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is of major importance to the risk of common disease, but 
the complexities of the relationship are only now beginning 
to be understood.

Introduction

Telomeres

Human chromosomes are capped and stabilised by telom-
eres. They are comprised of several thousand copies of a 
hexamer repeat sequence (TTAGGG)n, a single-stranded 3′ 
G-rich overhang, and a plethora of generic DNA-binding 
proteins, tankyrases, and specific telomere-binding proteins 
collectively termed the ‘shelterin’ complex (Baird 2006; 
Moyzis et al. 1988; Verdun and Karlseder 2007). Telomeres 
prevent chromosome ends from being recognised as dam-
aged DNA in need of double-strand break repair and, as a 
result, protect against chromosome–chromosome fusions 
and rearrangements, helping maintain genomic integrity 
(Wright and Shay 2005; Murnane 2006; Blackburn 2001). 
The telomere has been likened to the plastic tip (aglet) at 
the end of a shoelace as it prevents degradation and ‘fray-
ing’ of the lace or chromosome. Telomeres are built up in 
embryonic cells by telomerase, a ribonucleoprotein con-
sisting of an oestrogen-responsive reverse transcriptase 
component (TERT) and an RNA subunit (TERC) (Greider 
and Blackburn 1996). They are heterogeneous in length, 
varying between chromosomes and individuals, and show 
remarkable sequence homology throughout higher organ-
isms (Blasco 2007; Lansdorp et al. 1996; Londono-Vallejo 
2004; Meyne et al. 1989).

Telomeres tend to shorten with each cell division, as 
this highly repetitive stretch of DNA is inefficiently cop-
ied. This is referred to as ‘the end replication problem’ 
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(Valdes et  al. 2005; Shay and Wright 2005; Levy et  al. 
1992); the leading 5′–3′ strand in the synthesis of new 
DNA can be successfully made to the end, but the lag-
ging 3′–5′ strand cannot as its synthesis is more com-
plex (Verdun and Karlseder 2006, 2007; Broccoli 2004; 
Petraccone et al. 2008). This leads to a progressive loss in 
mean telomere length (TL) of 15–66 bp per year (Valdes 
et  al. 2005; Allsopp et  al. 1992; Slagboom et  al. 1994; 
Hastie et  al. 1990; Mayer et  al. 2006). The rate of tel-
omere attrition is greatest in the first year of life [almost 
ten times the rate of loss compared to age 1–18 and 28 
times the rate compared to age 19 and over (Aubert et al. 
2012)], but the rate of attrition has also been shown to 
increase over the age of 50 years (Baird 2006; Cawthon 
et al. 2003).

Rare mutations in telomere maintenance genes, such as 
TERT, RTEL1, DKC1 and WRN, can cause dramatically 
shortened telomeres and premature ageing and increase 
risk of several rare diseases, including dyskeratosis con-
genita, which is characterised by short telomeres and 
premature ageing (Gupta and Kumar 2010; Knight et  al. 
1999; Stuart et  al. 2015; Crabbe et  al. 2007). This con-
tributes to the hypothesis of TL as a measure of ‘biologi-
cal age’ of both the cell and the organism. The ‘Hayflick 
Limit’ of 52 mitoses, as measured in cell culture, is the 
approximate limit of replicative capacity for human cells 
(Weinstein and Ciszek 2002; Benetti et  al. 2007; Hay-
flick 2003). Beyond this point, telomeres will be below 
a critical length and gross chromosomal rearrangements 
through repeated chromosomal breakage–fusion–bridge 
cycles will occur (Murnane 2006). In response to this 
‘crisis’, as signalled via the telomere-associated proteins, 
the cell cycle will arrest (Wong et  al. 2009; von Zglin-
icki 2003; Verdun et al. 2005). The vast majority of these 
arrested cells will undergo apoptosis or senesce, protect-
ing the organism from creating a potentially tumourigenic 
cell (Wong et  al. 2009; d’Adda di Fagagna et  al. 2003). 
On rare occasions, a cell can escape apoptosis or senes-
cence and completely bypass arrest. Approximately one in 
every ten million cells in ‘crisis’ can then re-lengthen their 
telomeres, to recap and protect whatever gross or local-
ised DNA damage has occurred, through the derepression 
of telomerase (Stampfer and Yaswen 2003; Bodnar et al. 
1998). More than 90 % of cancer cells show such renewed 
telomerase activity, indicating that this may play a key 
role in malignant transformation (Cawthon et  al. 2003; 
Kolquist et al. 1998; Meeker 2006; Wu et al. 2003). It has 
therefore been hypothesised that shorter mean TL may 
predispose to a number of common diseases of ageing, 
including cardiovascular disease (Murnane 2006; van der 
Harst et al. 2010) and cancer (Weischer et al. 2013; Mira-
bello et al. 2010; Risques et al. 2007; Pooley et al. 2010), 
and thus could be used as a biomarker of disease risk.

