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Extending DerSimonian and Laird’s
methodology to perform network
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Network meta-analysis is becoming more popular as a way to compare multiple treatments simultaneously. Here,
we develop a new estimation method for fitting models for network meta-analysis with random inconsistency
effects. This method is an extension of the procedure originally proposed by DerSimonian and Laird. Our method-
ology allows for inconsistency within the network. The proposed procedure is semi-parametric, non-iterative, fast
and highly accessible to applied researchers. The methodology is found to perform satisfactorily in a simulation
study provided that the sample size is large enough and the extent of the inconsistency is not very severe. We
apply our approach to two real examples. © 2015 The Authors. Statistics in Medicine Published by John Wiley &
Sons Ltd.
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1. Introduction

Meta-analysis is well established in medical statistics and now requires little introduction. However,
more sophisticated methods for meta-analysis have recently been suggested, and here, we develop a new
estimation method for network meta-analysis. In network meta-analysis, multiple treatments are included
in the analysis, using data from trials that compare at least two of these treatments. This enables us to
compare all treatments of interest, including any that may not have been compared directly. Models for
network meta-analysis reduce to standard pairwise meta-analysis models when only two treatments are
included, so that network meta-analysis is a natural extension of the more conventional methods. See
Salanti [1] for a review of the methods that have been developed for network meta-analysis and Li et al.
[2], Song et al. [3] and Cipriani et al. [4] for accounts of the type of concerns that accompany the use of
network meta-analysis.

Perhaps the greatest threat to the validity of a network meta-analysis is the possibility of what has been
called ‘inconsistency’ or ‘incoherence’. The consistency assumption states, for example, that the relative
effect of treatment B to treatment A plus the relative treatment effect of treatment C to treatment B equals
the relative effect of treatment C to treatment A. This assumption is necessarily true within a three-arm
trial involving treatments A, B and C. However, if the three comparisons are made in separate sets of
studies, then it may be that direct observations of the relative effect of treatment C to treatment A do not
agree with the sum of relative effects involving B. An example of this situation is provided by our second
example in Section 7.2. Veroniki et al. [5] conclude from their investigation that ‘About one-eighth of the
networks were found to be inconsistent’. Our position is that large inconsistencies in the evidence network
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should strongly discourage the application of models for network meta-analysis, but small amounts of
inconsistency should be anticipated and accounted for in the model. The impact of the inconsistency and
the between-study heterogeneity variances can be quantified using I2 statistics (Section 5.3).

Attempts should be made to explain and/or remove or reduce inconsistency when it is found. This
could include strategies such as adjusting for covariates that explain the inconsistency or performing
subgroup analyses. Here, we assume that such strategies to eliminate any inconsistencies have failed,
where this failure is taken to mean that the evidence for inconsistency has not been removed. We suggest
that our methods for modelling inconsistency should be considered in situations where the evidence for
inconsistency either cannot be entirely removed or in situations where unadjusted inferences are desired
for the entire population of studies of interest and where the extent of the inconsistency is not too severe;
we recognise however that the notion of what constitutes ‘severe inconsistency’ is likely to differ from
one meta-analyst to the next.

Here, we use random effects for the inconsistency parameters to describe any inconsistency that may
be evident in the network. This means that we conceptualise inconsistency as an additional source of vari-
ation, in a similar way as between-study heterogeneity is conceptualised in conventional random effects
meta-analyses. We expect the debate concerning the use of random or fixed effects for the inconsistency
parameters to continue. Our use of random effects is largely motivated by our desire to be able to interpret
the basic parameters as average effects across all studies of all designs.

We use one variance parameter to describe the between-study variance and another variance parameter
to describe the inconsistency. An advantage of this relatively simple model is that it is easily interpretable
and the use of just two unknown variance parameters assists with model identifiability. More sophisti-
cated models should be considered in application when the data are sufficient to identify them. However,
most meta-analysis datasets involve relatively few studies, and we anticipate that our model will be both
appropriate and adequate for the majority of applications; for example, in their empirical investigation,
Nikolakopoulou et al. [6] find that the median number of studies per comparison is 2 (interquartile range
1–4). However, in situations where there is sufficient replication within designs, it will often be desirable
to use more complicated models for the between-study heterogeneity. Our modelling approach assumes
that the consistency equations apply to the average treatment effects across all designs and studies, and
we conceptualise inconsistency as another source of variation.

