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Abstract: A field remediation treatment was carried out to examine the long-term 

effect of biochar on the immobilisation of metals and the revegetation of a 

contaminated site in Castleford, UK. The extracted concentrations of nickel (Ni) (II) 

and zinc (Zn) (II) in the carbonic acid leaching tests were reduced by 83 - 98% over 

three years. The extracted Ni (II) and Zn (II) concentrations three years after the 

treatment were comparable to a cement-based treatment study carried out parallelly 

on the same site. The sequential extraction results indicated that biochar addition 

(0.5 - 2%) increased the residue fractions of Ni (II) (from 51% to 61 - 66%) and Zn (II) 

(from 7% to 27 - 35%) in the soils through competitive sorption, which may have 

resulted in the reduction of leachabilities of Ni (II) (from 0.35% to 0.12 - 0.15%) and 

Zn (II) (from 0.12% to 0.01%) in the plots with biochar compared with that without 

biochar three years after the treatment. The germination of grass in the plots on site 

was failed. Further laboratory pot study suggested that larger amounts of biochar (5% 

or more) and compost (5% or more) were needed for the success of revegetation on 

this site. This study suggests the effectiveness and potential of biochar application in 

immobilising heavy metals in contaminated site in the long term. 

Keywords: Biochar, Heavy metal, Leaching, Sequential extraction, Revegetation, 

Soil remediation 
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1 Introduction 

Biochar is the solid and carbon-rich product of heating biomass in a low oxygen 

environment (pyrolysis) and is used to store carbon in a more recalcitrant form 

(Lehmann et al., 2008; Sohi, 2012). Its feedstock usually comes from agriculture 

green wastes (manure, crop residues, trees, grasses etc.), industrial green wastes 

and urban sludge (Beesley et al., 2011). Its co-products (bio-oil and syn-gas) during 

pyrolysis can be used as green energy (Lehmann et al., 2008). Moreover, due to its 

highly porous micro-structure, active functional groups, high pH, surface area and 

cation exchange capacity (CEC), biochar can effectively immobilise contaminants by 

adsorption, ion exchange, surface complexation and precipitation (Beesley et al., 

2011; Bian et al., 2014; Zhang et al., 2013). Compared with conventional 

remediation materials (e.g. cement, lime and clay) (Du et al., 2012; Jiang et al., 

2014), biochar also assists in revegetation and restoration of the treated 

contaminated land (Beesley et al., 2011). These are critical processes for the 

stabilization and sustainable development of the land and reducing further risk to 

humans and the surrounding ecosystem (Arienzo et al., 2004; Ruttens et al., 2006). 

Therefore, biochar is a promising material with the potential to be applied in soil 

remediation for its multiple environmental benefits. 

A number of studies have highlighted biochar’s role in removing contaminants in 

aqueous solution (Inyang et al., 2012; Kołodyńska et al., 2012; Meng et al., 2014). 

Recent studies have also reported the successful applications of biochar in soil 

remediation in the short term. For instance, Rees et al. (2014) observed a reduction 

of extractable cadmium (Cd) (II), lead (Pb) (II), copper (Cu) (II), nickel (Ni) (II) and 

zinc (Zn) (II) in soils after the addition of a 80% coniferous and 20% hardwood 

biochar in one week. Likewise, Uchimiya et al. (2012) observed a reduction of Pb (II), 
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Cu (II) and Zn (II) after undertaking the Toxicity Characteristic Leaching Procedure 

(TCLP) extraction after adding cottonseed hull biochar to the contaminated soil 

within one week. Beesley and Marmiroli (2011) also observed a reduction of metals 

in column leachate 8 weeks after hardwood biochar treatment. Houben et al. (2013) 

found a reduction of Cd (II), Pb (II) and Zn (II) in CaCl2 extraction from soil 56 days 

after Miscanthus straw biochar amendment. These short-term findings demonstrate 

that the application of biochar in soil remediation is feasible, however limited long-

term studties have been carried out to date. Bian et al. (2014) used wheat straw 

biochar to treat an agriculture land which was lightly contaminated by Cd (II) (0.2 

mg/kg) and Pb (II) (12.9 mg/kg) and observed reductions of Cd (II) and Pb (II) 

concentrations in CaCl2 and Diethylenetriaminepentaacetic acid (DTPA) extractions 

as well as crop biomass. While Lucchini et al. (2014a) did not observe any significant 

changes of total metal concentrations in soil or plant three years after wood biochar 

treatment on a lightly contaminated agriculture land (8-9 mg/kg of Ni (II), and 33-38 

mg/kg of Zn (II)). Therefore, the long-term stability of the immobilisation of heavy 

metals in contaminated land treated by biochar, which is crucial for verifying the 

feasibility of biochar application in practical remediation projects, remains unclear 

and needs further investigation. 

In the present stduy, Salisbury biochar produced from British broadleaf hardwood 

was applied to a contaminated site in the UK in 2011. In order to aid revegetation, a 

small amount of compost was also added to supply nutrients for grass growth. The 

effects of the treatment on the leaching performances and geochemical phases of Ni 

(II) and Zn (II) in the site soils were investigated three years after the treatment. 

Finally, as the extent of revegetation on-site over this period was negligible, the 
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influences of the treatment levels of biochar and compost on the revegetation of the 

site soils were investigated in laboratory. 

2 Materials and methods 

2.1 Site information 

A site of approximately 2 hectares and located in Castleford, West Yorkshire, UK 

was adopted for this study. According to the national weather service, the annual 

average rainfall amount in this area is 600-700 mm. The information of the soil layers 

and the contamination of the site have been presented elsewhere (Wang et al., 

2015). In general, the site exhibited a high degree of heterogeneity in both soil 

textures and contamination levels due to various chemical industries that took place 

on the site during World War 1 and before World War 2. In the biochar application 

area, one borehole and one trial pit investigation revealed the presence of mainly Ni 

(II) (200 - 740 mg/kg) and Zn (II) (150 - 810 mg/kg) (the main focuses of this study) 

and several other contaminants (Cu (II), Pb (II), chromium (Cr) (III or XI) and 

petroleum hydrocarbons).  

2.2 Biochar, compost and treatment 

Salisbury biochar derived from British broadleaf hardwood was used in this study 

due to the reliable availability and sustainability of hardwood in the UK (Shen et al., 

2015). Salisbury biochar was obtained from Southern Woodland products (Salisbury, 

UK). It was produced at a pyrolysis temperature of 600 ºC in a retort with a residence 

time of 13.5 hours. The lid of the retort was on but no additional protective gas was 

added during the production. 600 kg of raw hardwood was taken for one burn. The 

physicochemical properties and adsorption characterisation of this biochar have 

been presented elsewhere (Shen et al., 2015). In summary, the biochar sample 
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revealed a pH of 6.96, BET surface area of 5.30 m2/g, cation exchange capacity of 

7.20 cmol/kg, carbon content of 79.91%, nitrogen content of 0.73% and Ni (II) and 

Zn (II) contents each less than 0.01%. Compost was purchased from Biogran 

Natural in Bath, UK. The typical composition provided by the supplier indicates that 

the compost comprises approximately 50% organic matter with a pH of 7.2. Its 

typical elements include 3.4% nitrogen, 4.4% phosphorus and 0.3% potassium.  