Measurement of telomere length

One of the major challenges has been the reliable measure-
ment of TL to properly test such hypotheses. Blood leuko-
cytes yield high-quality DNA that is suitable for TL assays, 
and blood is a convenient tissue to collect for epidemiologi-
cal studies. Leukocyte TL is thus generally measured as a 
marker of overall TL, under the assumption that within an 
individual TL is generally strongly correlated across tis-
sue types. After the isolation and characterisation of the 
telomere sequence in the late 1980s (Moyzis et  al. 1988; 
Meyne et  al. 1989), the first and only method of length 
determination for many years was TRF (terminal restric-
tion fragment) Southern blotting (Bryant et al. 1997; Cher-
kas et al. 2008; Bataille et al. 2007). Although the method 
generated an absolute value (in kb) of mode TL for each 
sample, it was not particularly sensitive and used a large 
amount of DNA per sample (~1 µg).

In recent years, quantitative PCR (Q-PCR) assays to 
measure mean TL have been developed. Q-PCR assays 
can be used in high-throughput laboratories, since they are 
simple and rapid to perform and require minimal quantities 
of DNA (<100 ng per sample) (Cawthon 2002). They have 
been performed on tens of thousands of samples to date to 
study TL with respect to smoking (McGrath et  al. 2007), 
obesity and dietary factors (Cassidy et  al. 2010), stress 
(Surtees et al. 2011), general physical health (Harris et al. 
2006), oxidative damage (Shen et al. 2009) and cancer risk 
(Pooley et  al. 2010, 2013; Bojesen et  al. 2013). The dis-
covery of genetic variants that are significantly associated 
with Q-PCR-determined TL has provided proof that this is 
a valid and sensitive measurement tool (Codd et al. 2010; 
Pooley et al. 2013; Bojesen et al. 2013). However, debate 
over the relative merits of the different assays continues. In 
a recent evaluation, inter-laboratory coefficients of varia-
tion were higher for Q-PCR than for other methods (Mar-
tin-Ruiz et  al. 2014). One disadvantage of Q-PCR is that 
absolute values are not generated, so it is difficult (but not 
impossible) to compare assay results from batch to batch, 
study to study and across different laboratories.

Other techniques used to investigate TL include (a). 
STELA: a PCR-based technology amplifying specific 
chromosomes (Xu and Blackburn 2007); (b). Q-FISH: 
quantitative fluorescence in situ hybridisation, whereby 
fluorescently labelled probes complimentary to the tel-
omere repeats are hybridised to a metaphase spread of 
chromosomes (Zheng et al. 2009) and (c). Flow-FISH: an 
adaptation coupling Q-FISH incorporating flow cytometry, 
whereby the TL of multiple cell types can be measured and 
compared (Baerlocher et al. 2006). These other techniques, 
although incredibly specific and accurate, are very labour 
intensive and as yet unsuitable for large-scale studies of TL 
and disease. Most recently, the ‘TelSeq’ method has been 
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shown to produce results that correlate well with existing 
technologies (Ding et  al. 2014): whole-genome next-gen-
eration sequencing data are mined for reads that are rich in 
telomere sequence, and relative length is determined. With 
the potential to be relatively high-throughput, this may 
overtake Q-PCR as the method of choice in future studies.

Telomere length

Inter‑ and intra‑ individual variation in telomere length

There is considerable variation between individuals both in 
absolute TL and the rate of telomere shortening (Chen et al. 
2011), even from birth (Okuda et  al. 2002; Akkad et  al. 
2006). Much of this variation is attributable to either meas-
urement error or variation in TL between cells in the same 
individual. Although consistent differences in both absolute 
TL and rate of attrition have been observed between differ-
ent cell types, TLs have been found to be strongly corre-
lated across different cell types within the same individual 
(Takubo et al. 2002; Aubert et al. 2012; Daniali et al. 2013).