The aim of this paper is to develop a new procedure to fit the model proposed by Jackson et al. for net-
work meta-analysis [7] where here we use normal approximations for the within-study distributions. We
will show that this new procedure is an extension of DerSimonian and Laird’s method [8] for univariate
random effects meta-analysis. Extensions of DerSimonian and Laird’s methodology have previously been
proposed for multivariate meta-analysis [9, 10], but these are not immediately useful for network meta-
analysis because they make different assumptions about the unknown variance components. Jackson’s
model is a relatively simple model for network meta-analysis, which, because of common heterogeneity
assumptions, includes two unknown variance parameters that represent the extent of the between-study
heterogeneity and the inconsistency across the network. We follow the method of DerSimonian and Laird
by estimating these two variance components using the method of moments. Upon approximating the
true variance components with their estimates, the analysis proceeds as a weighted regression where all
weights are treated as known. Lumley [11] proposed a model with random inconsistency terms for a
network of two-arm trials. Lumley’s model is equivalent to Jackson’s model when all studies are two-
arm trials and normal approximations are used. Hence, the proposed approach also provides a way to fit
Lumley’s model using the method of moments.

The general modelling framework we use here follows that proposed by Jackson et al. [7]. The estima-
tion procedures proposed in Sections 3 and 4 are entirely new, however, as are the ideas for making further
inferences using the proposed estimation procedure (Section 5) and the simulation study (Section 6). We
also examine a new and highly challenging example in Section 7. The novel ideas presented here are
potentially important methodologically because they provide new semi-parametric and non-iterative esti-
mation methods for network meta-analysis. These ideas are also potentially important for applied work
because, as a direct extension of DerSimonian and Laird’s procedure, they provide a method to extend
the very many univariate meta-analyses that use this methodology. The previous implementation of the
proposed model [7] instead made use of WinBUGS [12]. In contrast to this, the new estimation proce-
dure proposed here is conceptually very similar to the two-stage approach [13], but we assume a more
standard between-study heterogeneity structure for network meta-analysis, and we further estimate an
inconsistency variance, so that the consistency assumption can be relaxed. Our proposed methods avoid
any difficulties that might be associated with the previous WinBUGS implementation, which include the
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statistical expertise required to choose appropriate priors, good parameterisations to ensure good mixing,
checking convergence diagnostics and dealing with Monte Carlo error.

Our estimation method is motivated by the recently proposed decomposition of the Q statistic for
network meta-analysis [14, 15], which is a statistic that is also used in the context of multivariate meta-
regression [16]. The proposed method can be adapted to fit certain types of loop inconsistency models
[17], and we will explain how this can be achieved in Section 4.3. Loop inconsistency models are intended
to reflect the sources of inconsistency that might arise when closed loops in the network occur. By allow-
ing each design to estimate different treatment effects, the design-by-treatment interaction model includes
more inconsistency parameters than loop inconsistency models [18]. To our knowledge, our suggestion
in Section 4.3 in the succeeding text is the first proposal for fitting loop inconsistency models with ran-
dom inconsistency effects within a frequentist framework. The application of standard three-level models
[19] to network meta-analysis, where the within-study, between-study and inconsistency variations pro-
vide the three levels, also warrants further investigation so that a likelihood-based network meta-analysis
using random inconsistency effects might be performed. We return to this issue in the discussion.

The rest of the paper is set out as follows. In Section 2, we describe the model, and in Section 3, we
present our new estimation method. In Section 4, we discuss some useful special cases of our method,
and in Section 5, we discuss ways to make further inferences from the fitted model. In Section 6, we
perform a simulation study, and in Section 7, we apply our method to two examples. We conclude with
a discussion in Section 8.