The treatment was employed at the site in May 2011. The field trial design consists 

of four trial plots with a plan area of 1 m2 each, 2 m in depth and spaced 

approximately 0.5 m from each other. After considering the contamination level of 

the site, the adsorption capacity of the biochar and the engineering costs (Shen et al., 

2015), the biochar dosages were selected as 0%, 0.5%, 1%  and 2% (w/w) in trial 

plots labelled TP0, TP1, TP2 and TP3 respectively (Table A1). Additionally 0.5% 

compost (w/w) was added to each plot to supply nutrients for revegetation as 

suggested by Beesley et al. (2011). The trial plots were firstly excavated and the soil, 

biochar and compost were thoroughly mixed in them by a mixer. Grass seeds were 

then sown at a dosage of 100 g per trial plot and the trial plots were watered twice a 

day for 15 days before being left open to the environment. The grass was named 

fast acting lawn seed purchased from Westland Garden Health, UK and comprised a 

mixture of 50% creeping red fescue and 50% perennial ryegrass. 

2.3 Chemical analysis of the site soils 

Soil samples were collected three years after the treatment to verify the long-term 

effect of the treatment. Three samples (taken from between 0 and 10 cm in depth) 

were collected at different locations of each plot. The soils were dried at 40 °C in an 

oven for 48 h and homogenised to form one representative sample for each plot. 
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Then the soils were sieved to less than 2 mm and sealed in sample bags for further 

analysis. According to the particle size analysis (< 2 mm) using an AccuSizer 780 

Optical Particle Sizer (Particle Sizing Systems, California, USA), 97% of the particles 

of the plot soils fall within 0.05 - 2 mm. 

2.3.1 Carbonic acid leaching of the site soils 

Standard leaching tests are widely used as indicators to estimate the release 

potential of hazardous and toxic elements from solid waste (Wang et al., 2014). The 

carbonic acid leaching (based on BS EN 12457-2 and Lewin et al. (1994)) was used 

in this study. Firstly 10 g dry soil was mixed with 100 mL carbonic acid (pH = 5.6) 

and rolled at 20 rpm for 24 h. Then the mixture was filtered with 0.45 µm filter and 

the metal concentrations in the leachates were tested by inductively coupled 

plasma/optical emission spectrometry (ICP-OES) (Perkin-Elmer, 7000DV). 

2.3.2 Sequential extraction of the site soils 

The soil samples were further investigated using a 5-step sequential extraction 

(based on Li et al. (1995, 2001), Tessier et al (1979) and Wang et al., (2014)) to 

determine the different geochemical phases of heavy metals present in the soils 

three years after the treatment. The metals were partitioned into five operationally 

defined fractions through the following steps: 

Step 1 - exchangeable fraction (non-specific adsorption): Soil sample (1 g) was 

extracted with 8 ml of 0.5 M MgCl2 at pH of 7 with continuous agitation for 20 min at 

room temperature; 

Step 2 - fraction bound to CO3
2-/PO4

2- (specific adsorption): The residue from Step 1 

was extracted with 8 mL of 1 M NaOAc (adjusted to pH 5.0 with HOAc). Continuous 

agitation was maintained for 5 h at room temperature; 
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Step 3 - fraction bound to Fe/Mn oxides: The residue from Step 2 was extracted with 

20 mL of 0.04 M NH2·OH·HCl in 25% (v/v) HOAc followed with occasional agitation 

for 6 h at 96 °C; 

Step 4 - fraction bound to organic matter: The residue from Step 3 was extracted 

with 3 mL of 0.02 M HNO3 and 5 ml of 30% H2O2 (adjusted to pH 2.0 with 70% 

HNO3). The mixture was then heated at 85 °C with occasional agitation for 2 h. After 

cooling, 3 mL of 30% H2O2 (adjusted to pH 2.0 with 70% HNO3) was added and the 

extraction was heated at 85 °C with occasional agitation for 3 h. After cooling, 5 mL 

of 3.2 M NH4OAc in 20% HNO3 was added and the mixture was continuously 

agitated for 30 min; 

Step 5 - residue fraction: The residue from step 4 was digested with 9 mL of 36% 

HCl and 3 mL of 70% HNO3 for 16 h at room temperature and then heated at 95 °C 

for 2h. 

Continuous agitation was performed using a shaker at 200 rpm. Following each step, 

the samples were centrifuged at 3000 rpm for 10 min at room temperature. The 

supernatant was then collected and filtered through a 0.45 µm filter and acidified or 

diluted when necessary before analysed by ICP-OES. The remained solid samples 

were washed with 8 ml deionized water prior to the next extraction step, and the 

washing solution was discarded after centrifugation at 3000 rpm for 10 min. 

Combining the amount of the heavy metals extracted from each step of the 

sequential extraction gives the total amount of the heavy metals in the soil. All 

laboratory analysis in this study was conducted in a temperature controlled lab at 20 

± 1 °C and 50 ± 2% humidity based on the department lab standard. 

2.4 Grass growth test 
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The visual assessment indicated no grass growth in any of the four trial plots. 

Further lab tests using a range of biochar and compost additions to soil samples 

collected from the site were conducted. The mixtures (50 g) containing 0 - 20% 

biochar and 0 - 40% compost were placed into germination pots. The pots were 

covered to prevent the soil drying out and left to incubate overnight. Each pot was 

then sown with 1 g of grass seeds (the same as that applied on site) and watered 

daily with 10 mL water. The pots were kept on bench tops under fluorescent light, 

and the temperature and relative humidity were maintained at 20 ± 1 °C and 50 ± 2% 

respectively. The grass was harvested after 4 weeks and placed in a fan-assisted 

oven at 80 °C for 3 days before being weighed. 

2.5 Quality assurance and quality control 

An advanced quality assurance (QA) and quality control (QC) system was developed 

and conducted according to Perera et al., (2005). The details of QA/QC in this 

project were presented in the SMiRT project final report (Al-Tabbaa and Liska, 2012). 

In general, prior to the application, the commercially available and quality controlled 

additives (biochar and compost) were purchased from Southern Woodland products 

(Salisbury, UK) and Biogran Natural (Bath, UK) as described in section 2.2, and 

stored and transported by professional industrial partners. During the application, the 

in-situ mixing was conducted and controlled by professional industrial partners. After 

the application, the sampling was also conducted and controlled by professional 

industrial partners. The procedures and methods of the chemical tests in lab were 

controlled according to existing standards or published papers. The QA/QC checks 

of the testing instruments (ICP-OES and pH meter etc.) in lab were conducted during 

and after installation by the suppliers. The testing instruments were also calibrated in 

lab before the chemical analysis. 
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2.6 Statistical analysis  

All the experiments in this study were carried out in triplicates. The means and 

standard deviations were calculated and presented for each experiment. The 

significance of differences between two groups were evaluated by a one-way 

analysis of variance (ANOVA) at the significance level of 0.05 using SPSS 16.0 

when necessary.  

3 Results and discussion 

3.1 Carbonic acid leaching performance of the site soil 

The dissolved Ni (II) and Zn (II) concentrations in the leachates significantly (P < 

0.001) reduced three years after the treatment for all the four plots (Fig. 1). 