Demographic factors associated with telomere length

Various factors have been associated with inter-individual 
TL. Unsurprisingly, given the gradual erosion of telomeres 
with each cell division, age is by far the strongest predic-
tor of individual TL, explaining an estimated 17.5 % of the 
inter-individual variation in TL (Daniali et al. 2013). Other 
demographic characteristics, such as sex and ethnicity, 
have been associated to a lesser extent. Men have signifi-
cantly shorter telomeres than women, and their telomeres 
decline more rapidly with age (Aubert et al. 2012; Möller 
et al. 2009; Weischer et al. 2012; Mayer et al. 2006).

Environmental factors associated with telomere length

Many environmental factors, particularly those indicating 
an “unhealthy lifestyle” (including obesity, smoking, lack 
of exercise and alcohol use) have been frequently, though 
somewhat inconsistently, associated with shorter telomeres 
(Cherkas et  al. 2008; Cassidy et  al. 2010; Weischer et  al. 
2012; Mirabello et al. 2009; Strandberg et al. 2011; Naw-
rot et  al. 2004; LaRocca et  al. 2010) and with the rate of 
telomere shortening (Chen et  al. 2011). Their estimated 
effect on TL is much less than that of ageing; for exam-
ple telomeres have been estimated to be 240 bp shorter in 
obese women and 5 bp shorter for every pack year smoked 
(Valdes et al. 2005). Given that many of these factors are 
known to lead to oxidative stress [e.g. obesity and smok-
ing (Burke and Fitzgerald 2003; Dandona et al. 2004)] and 
that oxidative stress is known to accelerate shortening of 

telomeres (von Zglinicki 2000, 2002; Houben et al. 2008), 
they may well be directly affecting TL. However, given 
that both TL and these factors are changing and having an 
effect over the entire lifespan of an individual, it is diffi-
cult to establish directionality of effect, particularly when 
the various factors are so highly correlated. Evidence for 
the causality of a trait may be strengthened by showing that 
genetic predictors of that trait are also predictors of TL; for 
example, in a large study, a genetic predictor of body mass 
index was investigated, but not shown to be associated with 
TL (Du et al. 2013).

Hereditary factors associated with telomere length

In addition to the rare genetic mutations discussed earlier, 
at least some of the population variation in TL is explained 
by common genetic polymorphisms. Before any genotyp-
ing was conducted, various studies had shown that TL was 
heritable, with a strong correlation (r2  =  0.25) between 
maternal and newborn TLs (Akkad et al. 2006); heritability 
estimates range from 36 to 86 % in twin and other familial 
studies (Slagboom et  al. 1994; Vasa-Nicotera et  al. 2005; 
Njajou et  al. 2007; Bakaysa et  al. 2007; Atzmon et  al. 
2009). It should be remembered that much of this herit-
ability may be due to shared environment, which is notably 
not modelled in those studies that estimate heritability to be 
over 50 %. Family-based linkage analyses have also been 
conducted in two studies, finding significant evidence for 
linkage at 12q12.22 (Vasa-Nicotera et  al. 2005; Mangino 
et  al. 2008) and 14q23.2 (Andrew et  al. 2006), although 
neither study appears to replicate the other’s findings.

The natural next step is to try to identify specific genetic 
regions that are associated with TL in a genome-wide asso-
ciation study (GWAS). The first GWAS to reach genome-
wide significance identified a locus that includes TERC 
(which encodes the telomerase RNA component), with 
each copy of the minor allele conferring a roughly 75 bp 
reduction in TL (Codd et  al. 2010). Subsequent GWAS 
have identified further single-nucleotide polymorphisms 
(SNPs) associated at genome-wide significance with TL 
including in the vicinity of OBFC1, which encodes the 
human homolog of a yeast protein involved in the replica-
tion and capping of telomeres (Levy et  al. 2010), CTC1, 
which is also involved in telomere maintenance (Mangino 
et al. 2012), and ZNF676, a zinc finger protein whose role 
in telomere biology is unknown (Mangino et al. 2012). By 
far the biggest GWAS of TL was a meta-analysis includ-
ing 37,684 individuals with replication in 10,739 individu-
als (Codd et al. 2013). This replicated the associations with 
TERC and OBFC1, revealed novel associations between 
TL and SNPs in the region of 3 genes known to be involved 
in telomere biology (TERT, NAF1 and RTEL1) and found 
novel associations at two further loci (19p12 and 2p16.2) 
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with no obvious candidate telomere-related genes. Despite 
the size of the study, the total variance in TL explained by 
the seven variants reaching genome-wide significance was 
only about 1 %, leaving the majority of the genetic varia-
tion influencing TL unexplained.

