z) = fRN + ε2f2 and f2 = fa2 + f b2 is given in eq. (A.10).

We set m2L2 = 0, z̃0 = 1, q = 4 and ε = 0.2 corresponding to T/Tc ∼ 0.995. The expansion

parameter ε = 〈O/(2∆ − d)〉1/∆ is defined in the same appendix. In the superconducting phase

fRN is given in terms of µ0 = 2.00, eq. (A.5), and fa2 in terms of κ = −0.78, eq. (A.12). The solid

lines are obtained from the analytical results for the superconducting and normal background from

eqs. (6.23) and (6.26) by neglecting terms of O(z∗/z0)2d−1 and O(z∗/z0)2d−2, respectively. The

dashed lines are obtained from the linear approximation, z∗ = z̃∗ = `
d Γ( 2d−1

2d−2 )
2
√
πΓ( 3d−2

2d−2 )
. As anticipated,

the analytical estimation of the entanglement entropy, calculated in the large d limit, breaks down

as ` increases. Nonetheless the qualitative behavior is very similar even for d = 2 + 1 dimensions

in the UV-boundary. Inset: difference between the finite parts of the entanglement entropies in

both phases as a function of the strip length. As before, the dots correspond to the numerical

results while the dashed and continuous lines are our analytical results corresponding to the linear

approximation and the subleading quartic correction, respectively. The lines are restricted to the

region, in `, where the estimations of the tip of the minimal surface in each background z̃∗, z∗ < z0,

see figures 5, 6.
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A Entanglement entropy at T ∼ Tc

The equations of motion, expressed in the coordinate z = 1/r, are:

ψ′′ −
(
χ′

2
+
d− 1

z
− f ′

f

)
ψ′ −

(
m2L2

z2f
− q2eχφ2L4

f2

)
ψ = 0,

φ′′ +

(
χ′

2
− d− 3

z

)
φ′ − 2q2L2ψ2

z2f
φ = 0,

χ′ =
2z

d− 1

(
ψ′2 +

eχq2φ2ψ2L4

f2

)
,

f ′ − d

z
f +

d

z
=

1

(d− 1)z

[
m2L2ψ2 +

z4eχφ′2L4

2
+ z2f

(
ψ′2 +

q2eχφ2ψ2L4

f2

)]
.

(A.1)

Close to the transition, the fields can be expanded in powers of ε ≡ β, [44, 45], where

ψ(z → 0) ∼ β( zz0 )∆, and ∆ ≡ ∆+ is the larger conformal dimension. More concretely,

ψ ' εψ1 + ε3ψ3 + . . . , φ ' φ0 + ε2φ2 + . . . , f ' f0 + ε2f2 + . . . , χ ' ε2χ2 + . . . , (A.2)

For the purpose of the entanglement entropy calculation given in section 6.2 we calculate

analytically the first non-trivial terms of this field-expansion in the region where
(
z
z0

)d
� 1,

which, for larger d allows z to approach z0 with a better level of approximation than for

small d. However, here we compute all the terms in the perturbative expansion up to

O(ε2). From the equations of φ and f given in eq. (A.1), it is easy to see that the first

zeroth order terms of these fields are:

φ0 = µ0

[
1−

(
z

z0

)d−2
]
, f0(z) = 1− (1 +Q2)

(
z

z0

)d
+Q2

(
z

z0

)2d−2

, (A.3)

where Q2 = µ2
0z

2
0γ

2 and µ0 is the chemical potential at which the scalar field condenses.

χ = 0 and f = f0 corresponds to the Reissner-Nordström black hole with planar topology.

The equation for the first term in the expansion of ψ, eq. (A.2), is well known:

0 = ψ′′1 −
(
d− 1

z
− f ′0
f0

)
ψ′1 + ψ1

(
q2L4φ2

0

f2
0

− m2L2

z2f0

)
, (A.4)

giving the expected (z/z0)∆ + . . . behavior close to the boundary. ψ1 can be obtained by

rewriting eq. (A.4) as a Sturm-Liouvillle eigenvalue problem, [46, 47], and using as ansatz