Specifically, the Ni (II) concentrations in leachates from TP0, TP1, TP2 and TP3 

soils reduced with respect to the pre-treatment measurements by 98%, 93%, 90% 

and 92% respectively. Likewise, the Zn (II) concentrations in the leachate from TP0, 

TP1, TP2 and TP3 soils reduced 83%, 97%, 97% and 95% from the original 

concentrations. The soil pH values of the four plots were consistently between 7.9 

and 8.1 and show no significant trends (P > 0.05) indicating a change over time (Fig. 

1), which was probably due to the low contents of biochar and compost addition. 

Leaching performance indicates the release potential of hazardous elements from 

the contaminated soils (Wang et al., 2014). The reduction of Ni (II) and Zn (II) 

concentrations in the leachates (Fig. 1) suggested the hazards associated with soils 

had been successfully decreased by the treatment compared with that before 

treatment. Bian et al. (2014) also conducted a three-year study applying wheat straw 

biochar in a contaminated paddy field and observed a similar reduction of extracted 

metal concentrations. The Ni (II) and Zn (II) concentrations in the leachates three 
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years after the treatment in this study were comparable to conventional cement-

based stabilisation/solidification trials carried out in parallel on the same site (Wang 

et al., 2015), suggesting that the field performance of biochar may be similar to 

technologies currently being used. Wang et al., (2014) conducted another cement-

based remediation on a similar site in the UK. The 17-year data confirms the long-

term effectiveness of the immobilisation of metals after the treatment. However, as 

biochar’s potential in soil remediation was only addressed recently (Beesley et al., 

2011), it is difficult to find existing studies over such a long term and make a relevant 

comparison. The dark earth in Amazon revealed the high stability of biochar in soils 

over 800 years (Lehmann, 2007), therefore its effectiveness in immobilising metals in 

soils over decades or even centuries can be expected.  

3.2 Fractions of Ni (II) and Zn (II) in the site soils three years after the treatment 

The fractions of Ni (II) and Zn (II) in the site soils three years after the treatment 

were investigated by sequential extraction tests and the results are shown in Fig. 2 

and Table A2. The results indicated that Ni (II) exists primarily in residue form 

although to a lesser extent in TP0 (51%) compared with TP1, TP2 and TP3 (61 - 

66%). Conversely, the fractions bound to Fe/Mn oxides and to organics were greater 

in TP0 than the other trial plots. Exchangeable and CO3
2-/PO4

3- bound fractions were 

negligible in all trial plots. 

The sequential extraction also indicated that Zn (II) exists primarily bound to Fe/Mn 

oxides (59 - 66%). The proportion bound to organics was higher in TP0 than in TP1, 

TP2 and TP3 while the residue in TP0 (7%) was much lower than the other plots (27 

- 35%). As with Ni (II), the amounts bound to CO3
2-/PO4

3- were low (< 8%) in all trial 

plots and exchangeable fraction was negligible. 
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The fraction of Ni (II) (29 - 40%) and Zn (II) (59 - 66%) bound to Fe/Mn oxides 

formed a significant proportion of the total amounts in all four trial plots. The biochar 

and compost each contained very small amounts of Fe and Mn (Shen, 2015) and 

therefore metals were most likely bound to Fe/Mn oxides in the site soils. This finding 

is in line with Wang et al. (2014) who observed that the fraction bound to Fe/Mn 

oxides was the most significant constituent when sequentially extracting the 

contaminated soil in a similar site after the treatment with cement-based binders. 

The fraction bound to organics in TP0, which may probably transferred from weaker 

Fe/Mn oxides fraction after compost addition, was larger than in the trial plots both 

containing biochar and compost (TP1, TP2 and TP3) and is most likely due to the 

surface complexation of metals with carboxyl and acidic groups in the compost. For 

the trial plots with biochar addition as well as compost, this fraction decreased and 

transferred to the more stable residue fraction. This suggests that competitive 

sorption took place and that the biochar addition resulted in the preferential formation 

of more stable bonds between metals and biochar than those resulting from 

complexation with organics. Likewise, this competitive effect may have also caused 

the reduction of Ni (II) bound to Fe/Mn oxides and Zn (II) bound to CO3
2-/PO4

2- in 

TP1, TP2 and TP3 compared with TP0. The absence of an exchangeable fraction 

may also be due to the competition after the addition of compost and biochar with 

the soil. Similar competitive effects were observed by Ahmad et al. (2014) and 

Beesley and Marmiroli (2011). No significant relationship between the fractions and 

biochar dosage was found, suggesting that more addition of biochar did not 

necessarily result in significant change in metal fractions when biochar was 

adequate. 
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3.3 Leachabilities of Ni (II) and Zn (II) in the sites soils three years after the 

treatment  

The leachabilities of Ni (II) and Zn (II) in soils were obtained by dividing its extracted 

amount by its total amount in the soil. The extracted amounts from the carbonic acid 

leaching test are shown in Fig. 1 and the total amounts were obtained by calculating 

the sum of the five fractions in the sequential extraction tests (Table A2). Table 1 

presents the leachabilities of Ni (II) and Zn (II) in the site soils three years after the 

treatment. The soils in TP0 exhibited higher leachabilities for Ni (II) (0.35%) and Zn 

(II) (0.12%) compared with TP1, TP2 and TP3 (0.12 - 0.15% for Ni (II) and 0.01% for 

Zn (II)).  

This project was initially focused on reducing the concentrations of metals leached 

by rainfall and groundwater, therefore only leaching tests on the four plot soils were 

investigated before treatment to form a comparison with those after treatment. As the 

industrial site investigation, which contains 13 boreholes and 9 trial pits, only provide 

an overview of the contamination level of the site and did not exactly involve the four 

trial plots in this research, the initial total metal amounts in the four plot soils were 

unclear. Therefore, although the concentrations of Ni (II) and Zn (II) in the four plot 

soils significantly reduced three years after the treatment. It is hard to make a similar 

comparison on their leachabilities over time. 

After three years, the plots with both biochar and compost additions exhibited much 

lower leachabilities of Ni (II) and Zn (II) than the plot with compost only (Table 1), 

which suggests that although all the treatments for the four plots reduced the 

concentrations of Ni (II) and Zn (II) in the carbonic acid leachate, the leachabilities of 

them were different and the addition of biochar reduced the leachabilities of Ni (II) 
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and Zn (II) in the plot soils. This finding agrees with Liang et al. (2014) who also 

observed a significant reduction of leachability of Cd (II)  for a contaminated soil 56 

days after the treatment by dairy manure biochar. As suggested by the sequential 

extraction results in this study, the reduction of the leachabilities of Ni (II) (from 0.35% 

to 0.12 - 0.15%) and Zn (II) (from 0.12% to 0.01%) in TP1, TP2 and TP3 compared 

with TP0 was likely caused by the competitive effect resulting in stronger bonds 

(residue fraction, increase from 51% to 61 - 66% for Ni (II) and from 7% to 27 - 35% 

for Zn (II)) being formed due to the addition of biochar.  