Pooley et  al. (2013) also reported variants of genome-
wide significance with TL in TERC, TERT and OBFC1 
in the analysis of a custom genotyping array (“iCOGS”) 
in breast cancer cases (n  =  11,024) and healthy con-
trols (n  =  15,065). There was also supportive evidence 
(p < 5 × 10−4) of associations with SNPs in NAF1, RTEL1 
and at 2p16.2. However, at 2p16.2, they found the minor 
allele of surrogate SNP (rs10165485) to be associated with 
longer TL in contrast to the published rs11125529 asso-
ciation with shorter TL (Codd et  al. 2010) (pairwise r2 
between SNPs = 0.98). The reportedly associated SNP at 
19p12 was not directly genotyped, nor was there any good 
surrogate, so this association could not be tested.

Epidemiological evidence of the relationship 
between telomere length and common disease

Epidemiological studies have established an association 
between shorter TL and the risk of various age-related 
common diseases.

Cardiovascular and metabolic disease

Haycock et  al. (2014) recently reviewed the evidence for 
such an association with cardiovascular disease (coronary 
heart disease and cerebrovascular disease), conducting a 
meta-analysis of 24 studies. Evidence was seen of a rela-
tionship with coronary heart disease: estimated relative 
risk (RR) (comparing the shortest versus the longest third 
of TL) 1.54, 95  % confidence interval (1.30, 1.83), with 
moderate between-study heterogeneity (I2 = 64 %), and the 
association remained when adjusting for publication bias or 
restricting to prospective studies. A similar effect size was 
seen for the association with cerebrovascular disease [RR 
1.42 (1.11, 1.81)], although there was no real evidence for 
an effect when restricting the meta-analysis to prospective 
studies.

In a similar meta-analysis, Zhao et al. (2013) concluded 
that shorter telomere length is associated with an increased 
risk of type 2 diabetes, although this meta-analysis did not 
distinguish between prospective and retrospective studies. 
In a more recently reported analysis (Willeit et  al. 2014) 
based on the prospective Bruneck Study, TL was measured 
on three occasions, spanning 15  years, but only a small 
number of participants (44/606) developed type 2 diabetes. 
When correcting for regression dilution through analysis of 
the repeated TL measures, there was evidence of increased 

risk comparing the bottom to the top quarter of TL [RR 
3.24 (1.29, 8.15)]. Upon meta-analysis with two other pro-
spective studies, the estimated RR was 1.31 (1.07, 1.60), 
with moderate between-study heterogeneity (I2 = 69 %).

Cancer

The relationship with cancer seems to be more complex. 
Wentzensen et  al. (2011) and Ma et  al. (2011) conducted 
similar meta-analyses of 25–29 epidemiological studies of 
TL and cancer risk published prior to 2010, including 13 
different cancers and overall incident cancer. From a ran-
dom effects meta-analysis of all studies, the RR of cancer 
to those with telomeres in the shortest quarter of TL com-
pared with the longest was 1.96 (1.37, 2.81) (Wentzensen 
et al. 2011), but the between-study heterogeneity was sub-
stantial (I2 = 94 %). As the authors note, this may be due, at 
least in part, to differences between specific cancers. Strong 
evidence of association was seen between shorter telom-
eres and increased risk of bladder and gastric cancer, but 
no evidence of an association was seen with various other 
cancers, including breast cancer. Indeed there is accumulat-
ing evidence that, in contrast to the common pattern, longer 
telomeres are associated with increased risk of certain can-
cers, including melanoma (Nan et  al. 2011; Burke et  al. 
2013), soft tissue sarcoma (Xie et  al. 2013), B cell lym-
phoma (Hosnijeh et al. 2014) and lung cancer adenocarci-
noma (Sanchez-Espiridion et al. 2014), suggesting perhaps 
that telomere maintenance inhibits apoptosis and increases 
the likelihood of malignancy in the development of these 
cancers. A number of recent studies have suggested there 
may be a non-monotonic relationship between TL and the 
risk of certain cancers, with higher risk at both extremes 
of TL (Qu et al. 2013; Skinner et al. 2012; Cui et al. 2012; 
Wang et al. 2014), but to date there has not been a sufficient 
number of large high-quality studies to confirm this pattern. 
Heterogeneity between studies may thus be due to combin-
ing related, but distinct, diseases that are influenced quite 
differently by TL.

Retrospective and prospective studies

Heterogeneity may also arise through differences in study 
design and conduct. Even when there is emerging evidence 
of consistent association between TL and disease the rea-
sons for the association remain uncertain.