ψ1 = z∆F0(z), F0 = 1 − αzd−1, α is given by the value, αc that minimizes the following

expression,

M2(α) =

∫ 1
0 dz z

2∆−d+1(1− zd)
[
F ′20 −

(
−m2L2

1−zd + ∆(∆− d)− ∆dzd

1−zd

)
F 2

0
z2

]
∫ 1

0 dz z
2∆−d+1F 2

0 q
2 (1−zd−2)2

1−zd
, (A.5)

and µ2
0 = M2(αc). The equation for χ2 is:

χ′2 =
2zψ′21
d− 1

+
2q2zL4φ2

0ψ
2
1

(d− 1)f2
0

≡ Fχ(z), (A.6)
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and thus χ2(z) =
∫ z

0 dz
′ Fχ(z′). Similarly, from the equation for φ2:

φ′′2 −
d− 3

z
φ′2 =

2q2φ0ψ
2
1

z2f0
− 1

2
φ′0χ

′
2 ≡ Fφ(z), (A.7)

and the leading behavior of φ2 is given by the homogeneous solution. Close to the hori-

zon, φ2 is expected to receive corrections from the last two terms in eq. (A.7). However,

we impose such corrections, controlled by φ0 and ψ′1, to satisfy the boundary condition

φ2(z0) = 0 independently of the homogeneous solution. Therefore,

φ2(z) = φa2(z) + φb2(z),

φa2(z) ≡ κ

[
1−

(
z

z0

)d−2
]
, φb2(z) ≡

∫ z0

z
du ud−3

∫ z0

u
dv

Fφ(v)

vd−3
.

(A.8)

Finally, the equation for f2 is given by:

f ′2 −
d

z
f2 −

z3L4φ′0φ
a
2
′

d− 1
=

1

z(d−1)

(
z4L4φ′0φ

b
2
′
+ z2f0ψ

2
1
′
+m2L2ψ2

1

q2L4z2φ2
0ψ

2
1

f0

)
≡ Ff (z).

(A.9)

The previous equation can be integrated straightforwardly,

f2(z) = fa2 (z) + f b2(z),

fa2 (z) ≡ − µ0κz
2
0L

4

(d− 1)(d− 2)

[(
z

z0

)d
−
(
z

z0

)2d−2
]
, f b2(z) ≡ −zd

∫ z0

z
du

Ff (u)

ud
.

(A.10)

In the large-d limit, fa2 dominates over f b2 . The only parameter to be determined is κ,

which follows from the equation of ψ3:

ψ′′3 −
(
d− 1

z
− f ′0
f0

)
ψ′3 +

(
q2L4φ2

0

f2
0

− m2L2

z2f0

)
ψ3 = −T ψ0,

T ψ0 ≡
(
f ′2
f0
− χ′2

2
− f2

f ′0
f2

0

)
ψ′0+

[
m2L2

z2f0
f2−

2q2L4

f3
0

(f2φ0−f0φ2)+
q2φ2

0χ2L
4

f2
0

]
ψ0.

(A.11)

From the previous equation and using eq. (A.4), it follows immediately, 0 =
∫ z0

0 dz f0ψ0T ψ0

zd−1 ,

which imposes a condition on κ:

κ =

∫ z0
0 dz

ψ′0ψ0

zd−1

(
−f b2

′
+
χ′2f0

2 +
fb2f
′
0

f0

)
+

ψ2
0

zd−1

[
−m2L2fb2
z2f0

+ 2q2L4

f0

(
fb2φ

2
0

f0
− φ0φ

b
2

)
− q2φ2

0χ2L4

f0

]
∫ z0

0 dz
ψ′0ψ0

zd−1

(
fa2
′ − fa2

f ′0
f0

)
+

ψ2
0

zd−1

[
m2L2fa2
z2f0

− 2q2L4

f0

(
fa2

φ2
0
f0
− φ0φa2

)] .