The low leachabilities of metals in the four plot soils probably resulted from the 

relatively high equilibrium pH (7.64 - 7.71) of the leachates (Table A3), which is due 

to the buffering capacities of the alkaline soil and biochar (Fig. 1). Ni (II) and Zn (II) 

were unlikely to largely dissociate from the binding sites (complexes and precipitates 

formed between metals and biochar and compost) at such high pH (Christensen and 

Christensen, 2000; Kongdee and Bechtold, 2009).  

No significant relation between the leachabilities of Ni (II) and Zn (II) and biochar 

dosage was found in the present study. The suitable dosage of biochar addition is 

dependent on various factors such as the contamination level of the site, the soil 

characteristics and the adsorption capacity of biochar (Bian et al., 2014; Lucchini et 

al., 2014b). As the addition of 0.5% biochar was sufficient to immobilise the metals in 

the soils for this site and more biochar addition did not result in better performances, 

considering the costs of the materials and the transportation, 0.5% addition of 

biochar is believed to be a suitable dosage for immobilising the metals on this site. 

3.4 Effect of the treatment on plant growth 
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The visual assessment revealed that the grass germination on site was failed during 

the three years, suggesting that the site soil is in a poor condition for grass growth, 

which could result from various factors. First, the sandy soil can lead to a low 

retention of organic matter and nutrients that are necessary for plant germination and 

growth. Further, the presence of organic pollutants (total petroleum hydrocarbons: 0 

- 8400 mg/kg) in this site (Wang et al., 2015) can also inhibit plant growth (Beesley et 

al., 2011). Moreover, the high concentrations of metals in the soil can bind to the soil 

organic matter (SOM) and limit its biodegradation, reducing the uptake of nutrients 

from SOM by grass roots (Bolan et al., 2014). However, the added compost could 

supply the nutrients (nitrogen and phosphorus) and meanwhile the high adsorption 

capacity of biochar could help retain the nutrients in the soils. The biochar can also 

adsorb the organic pollutants and therefore cut the access of grass roots to them. 

Likewise, the biochar can adsorb and immobilise the metals and help provide a 

suitable habitat for soil microbes to decompose SOM. Therefore, the addition of 

biochar and compost was expected to successfully aid the revegetation on site. 

The failure of revegetation was very likely due to the insufficient dosage of biochar 

addition. Further laboratory tests focusing on exploring the reason why the 

revegetation was failed were carried out. The amounts of grass growth as a result of 

biochar and compost treatments are given in Fig. 3. Only 7 of 19 treatment ratios 

resulted in successful germination of grasses. The pots with 10% biochar + 10% 

compost, 10% biochar + 20% compost and 20% biochar + 40% compost exhibited 

relatively more grass growth (7.06 - 12.32 mg). While small amounts of grass (1.50 - 

2.13 mg) were observed from the pots with 10% biochar + 0% compost and 20% 

biochar + 20% compost and less amount (0.20 mg) was observed from the pots with 

5% biochar + 5% compost and 5% biochar + 10 % compost. 
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It can be found that in order to aid the germination and growth of grass, higher 

additions of both biochar and compost (Fig. 3) were needed to adsorb the 

contaminants, keep the plant roots away from pollutants and supply sufficient 

nutrients. However, high dosages of biochar can also lead to the immobilisation of 

available nutrients in the soils due to the adsorption and subsequently lead to failure 

of germination when the compost was not sufficient (Bolan et al., 2014). Therefore, 

only when the biochar addition level was adequate to adsorb the organic pollutants 

and heavy metals and the compost addition was equal to or higher than the biochar 

addition to supply sufficient nutrients was germination and plant growth successful in 

the lab trials carried out in this study (Fig.3). The results from this study suggest that 

5% biochar + 5% compost addition is the minimum requirement for a successful 

revegetation on this site, however this will be dependent on site characteristics, 

contamination levels and the type of biochar being applied for other sites. The pot 

with 10% biochar + 0% compost germinated despite not fitting the above criteria; this 

is most likely a reflection of the high degree of heterogeneity of the site soil. 

5 Conclusions 

In this paper, a field remediation study was carried out on a contaminated site using 

biochar and compost mixed into four trial plots. The extracted concentrations of Ni (II) 

and Zn (II) in the carbonic acid leaching tests were successfully reduced three years 

after the treatment. The leachabilities of Ni (II) and Zn (II) in the plots with biochar 

addition exhibited much lower than that without biochar addition. Biochar is believed 

to play a key role in reducing the leachability of soils. This was confirmed by 

sequential extraction tests which indicated that biochar addition enhances the 

residue fractions of Ni (II) and Zn (II) in the soils through competitive sorption and 

consequently reduces their mobility. The laboratory pot study on plant growth 
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suggested that larger amounts of biochar and compost were needed for successful 

revegetation on this site. The specific mechanisms between the soil and 

amendments of biochar and compost that govern plant germination have not been 

investigated in this study and are essential for further understanding the suitability of 

biochar for revegetating a contaminated site. This study suggests the effectiveness 

of biochar in immobilising metals in contaminated site in the long term. 
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Table 1 The leachabilities of Ni (II) and Zn (II) in the site soils three years after the 

treatment 
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Table 1 The leachabilities of Ni (II) and Zn (II) in the site soils three years after the 

treatment. 

 

 

 

 

 

 

 

 

 

 TP0 TP1 TP2 TP3 

Ni (II) 0.35% 0.15% 0.12% 0.13% 

Zn (II) 0.12% 0.01% 0.01% 0.01% 
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Fig. 1. The dissolved concentrations of Ni (II) (a) and Zn (II) (b) in carbonic acid 

leachates as well as the pH values of the plot soils before and three years after the 

treatment. 

Fig.2. Fractions of metals in each step of sequential extraction (a - Ni (II), b - Zn (II)). 

Fig. 3. Plant growth (dry mass) in laboratory pot trials with different biochar and 

compost dosages (w/w). 
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Fig. 1. The dissolved concentrations of Ni (II) (a) and Zn (II) (b) in carbonic acid 

leachates as well as the pH values of the plot soils before and three years after the 

treatment. 
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Fig.2. Fractions of metals in each step of sequential extraction (a - Ni (II), b (II) - Zn). 
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Fig. 3. Plant growth (dry mass) in laboratory pot trials with different biochar and 

compost dosages (w/w). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

29 
 

 

0
:0

0
:5

0
:1

0

0
:2

0
5

:0
5

:1

5
:2

.5
5

:5

5
:1

0
1

0
:0

1
0

:2
.5

1
0

:5
1

0
:1

0

1
0

:2
0

2
0

:0
2

0
:5

2
0

:1
0

2
0

:2
0

2
0

:4
0

0

2

4

6

8

10

12

14

 

 
G

ra
s
s
 g

ro
w

th
 (

m
g

)

Biochar (%): Compost (%)
 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 
 

Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the 

revegetation of a contaminated site  

Zhengtao Shen a,*, Amelia Md Som b, Fei Wang a, Fei Jin a, Oliver McMillan a, Abir 

Al-Tabbaa a 

a (Geotechnical and Environmental Research Group, Department of Engineering, 

University of Cambridge, Cambridge, CB2 1PZ, United Kingdom) 

b (UniKL MICET, Lot 1988 Bandar Vandor Taboh Naning, Melaka, 78000 Alor Gajah, 

Malaysia) 