2. The model

It is possible to fit models for network meta-analysis using either contrast-based or arm-based analy-
ses [20–22], and we will use a contrast-based analysis. The previous implementation of our modelling
approach [7] allowed arm-based analyses, but the methods developed in this paper do not allow this.

In a contrast-based analysis, the outcome data are estimated treatment effects, such as mean differences
or log odds ratios. Without loss of generality, we take treatment A as the reference treatment and refer to
the other treatments as B, C, D and so on. We follow the convention of taking the design d as referring
only to the set of treatments compared in a trial [7,14,15,18,23]. For example, if the first design compares
treatments A and B only, then d = 1 refers to two-arm trials that compare these two treatments. The trials
may have more than two treatment arms.

Our model is a special case of the one proposed by Jackson et al. [7], where here we use normal within-
study approximations. Hence, our modelling framework has been described previously, but we present
our model again here so that this paper is self-contained. Our model for network meta-analysis is

Ydi = 𝜹d + Bdi +𝛀d + 𝝐di (1)

where Ydi is the vector of estimated treatment effects from the ith study of design d and all Bdi, 𝛀d and
𝝐di are assumed to be independent. The length of Ydi is cd, where cd is the number of treatments included
in design d minus one. To conveniently take a set of estimated effects from studies of design d to be used
in analysis, and so provide Ydi in model (1), we choose a baseline treatment in design d. The entries of
Ydi are then the estimated treatment effects of the other treatments included in design d relative to this
baseline treatment. It is most straightforward to choose the baseline treatments as the treatment in each
design that first appears in the alphabet.

The four components that comprise model (1) have previously been described by Jackson et al. [7],
but we also provide details of these immediately in the succeeding text in the context of the less general
case assumed here where normal within-study approximations are used for the 𝝐di.

2.1. The average treatment effects

We define the average (across all studies and designs) treatment effects relative to the reference treatment
A as 𝛿AB, 𝛿AC, 𝛿AD and so on, where these 𝛿 parameters are referred to as the basic parameters. These
parameters are of primary interest. There are c basic parameters, where c equals the number of treatments
in the network meta-analysis minus one.

The vector 𝜹d in model (1) then contains appropriate linear combinations of these basic parameters so
that 𝜹d denotes the average treatment effect corresponding to the vector of effects Ydi. For example, if
the first design contains treatments A, B and E, and treatment A is taken as the baseline treatment for this
design, then 𝜹1 = (𝛿AB, 𝛿AE)T . As another example, if the second design contains treatments C, D, E and

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839

821



D. JACKSON ET AL.

G, where this design provides only indirect information about the basic parameters, and treatment C is
taken as the baseline treatment for this design, then 𝜹2 = (𝛿AD − 𝛿AC, 𝛿AE − 𝛿AC, 𝛿AG − 𝛿AC)T . This means
that we do assume that the consistency equations apply to the average treatment effects across all designs
and studies, but we still allow for inconsistencies in the network by including the random inconsistency
effects 𝛀d.

2.2. The between-study heterogeneity

The term Bdi contains study by treatment interaction terms, which model the between-study heterogene-
ity. We assume that

Bdi ∼ N
(

0, 𝜏2
𝛽
𝐏cd

)
where Pcd

denotes a cd × cd matrix with ones on the leading diagonal and halves elsewhere. This is
a standard assumption, justified by the assumption that the heterogeneity variance is the same for all
treatment comparisons for every study [20]. Using Ja to denote the a × a matrix where all entries are
one, and Ia to denote the a × a identity matrix, we can write Pcd

=
(
Icd

+ Jcd

)
∕2, which is useful in

computation and in Appendix C.