(A.12)

Finally, from eq. (A.8), for some ε > 0, the chemical potential is given by µ ∼ µ0 +

ε2(κ+ φb2(0)) +O(ε4), ρ = µ0 + ε2κ and the temperature T < Tc:

T

ρ
1
d−1

= − f ′(z0)e−χ(z0)/2

4π (µ0 + ε2κ)
1
d−1

∼

∼ −f
′
0(z0)

4πµ
1
d−1

0

[
1 + ε2

(
f ′2(z0)

f ′0(z0)
− χ2(z0)

2
− κ

(d− 1)µ0f ′0(z0)

)]
,

(A.13)
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where, f ′0(z0) = −d+µ2
0

(d−2)2

2d−2 . For ε = 0, the previous equation gives an estimation for the

critical temperature. This expression is more complicated that the one given in ref. [16], in

which the backreaction of the scalar on the geometry is neglected. Notice however, that, we

were not after an alternate result for Tc, in fact, in this section we have not used the large-d

limit since we explicitly look for all the terms that modify the geometry close to the phase

transition. In order to analytically evaluate the leading correction on the entanglement

entropy of a strip with its complement, section 6.2, we take the leading correction on the

blackening function, fa2 (z), given in eq. (A.10).

B Large ` limit of the entanglement entropy at finite temperature and

fixed d

In the RN background, from eq. (6.22),

`

2
=

∫ z∗

0
dz

zd−1√
f(z)

(
z2d−2
∗ − z2d−2

) . (B.1)

Let us split the region of integration into two: [0, z∗] = [0, za]∪(za, z∗], for some 0 < za < z∗
and let us rename the integral in the first interval as `1/2. In the second interval we change

variables to z = z0 − ε and expand the integrand for ε/z0 � 1.

`

2
∼ `1

2
−
∫ z0−z∗

z0

dε
z
d−1/2
0√

(d− 2)Q2 − d
√
z2d−2

0 − z2d−2
∗
√
ε

+ · · · ∼

∼ `1 +
z
d−1/2
0

2
√

(d− 2)Q2 − d

−( z0 − z∗
z2d−2

0 − z2d−2
∗

)1/2

+
z0 − za√

z2d−2
0 − z2d−2

∗

+ . . . .

(B.2)

In spite of the explicit dependence of the third term on z∗, in the limit z∗ → z0 we can

take it as a divergent contribution, `div, while the middle term remains finite, thus:

−

(
z0 − z∗

z2d−2
0 − z2d−2

∗

)1/2

∼ (`− `1)

√
(d− 2)Q2 − d
z
d−1/2
0

− `div. (B.3)

Similarly, splitting the integral of the entanglement entropy, eq. (6.21), into the same

regions the integrations carries analogously,

sÃ ∼ s1 −
√
z0√

(d− 2)Q2 − d

(
z0 − z∗

z2d−2
0 − z2d−2

∗

)1/2

+

√
z0√

(d−2)Q2−d

(
z0−za

z2d−2
0 −z2d−2

∗

)1/2

,

(B.4)

where s1 contains the UV-cutoff and the last term is also divergent in the limit z∗ → z0.

The middle term can be substituted using eq. (B.3) which leaves a term proportional to `.

In the limit z∗ → z0, `→∞ however, the term in eq. (B.3) is regularized by `div, yielding

a finite term.
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C Electrical conductivity at T > 0

The boundary conditions near z → 0 are:

Ãx(z, ω) =



A
(0)
x +A

(1)
x z, d = 3

A
(0)
x +A

(1)
x z2 + A

(0)
x ω2

2 z2 log Λ
z , d = 4

A
(0)
x +A

(1)
x

√
2
πω

[
−z cos(zω) + 1

ω sin(zω)
]
, d = 5

A
(0)
x +A

(1)
x

√
2
πω

[
−3z

ω cos(zω)− z2 sin(zω) + 3
ω2 sin(zω)

]
, d = 7

A
(0)
x +A

(1)
x

√
2
πω

[(
z3 − 15z

ω2

)
cos(zω) +

(
15
ω3 − 6z2

ω

)
sin(zω)

]
, d = 9

(C.1)

Λ is a cutoff which affects only the imaginary part of σ. We take Λ = 1. From the above

expressions and the eq. (3.6), the conductivity is:

σ =



A
(1)
x

iωA
(0)
x

, d = 3

2A
(1)
x

iωA
(0)
x

+ iω
2 , d = 4

A
(1)
x

iA
(0)
x

√
2ω
π , d = 5

3A
(1)
x

iA
(0)
x

ω3/2
√

2
π , d = 7

15A
(1)
x

iA
(0)
x

ω5/2
√

2
π , d = 9

(C.2)
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