* Corresponding author: Email: ztshennju@gmail.com; zs281@cam.ac.uk. Phone 

number: 0044+7541935253. Fax: 0044+7541935253 

 

 

 

 

 

 

 

 

 

 

 

*Revised manuscript with no changes marked
Click here to view linked References

mailto:ztshennju@gmail.com
mailto:zs281@cam.ac.uk
http://ees.elsevier.com/stoten/viewRCResults.aspx?pdf=1&docID=40087&rev=1&fileID=906328&msid={CEF8A825-517C-4644-B285-EDD2365B910A}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 
 

Abstract: A field remediation treatment was carried out to examine the long-term 

effect of biochar on the immobilisation of metals and the revegetation of a 

contaminated site in Castleford, UK. The extracted concentrations of nickel (Ni) (II) 

and zinc (Zn) (II) in the carbonic acid leaching tests were reduced by 83 - 98% over 

three years. The extracted Ni (II) and Zn (II) concentrations three years after the 

treatment were comparable to a cement-based treatment study carried out parallelly 

on the same site. The sequential extraction results indicated that biochar addition 

(0.5 - 2%) increased the residue fractions of Ni (II) (from 51% to 61 - 66%) and Zn (II) 

(from 7% to 27 - 35%) in the soils through competitive sorption, which may have 

resulted in the reduction of leachabilities of Ni (II) (from 0.35% to 0.12 - 0.15%) and 

Zn (II) (from 0.12% to 0.01%) in the plots with biochar compared with that without 

biochar three years after the treatment. The germination of grass in the plots on site 

was failed. Further laboratory pot study suggested that larger amounts of biochar (5% 

or more) and compost (5% or more) were needed for the success of revegetation on 

this site. This study suggests the effectiveness and potential of biochar application in 

immobilising heavy metals in contaminated site in the long term. 

Keywords: Biochar, Heavy metal, Leaching, Sequential extraction, Revegetation, 

Soil remediation 
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1 Introduction 

Biochar is the solid and carbon-rich product of heating biomass in a low oxygen 

environment (pyrolysis) and is used to store carbon in a more recalcitrant form 

(Lehmann et al., 2008; Sohi, 2012). Its feedstock usually comes from agriculture 

green wastes (manure, crop residues, trees, grasses etc.), industrial green wastes 

and urban sludge (Beesley et al., 2011). Its co-products (bio-oil and syn-gas) during 

pyrolysis can be used as green energy (Lehmann et al., 2008). Moreover, due to its 

highly porous micro-structure, active functional groups, high pH, surface area and 

cation exchange capacity (CEC), biochar can effectively immobilise contaminants by 

adsorption, ion exchange, surface complexation and precipitation (Beesley et al., 

2011; Bian et al., 2014; Zhang et al., 2013). Compared with conventional 

remediation materials (e.g. cement, lime and clay) (Du et al., 2012; Jiang et al., 

2014), biochar also assists in revegetation and restoration of the treated 

contaminated land (Beesley et al., 2011). These are critical processes for the 

stabilization and sustainable development of the land and reducing further risk to 

humans and the surrounding ecosystem (Arienzo et al., 2004; Ruttens et al., 2006). 

Therefore, biochar is a promising material with the potential to be applied in soil 

remediation for its multiple environmental benefits. 

A number of studies have highlighted biochar’s role in removing contaminants in 

aqueous solution (Inyang et al., 2012; Kołodyńska et al., 2012; Meng et al., 2014). 

Recent studies have also reported the successful applications of biochar in soil 

remediation in the short term. For instance, Rees et al. (2014) observed a reduction 

of extractable cadmium (Cd) (II), lead (Pb) (II), copper (Cu) (II), nickel (Ni) (II) and 

zinc (Zn) (II) in soils after the addition of a 80% coniferous and 20% hardwood 

biochar in one week. Likewise, Uchimiya et al. (2012) observed a reduction of Pb (II), 
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Cu (II) and Zn (II) after undertaking the Toxicity Characteristic Leaching Procedure 

(TCLP) extraction after adding cottonseed hull biochar to the contaminated soil 

within one week. Beesley and Marmiroli (2011) also observed a reduction of metals 

in column leachate 8 weeks after hardwood biochar treatment. Houben et al. (2013) 

found a reduction of Cd (II), Pb (II) and Zn (II) in CaCl2 extraction from soil 56 days 

after Miscanthus straw biochar amendment. These short-term findings demonstrate 

that the application of biochar in soil remediation is feasible, however limited long-

term studties have been carried out to date. Bian et al. (2014) used wheat straw 

biochar to treat an agriculture land which was lightly contaminated by Cd (II) (0.2 

mg/kg) and Pb (II) (12.9 mg/kg) and observed reductions of Cd (II) and Pb (II) 

concentrations in CaCl2 and Diethylenetriaminepentaacetic acid (DTPA) extractions 

as well as crop biomass. While Lucchini et al. (2014a) did not observe any significant 

changes of total metal concentrations in soil or plant three years after wood biochar 

treatment on a lightly contaminated agriculture land (8-9 mg/kg of Ni (II), and 33-38 

mg/kg of Zn (II)). Therefore, the long-term stability of the immobilisation of heavy 

metals in contaminated land treated by biochar, which is crucial for verifying the 

feasibility of biochar application in practical remediation projects, remains unclear 

and needs further investigation. 

In the present stduy, Salisbury biochar produced from British broadleaf hardwood 

was applied to a contaminated site in the UK in 2011. In order to aid revegetation, a 

small amount of compost was also added to supply nutrients for grass growth. The 

effects of the treatment on the leaching performances and geochemical phases of Ni 

(II) and Zn (II) in the site soils were investigated three years after the treatment. 

Finally, as the extent of revegetation on-site over this period was negligible, the 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 
 

influences of the treatment levels of biochar and compost on the revegetation of the 

site soils were investigated in laboratory. 

2 Materials and methods 

2.1 Site information 

A site of approximately 2 hectares and located in Castleford, West Yorkshire, UK 

was adopted for this study. According to the national weather service, the annual 

average rainfall amount in this area is 600-700 mm. The information of the soil layers 

and the contamination of the site have been presented elsewhere (Wang et al., 

2015). In general, the site exhibited a high degree of heterogeneity in both soil 

textures and contamination levels due to various chemical industries that took place 

on the site during World War 1 and before World War 2. In the biochar application 

area, one borehole and one trial pit investigation revealed the presence of mainly Ni 

(II) (200 - 740 mg/kg) and Zn (II) (150 - 810 mg/kg) (the main focuses of this study) 

and several other contaminants (Cu (II), Pb (II), chromium (Cr) (III or XI) and 

petroleum hydrocarbons).  