Some of the meta-analyses have allowed comparisons 
to be made between retrospective studies (where TL is 
measured after disease diagnosis) and prospective studies 
(where TL may be measured a considerable time before 
diagnosis). Where estimates from these types of study are 
reported separately (e.g. Haycock et al. 2014; Wentzensen 
et  al. 2011), the effect sizes tend to be larger from the 
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retrospective studies, suggesting that reverse causality or 
other aspects of residual confounding contribute to the esti-
mates. Pooley et al. (2010) observed far smaller estimates 
of risk from prospective compared with retrospective stud-
ies of TL and the risk of breast and colorectal cancer. Weis-
cher et al. (2013) studied a prospective cohort study of over 
47,000 individuals from Denmark, 3142 of whom received 
a cancer diagnosis during follow-up. Although the unad-
justed hazard ratio for cancer risk was 1.74 (1.58, 1.93) for 
shortest versus longest quartile of TL, of similar magnitude 
to the meta-analyses (Wentzensen et  al. 2011; Ma et  al. 
2011), the association disappeared after adjusting for other 
risk factors, primarily age. Reverse causality could be due 
to the disease process itself (for example increased levels of 
oxidative stress among cases) or to treatment effects.

Even in prospective studies, confounding by joint risk 
factors remains a strong possibility. Although in some stud-
ies, adjustment is made for potential confounders, residual 
confounding cannot be ruled out, especially as several 
common risk factors for these diseases are also related to 
TL, as outlined earlier.

Genetic studies

To overcome concerns about both reverse causality and 
confounding, an increasing number of studies have exam-
ined the influence of telomere-related genes on disease 
risk, the rationale for which is considered more fully below. 
Polymorphisms in genes known to be involved in telomere 
maintenance have been investigated in genetic associa-
tion studies of common disease. Most notably, polymor-
phisms in or around TERT (encoding telomerase reverse 
transcriptase) are strongly associated with various cancers, 
including breast, bladder and prostate cancers and mela-
noma (Rafnar et al. 2009; Bojesen et al. 2013).

However, the most strongly associated SNPs and even 
the direction of association differ between cancers. The 
effects may reflect differences in the direction of the asso-
ciations with TL itself. For example TERT SNP alleles 
associated with longer TL in Bojesen et  al. (2013) were 
also associated with increased risk of melanoma (Barrett 
et  al. 2015), mirroring the observed association between 
longer TL and melanoma risk. In contrast, the minor 
allele of SNP rs2736108, associated with longer telom-
eres, is associated with lower risks for oestrogen receptor 
(ER)-negative (p  =  10−8) and BRCA1 mutation carrier 
(p = 10−5) breast cancers (Bojesen et al. 2013). For hor-
monal cancers, the functional variants (rs10069690 and 
rs2242652) with the biggest effects on risk have no direct 
effects on TL, and, conversely, variants (rs7705526 and 
rs2736108), which are clearly drivers of TL, have smaller, 
secondary effects on breast and ovarian cancers (Bojesen 
et  al. 2013; Terry et  al. 2012; Pellatt et  al. 2013). Thus, 

the TERT gene clearly has multiple, pleotropic effects; 5′ 
variants affect promoter activity and TL, whilst more 3′ 
variants, affecting RNA splicing and a TERT silencer ele-
ment, have roles in hormonal cancer development but not 
via changes to TL.

Since the recent GWASs of telomere length, and in par-
ticular the meta-analysis by Codd et al. (2013), a more sys-
tematic approach has been possible combining the effects 
of all SNPs known to be associated with TL into a single 
polygenic score. Codd et  al. (2013) showed modest evi-
dence for an effect of a polygenic score based on the 7 
genome-wide significant telomere-associated SNPs iden-
tified in their meta-analysis with coronary artery disease 
(p = 0.014, from a study of over 22,000 cases and 64,000 
controls). Using similar approaches, effects have also been 
observed for various cancers, including bladder cancer 
(Chang et al. 2012). In particular, Iles et al. (2014) showed 
very strong evidence for an effect of the polygenic score 
from the same 7 SNPs (Codd et  al. 2013) on the risk of 
melanoma (p < 10−8). Individuals with a polygenic score in 
the highest quartile were at almost 30 % increased risk of 
melanoma compared with those with a score in the lowest 
quartile.

Study design

Although findings are sometimes inconsistent, there is clear 
and emerging evidence of association between TL and 
common disease, and of differential effects on different dis-
eases. Many different study designs have been used, some 
measuring leukocyte TL directly and others considering 
TL-associated genotypes.