2.2 Biochar, compost and treatment 

Salisbury biochar derived from British broadleaf hardwood was used in this study 

due to the reliable availability and sustainability of hardwood in the UK (Shen et al., 

2015). Salisbury biochar was obtained from Southern Woodland products (Salisbury, 

UK). It was produced at a pyrolysis temperature of 600 ºC in a retort with a residence 

time of 13.5 hours. The lid of the retort was on but no additional protective gas was 

added during the production. 600 kg of raw hardwood was taken for one burn. The 

physicochemical properties and adsorption characterisation of this biochar have 

been presented elsewhere (Shen et al., 2015). In summary, the biochar sample 
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revealed a pH of 6.96, BET surface area of 5.30 m2/g, cation exchange capacity of 

7.20 cmol/kg, carbon content of 79.91%, nitrogen content of 0.73% and Ni (II) and 

Zn (II) contents each less than 0.01%. Compost was purchased from Biogran 

Natural in Bath, UK. The typical composition provided by the supplier indicates that 

the compost comprises approximately 50% organic matter with a pH of 7.2. Its 

typical elements include 3.4% nitrogen, 4.4% phosphorus and 0.3% potassium.  

The treatment was employed at the site in May 2011. The field trial design consists 

of four trial plots with a plan area of 1 m2 each, 2 m in depth and spaced 

approximately 0.5 m from each other. After considering the contamination level of 

the site, the adsorption capacity of the biochar and the engineering costs (Shen et al., 

2015), the biochar dosages were selected as 0%, 0.5%, 1%  and 2% (w/w) in trial 

plots labelled TP0, TP1, TP2 and TP3 respectively (Table A1). Additionally 0.5% 

compost (w/w) was added to each plot to supply nutrients for revegetation as 

suggested by Beesley et al. (2011). The trial plots were firstly excavated and the soil, 

biochar and compost were thoroughly mixed in them by a mixer. Grass seeds were 

then sown at a dosage of 100 g per trial plot and the trial plots were watered twice a 

day for 15 days before being left open to the environment. The grass was named 

fast acting lawn seed purchased from Westland Garden Health, UK and comprised a 

mixture of 50% creeping red fescue and 50% perennial ryegrass. 

2.3 Chemical analysis of the site soils 

Soil samples were collected three years after the treatment to verify the long-term 

effect of the treatment. Three samples (taken from between 0 and 10 cm in depth) 

were collected at different locations of each plot. The soils were dried at 40 °C in an 

oven for 48 h and homogenised to form one representative sample for each plot. 
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Then the soils were sieved to less than 2 mm and sealed in sample bags for further 

analysis. According to the particle size analysis (< 2 mm) using an AccuSizer 780 

Optical Particle Sizer (Particle Sizing Systems, California, USA), 97% of the particles 

of the plot soils fall within 0.05 - 2 mm. 

2.3.1 Carbonic acid leaching of the site soils 

Standard leaching tests are widely used as indicators to estimate the release 

potential of hazardous and toxic elements from solid waste (Wang et al., 2014). The 

carbonic acid leaching (based on BS EN 12457-2 and Lewin et al. (1994)) was used 

in this study. Firstly 10 g dry soil was mixed with 100 mL carbonic acid (pH = 5.6) 

and rolled at 20 rpm for 24 h. Then the mixture was filtered with 0.45 µm filter and 

the metal concentrations in the leachates were tested by inductively coupled 

plasma/optical emission spectrometry (ICP-OES) (Perkin-Elmer, 7000DV). 

2.3.2 Sequential extraction of the site soils 

The soil samples were further investigated using a 5-step sequential extraction 

(based on Li et al. (1995, 2001), Tessier et al (1979) and Wang et al., (2014)) to 

determine the different geochemical phases of heavy metals present in the soils 

three years after the treatment. The metals were partitioned into five operationally 

defined fractions through the following steps: 

Step 1 - exchangeable fraction (non-specific adsorption): Soil sample (1 g) was 

extracted with 8 ml of 0.5 M MgCl2 at pH of 7 with continuous agitation for 20 min at 

room temperature; 

Step 2 - fraction bound to CO3
2-/PO4

2- (specific adsorption): The residue from Step 1 

was extracted with 8 mL of 1 M NaOAc (adjusted to pH 5.0 with HOAc). Continuous 

agitation was maintained for 5 h at room temperature; 
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Step 3 - fraction bound to Fe/Mn oxides: The residue from Step 2 was extracted with 

20 mL of 0.04 M NH2·OH·HCl in 25% (v/v) HOAc followed with occasional agitation 

for 6 h at 96 °C; 

Step 4 - fraction bound to organic matter: The residue from Step 3 was extracted 

with 3 mL of 0.02 M HNO3 and 5 ml of 30% H2O2 (adjusted to pH 2.0 with 70% 

HNO3). The mixture was then heated at 85 °C with occasional agitation for 2 h. After 

cooling, 3 mL of 30% H2O2 (adjusted to pH 2.0 with 70% HNO3) was added and the 

extraction was heated at 85 °C with occasional agitation for 3 h. After cooling, 5 mL 

of 3.2 M NH4OAc in 20% HNO3 was added and the mixture was continuously 

agitated for 30 min; 

Step 5 - residue fraction: The residue from step 4 was digested with 9 mL of 36% 

HCl and 3 mL of 70% HNO3 for 16 h at room temperature and then heated at 95 °C 

for 2h. 

Continuous agitation was performed using a shaker at 200 rpm. Following each step, 

the samples were centrifuged at 3000 rpm for 10 min at room temperature. The 

supernatant was then collected and filtered through a 0.45 µm filter and acidified or 

diluted when necessary before analysed by ICP-OES. The remained solid samples 

were washed with 8 ml deionized water prior to the next extraction step, and the 

washing solution was discarded after centrifugation at 3000 rpm for 10 min. 

Combining the amount of the heavy metals extracted from each step of the 

sequential extraction gives the total amount of the heavy metals in the soil. All 

laboratory analysis in this study was conducted in a temperature controlled lab at 20 

± 1 °C and 50 ± 2% humidity based on the department lab standard. 

2.4 Grass growth test 
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The visual assessment indicated no grass growth in any of the four trial plots. 

Further lab tests using a range of biochar and compost additions to soil samples 

collected from the site were conducted. The mixtures (50 g) containing 0 - 20% 

biochar and 0 - 40% compost were placed into germination pots. The pots were 

covered to prevent the soil drying out and left to incubate overnight. Each pot was 

then sown with 1 g of grass seeds (the same as that applied on site) and watered 

daily with 10 mL water. The pots were kept on bench tops under fluorescent light, 

and the temperature and relative humidity were maintained at 20 ± 1 °C and 50 ± 2% 

respectively. The grass was harvested after 4 weeks and placed in a fan-assisted 

oven at 80 °C for 3 days before being weighed. 

2.5 Quality assurance and quality control 

An advanced quality assurance (QA) and quality control (QC) system was developed 

and conducted according to Perera et al., (2005). The details of QA/QC in this 

project were presented in the SMiRT project final report (Al-Tabbaa and Liska, 2012). 

In general, prior to the application, the commercially available and quality controlled 

additives (biochar and compost) were purchased from Southern Woodland products 

(Salisbury, UK) and Biogran Natural (Bath, UK) as described in section 2.2, and 

stored and transported by professional industrial partners. During the application, the 

in-situ mixing was conducted and controlled by professional industrial partners. After 

the application, the sampling was also conducted and controlled by professional 

industrial partners. The procedures and methods of the chemical tests in lab were 

controlled according to existing standards or published papers. The QA/QC checks 

of the testing instruments (ICP-OES and pH meter etc.) in lab were conducted during 

and after installation by the suppliers. The testing instruments were also calibrated in 

lab before the chemical analysis. 
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2.6 Statistical analysis  

All the experiments in this study were carried out in triplicates. The means and 

standard deviations were calculated and presented for each experiment. The 

significance of differences between two groups were evaluated by a one-way 

analysis of variance (ANOVA) at the significance level of 0.05 using SPSS 16.0 

when necessary.  

3 Results and discussion 

3.1 Carbonic acid leaching performance of the site soil 

The dissolved Ni (II) and Zn (II) concentrations in the leachates significantly (P < 

0.001) reduced three years after the treatment for all the four plots (Fig. 1). 

Specifically, the Ni (II) concentrations in leachates from TP0, TP1, TP2 and TP3 

soils reduced with respect to the pre-treatment measurements by 98%, 93%, 90% 

and 92% respectively. Likewise, the Zn (II) concentrations in the leachate from TP0, 

TP1, TP2 and TP3 soils reduced 83%, 97%, 97% and 95% from the original 

concentrations. The soil pH values of the four plots were consistently between 7.9 

and 8.1 and show no significant trends (P > 0.05) indicating a change over time (Fig. 

1), which was probably due to the low contents of biochar and compost addition. 

Leaching performance indicates the release potential of hazardous elements from 

the contaminated soils (Wang et al., 2014). The reduction of Ni (II) and Zn (II) 

concentrations in the leachates (Fig. 1) suggested the hazards associated with soils 

had been successfully decreased by the treatment compared with that before 

treatment. Bian et al. (2014) also conducted a three-year study applying wheat straw 

biochar in a contaminated paddy field and observed a similar reduction of extracted 

metal concentrations. The Ni (II) and Zn (II) concentrations in the leachates three 
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years after the treatment in this study were comparable to conventional cement-

based stabilisation/solidification trials carried out in parallel on the same site (Wang 

et al., 2015), suggesting that the field performance of biochar may be similar to 

technologies currently being used. Wang et al., (2014) conducted another cement-

based remediation on a similar site in the UK. The 17-year data confirms the long-

term effectiveness of the immobilisation of metals after the treatment. However, as 

biochar’s potential in soil remediation was only addressed recently (Beesley et al., 

2011), it is difficult to find existing studies over such a long term and make a relevant 

comparison. The dark earth in Amazon revealed the high stability of biochar in soils 

over 800 years (Lehmann, 2007), therefore its effectiveness in immobilising metals in 

soils over decades or even centuries can be expected.  

3.2 Fractions of Ni (II) and Zn (II) in the site soils three years after the treatment 

The fractions of Ni (II) and Zn (II) in the site soils three years after the treatment 

were investigated by sequential extraction tests and the results are shown in Fig. 2 

and Table A2. The results indicated that Ni (II) exists primarily in residue form 

although to a lesser extent in TP0 (51%) compared with TP1, TP2 and TP3 (61 - 

66%). Conversely, the fractions bound to Fe/Mn oxides and to organics were greater 

in TP0 than the other trial plots. Exchangeable and CO3
2-/PO4

3- bound fractions were 

negligible in all trial plots. 

The sequential extraction also indicated that Zn (II) exists primarily bound to Fe/Mn 

oxides (59 - 66%). The proportion bound to organics was higher in TP0 than in TP1, 

TP2 and TP3 while the residue in TP0 (7%) was much lower than the other plots (27 

- 35%). As with Ni (II), the amounts bound to CO3
2-/PO4

3- were low (< 8%) in all trial 

plots and exchangeable fraction was negligible. 
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The fraction of Ni (II) (29 - 40%) and Zn (II) (59 - 66%) bound to Fe/Mn oxides 

formed a significant proportion of the total amounts in all four trial plots. The biochar 

and compost each contained very small amounts of Fe and Mn (Shen, 2015) and 

therefore metals were most likely bound to Fe/Mn oxides in the site soils. This finding 

is in line with Wang et al. (2014) who observed that the fraction bound to Fe/Mn 

oxides was the most significant constituent when sequentially extracting the 

contaminated soil in a similar site after the treatment with cement-based binders. 

The fraction bound to organics in TP0, which may probably transferred from weaker 

Fe/Mn oxides fraction after compost addition, was larger than in the trial plots both 

containing biochar and compost (TP1, TP2 and TP3) and is most likely due to the 

surface complexation of metals with carboxyl and acidic groups in the compost. For 

the trial plots with biochar addition as well as compost, this fraction decreased and 

transferred to the more stable residue fraction. This suggests that competitive 

sorption took place and that the biochar addition resulted in the preferential formation 

of more stable bonds between metals and biochar than those resulting from 

complexation with organics. Likewise, this competitive effect may have also caused 

the reduction of Ni (II) bound to Fe/Mn oxides and Zn (II) bound to CO3
2-/PO4

2- in 

TP1, TP2 and TP3 compared with TP0. The absence of an exchangeable fraction 

may also be due to the competition after the addition of compost and biochar with 

the soil. Similar competitive effects were observed by Ahmad et al. (2014) and 

Beesley and Marmiroli (2011). No significant relationship between the fractions and 

biochar dosage was found, suggesting that more addition of biochar did not 

necessarily result in significant change in metal fractions when biochar was 

adequate. 
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3.3 Leachabilities of Ni (II) and Zn (II) in the sites soils three years after the 

treatment  

The leachabilities of Ni (II) and Zn (II) in soils were obtained by dividing its extracted 

amount by its total amount in the soil. The extracted amounts from the carbonic acid 

leaching test are shown in Fig. 1 and the total amounts were obtained by calculating 

the sum of the five fractions in the sequential extraction tests (Table A2). Table 1 

presents the leachabilities of Ni (II) and Zn (II) in the site soils three years after the 

treatment. The soils in TP0 exhibited higher leachabilities for Ni (II) (0.35%) and Zn 

(II) (0.12%) compared with TP1, TP2 and TP3 (0.12 - 0.15% for Ni (II) and 0.01% for 

Zn (II)).  

This project was initially focused on reducing the concentrations of metals leached 

by rainfall and groundwater, therefore only leaching tests on the four plot soils were 

investigated before treatment to form a comparison with those after treatment. As the 

industrial site investigation, which contains 13 boreholes and 9 trial pits, only provide 

an overview of the contamination level of the site and did not exactly involve the four 

trial plots in this research, the initial total metal amounts in the four plot soils were 

unclear. Therefore, although the concentrations of Ni (II) and Zn (II) in the four plot 

soils significantly reduced three years after the treatment. It is hard to make a similar 

comparison on their leachabilities over time. 

After three years, the plots with both biochar and compost additions exhibited much 

lower leachabilities of Ni (II) and Zn (II) than the plot with compost only (Table 1), 

which suggests that although all the treatments for the four plots reduced the 

concentrations of Ni (II) and Zn (II) in the carbonic acid leachate, the leachabilities of 

them were different and the addition of biochar reduced the leachabilities of Ni (II) 
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and Zn (II) in the plot soils. This finding agrees with Liang et al. (2014) who also 

observed a significant reduction of leachability of Cd (II)  for a contaminated soil 56 

days after the treatment by dairy manure biochar. As suggested by the sequential 

extraction results in this study, the reduction of the leachabilities of Ni (II) (from 0.35% 

to 0.12 - 0.15%) and Zn (II) (from 0.12% to 0.01%) in TP1, TP2 and TP3 compared 

with TP0 was likely caused by the competitive effect resulting in stronger bonds 

(residue fraction, increase from 51% to 61 - 66% for Ni (II) and from 7% to 27 - 35% 

for Zn (II)) being formed due to the addition of biochar.  