Studies measuring leukocyte telomeres directly exploit 
the strong correlation between TL in different tissues 
within an individual, although the evidence for this is not 
extensive and concerns remain about the stability of tel-
omere measurements. TL varies considerably throughout a 
person’s lifetime, due to both ageing and specific environ-
mental or host stimuli, and using current technology there 
is considerable measurement error. The timing and method 
of TL measurement are therefore both important factors. 
Telomeres measured after diagnosis may well be affected 
by treatment or by the disease process itself. Thus, pro-
spective studies, where TL is measured well before disease 
onset, are necessary to ensure the association is not due to 
reverse causality.

Many disease-related factors, including diet, sun expo-
sure and smoking, are themselves associated with TL. 
Thus, even in prospective studies, it is difficult to rule out 
confounding. In many of the prospective studies conducted 
to date, adjustment is made for known confounders, but 
residual confounding cannot be ruled out.
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These considerations, along with the high heritability 
of TL and recent discovery of TL-related genetic variants, 
have led to an interest in studies where the relationship 
between genetic predictors of TL and disease risk is investi-
gated. Clearly such studies avoid any possibility of reverse 
causality. Confounding is also unlikely, provided popula-
tion stratification is properly accounted for. Is it therefore 
possible to invoke Mendelian Randomisation principles 
(Katan 1986; Davey Smith and Ebrahim 2003) and infer 
that an association between the genetic risk factors and dis-
ease demonstrates a causal role for TL in disease risk?

One of the assumptions behind Mendelian randomisation 
is that the genetic risk variants do not have a direct effect on 
disease risk other than through the putative causal factor (TL). 
However, some observations cast doubt on this assumption. 
Firstly, as described above in relation to TERT, genes can 
clearly have pleiotropic effects. It is also possible that specific 
genetic variants influence not only TL but also other aspects 
of telomere biology or DNA repair, and their association with 
disease risk may not be due to TL per se. A second observa-
tion relates to the relationship between genetic predictors of 
TL and risk of melanoma (Iles et al. 2014). The association is 
much stronger than would be expected if the risk were medi-
ated through TL alone, given that the genetic predictors only 
explain about 1  % of the variation in measured TL (Codd 
et al. 2013). This may well be partly explained by measure-
ment error and intra-individual variability of TL, but it could 
also be due to pleiotropic effects of the variants.

Conclusions

The observed associations between TL and the risk of 
many different diseases suggest a role that is fundamental 
to health at the level of the cell and the organism. However, 
despite these strong associations, it is still unclear whether 
TL is itself causal or is a biomarker of underlying disease-
related mechanisms. Interventions aimed at increasing TL 
for the purpose of halting or reversing the ageing process or 
preventing disease, are thus not supported by current evi-
dence. Even as a biomarker of disease, TL does not cur-
rently have clinical utility in a population setting; associa-
tions with disease are complex, TL alone is not sufficiently 
predictive of risk and is subject to considerable measure-
ment error. As understanding develops and evidence accu-
mulates, TL may in the future provide a useful biomarker 
of risk or of disease progression.

Ideally, large prospective studies would be conducted 
with longitudinal measures of TL, extensive genotyping 
and detailed measures of phenotype and exposure to further 
understanding of the relationship with health. Since the 
measurement of TL is unstable, a key requirement is that 
sample collection and processing should be as uniform as 

possible. Such prospective studies would allow investiga-
tion of the relationship between genetic predictors of TL on 
disease risk, while adjusting for measured TL.

Further insights are also needed into telomere biol-
ogy. It seems likely that the sole focus on TL, rather than 
other features of telomere maintenance and stability, is too 
simplistic. Similarly, the assumption that leukocyte TL is 
reflected in disease-relevant tissue needs further investiga-
tion, and consideration should be given to measuring TL 
at more than one time point. The observation that longer 
telomeres are associated with greater risk of some cancers 
also complicates the prevailing view that longer telomeres 
are always advantageous.

Large-scale prospective studies of disease that con-
sistently and reliably measure TL are rare and expensive 
to conduct. However, large-scale datasets specifically 
designed to study the relationship between germline vari-
ation and disease risk have been established for most com-
mon disorders. The majority of these will not be suitable 
for the measurement of TL, given the sensitivity of TL 
measurement to sample handling and the variability of TL 
over time. Thus, at least until more reliable cost-effective 
methods of TL measurement become available, one of the 
most promising approaches to understanding the relation-
ship between telomere features and disease is to study the 
genetic factors that underlie them.
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