The low leachabilities of metals in the four plot soils probably resulted from the 

relatively high equilibrium pH (7.64 - 7.71) of the leachates (Table A3), which is due 

to the buffering capacities of the alkaline soil and biochar (Fig. 1). Ni (II) and Zn (II) 

were unlikely to largely dissociate from the binding sites (complexes and precipitates 

formed between metals and biochar and compost) at such high pH (Christensen and 

Christensen, 2000; Kongdee and Bechtold, 2009).  

No significant relation between the leachabilities of Ni (II) and Zn (II) and biochar 

dosage was found in the present study. The suitable dosage of biochar addition is 

dependent on various factors such as the contamination level of the site, the soil 

characteristics and the adsorption capacity of biochar (Bian et al., 2014; Lucchini et 

al., 2014b). As the addition of 0.5% biochar was sufficient to immobilise the metals in 

the soils for this site and more biochar addition did not result in better performances, 

considering the costs of the materials and the transportation, 0.5% addition of 

biochar is believed to be a suitable dosage for immobilising the metals on this site. 

3.4 Effect of the treatment on plant growth 
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The visual assessment revealed that the grass germination on site was failed during 

the three years, suggesting that the site soil is in a poor condition for grass growth, 

which could result from various factors. First, the sandy soil can lead to a low 

retention of organic matter and nutrients that are necessary for plant germination and 

growth. Further, the presence of organic pollutants (total petroleum hydrocarbons: 0 

- 8400 mg/kg) in this site (Wang et al., 2015) can also inhibit plant growth (Beesley et 

al., 2011). Moreover, the high concentrations of metals in the soil can bind to the soil 

organic matter (SOM) and limit its biodegradation, reducing the uptake of nutrients 

from SOM by grass roots (Bolan et al., 2014). However, the added compost could 

supply the nutrients (nitrogen and phosphorus) and meanwhile the high adsorption 

capacity of biochar could help retain the nutrients in the soils. The biochar can also 

adsorb the organic pollutants and therefore cut the access of grass roots to them. 

Likewise, the biochar can adsorb and immobilise the metals and help provide a 

suitable habitat for soil microbes to decompose SOM. Therefore, the addition of 

biochar and compost was expected to successfully aid the revegetation on site. 

The failure of revegetation was very likely due to the insufficient dosage of biochar 

addition. Further laboratory tests focusing on exploring the reason why the 

revegetation was failed were carried out. The amounts of grass growth as a result of 

biochar and compost treatments are given in Fig. 3. Only 7 of 19 treatment ratios 

resulted in successful germination of grasses. The pots with 10% biochar + 10% 

compost, 10% biochar + 20% compost and 20% biochar + 40% compost exhibited 

relatively more grass growth (7.06 - 12.32 mg). While small amounts of grass (1.50 - 

2.13 mg) were observed from the pots with 10% biochar + 0% compost and 20% 

biochar + 20% compost and less amount (0.20 mg) was observed from the pots with 

5% biochar + 5% compost and 5% biochar + 10 % compost. 
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It can be found that in order to aid the germination and growth of grass, higher 

additions of both biochar and compost (Fig. 3) were needed to adsorb the 

contaminants, keep the plant roots away from pollutants and supply sufficient 

nutrients. However, high dosages of biochar can also lead to the immobilisation of 

available nutrients in the soils due to the adsorption and subsequently lead to failure 

of germination when the compost was not sufficient (Bolan et al., 2014). Therefore, 

only when the biochar addition level was adequate to adsorb the organic pollutants 

and heavy metals and the compost addition was equal to or higher than the biochar 

addition to supply sufficient nutrients was germination and plant growth successful in 

the lab trials carried out in this study (Fig.3). The results from this study suggest that 

5% biochar + 5% compost addition is the minimum requirement for a successful 

revegetation on this site, however this will be dependent on site characteristics, 

contamination levels and the type of biochar being applied for other sites. The pot 

with 10% biochar + 0% compost germinated despite not fitting the above criteria; this 

is most likely a reflection of the high degree of heterogeneity of the site soil. 

5 Conclusions 

In this paper, a field remediation study was carried out on a contaminated site using 

biochar and compost mixed into four trial plots. The extracted concentrations of Ni (II) 

and Zn (II) in the carbonic acid leaching tests were successfully reduced three years 

after the treatment. The leachabilities of Ni (II) and Zn (II) in the plots with biochar 

addition exhibited much lower than that without biochar addition. Biochar is believed 

to play a key role in reducing the leachability of soils. This was confirmed by 

sequential extraction tests which indicated that biochar addition enhances the 

residue fractions of Ni (II) and Zn (II) in the soils through competitive sorption and 

consequently reduces their mobility. The laboratory pot study on plant growth 
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suggested that larger amounts of biochar and compost were needed for successful 

revegetation on this site. The specific mechanisms between the soil and 

amendments of biochar and compost that govern plant germination have not been 

investigated in this study and are essential for further understanding the suitability of 

biochar for revegetating a contaminated site. This study suggests the effectiveness 

of biochar in immobilising metals in contaminated site in the long term. 
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Table 1 The leachabilities of Ni (II) and Zn (II) in the site soils three years after the 
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Table 1 The leachabilities of Ni (II) and Zn (II) in the site soils three years after the 

treatment. 

 

 

 

 

 

 

 

 

 

 

 TP0 TP1 TP2 TP3 

Ni (II) 0.35% 0.15% 0.12% 0.13% 

Zn (II) 0.12% 0.01% 0.01% 0.01% 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

25 
 

 

 

 

 

 

Content of figures 

Fig. 1. The dissolved concentrations of Ni (II) (a) and Zn (II) (b) in carbonic acid 

leachates as well as the pH values of the plot soils before and three years after the 

treatment. 

Fig.2. Fractions of metals in each step of sequential extraction (a - Ni (II), b - Zn (II)). 

Fig. 3. Plant growth (dry mass) in laboratory pot trials with different biochar and 

compost dosages (w/w). 
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Fig. 1. The dissolved concentrations of Ni (II) (a) and Zn (II) (b) in carbonic acid 

leachates as well as the pH values of the plot soils before and three years after the 

treatment. 
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Fig.2. Fractions of metals in each step of sequential extraction (a - Ni (II), b (II) - Zn). 
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Fig. 3. Plant growth (dry mass) in laboratory pot trials with different biochar and 

compost dosages (w/w). 
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Supplementary Interactive Plot Data (CSV)
Click here to download Supplementary Interactive Plot Data (CSV): Appendix A.docx

http://ees.elsevier.com/stoten/download.aspx?id=906233&guid=42c1ded9-b2c2-4fc9-9db5-de2502ee45bf&scheme=1