2.3. The inconsistency parameters

The term 𝛀d models the inconsistency; if any 𝛀d ≠ 0, then the designs provide different treatment effects
and the network is inconsistent. We assume that

𝛀d ∼ N
(
0, 𝜏2

𝜔
𝐏cd

)
This form of the inconsistency variance components is justified in a very similar way to the assumed
form of between-study heterogeneity variance components in the previous section. We assume that the
inconsistency variance is the same for all treatment comparisons for every design [7]. This distributional
assumption is however less familiar than the one made in Section 2.2 and is partly motivated by the fact
that it leads to an especially simple model. The inconsistency is therefore modelled using design-specific
random effects. Our definition of consistency is that the inconsistency variance, which we will denote as
𝜏2
𝜔

, is equal to zero. Those who are not prepared to model inconsistency as an additional source of random
variation are likely to prefer the use of fixed effects for the inconsistency parameters. Furthermore, the
inconsistency in a given network might instead be attributed to a variety of other reasons [24, 25].

2.4. The within-study variation

We use normal approximations for the within-study distributions so that

𝝐di ∼ N(0,Sdi)

This means we assume that the 𝝐di are multivariate normal with within-study covariance matrix Sdi. This
type of normal approximation is standard in univariate and multivariate meta-analyses; for example,
normal approximations are often used for log odds ratios, risk differences and so on. Because the estimates
of treatment effect from a multi-arm study share a common baseline treatment group, the within-study
covariances (the non-diagonal entries of Sdi) are non-zero, and it is important that these are not ignored
in the analysis [26]. We regard the Sdi as fixed and known in the network meta-analysis.

Together, these assumptions provide the marginal distribution Ydi ∼ N
(
𝜹d,

(
𝜏2
𝛽
+ 𝜏2

𝜔

)
𝐏cd

+ Sdi

)
, but

when presenting this marginal distribution, it is important to recognise that the Ydi from the same design
d are correlated because they share a common inconsistency random effect.

3. Estimation

The model described in Section 2 has (c + 2) parameters: the c basic parameters (𝛿AB, 𝛿AC, etc.) that
describe the average treatment effects relative to treatment A and two variance components 𝜏2

𝛽
and 𝜏2

𝜔
that

describe the extent of the between-study heterogeneity and the inconsistency, respectively. The estimation
will proceed in the usual way when using the method of moments for meta-analysis [8–10]: we begin
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by estimating the variance components and then treating them as fixed and known. This is a justifiable
assumption provided that both the number of designs, and the replication of studies within designs and
between designs, are great enough to accurately estimate 𝜏2

𝜔
and 𝜏2

𝛽
, respectively. Although this is often

not the case in practice, the simulation study in Section 6 in the succeeding text suggests that networks
with relatively little replication within and between designs provide reasonably accurate inferences.

3.1. The estimating equations

To estimate 𝜏2
𝛽

and 𝜏2
𝜔

using the method of moments, we require two estimating equations that are to be
obtained from the expectation of quadratic forms [8–10]. Appropriate quadratic forms for this purpose
are given by the recently proposed decomposition of the Q statistic for network meta-analysis [14, 15],
which is given by

Qnet =
D∑

d=1

Qhet
d + Qinc (2)

where D is the number of designs, Qnet is the scalar Cochran-type Q statistic for the entire network
meta-analysis (given as Qs in equation (7) of Jackson et al. [16], and as Q in equation (9) of Gasparrini
et al. [27] in the context of multivariate meta-analysis) and Qhet

d is this Q statistic calculated using only
studies of the dth design; these Q statistics are defined in the succeeding text. Equation (2) provides three
quadratic forms, but clearly these are linearly dependent, and two estimating equations follow from (2),
as required to estimate 𝜏2

𝛽
and 𝜏2

𝜔
. We will obtain estimating equations by matching Qnet and

∑
Qhet

d to
their expectations. The expectation of Qinc and a third, linearly dependent, estimating equation could then
be obtained by subtraction.

Moment-based proposals for estimating the between-study variance 𝜏2
𝛽

have previously been proposed
by Lu et al. [13] and Rücker and Schwarzer [28]. The point estimates of the variance components can
be used to perform both point and (approximate) interval estimation for the treatment effect parameters,
which are the parameters of primary interest.

3.1.1. The first estimating equation. We will obtain our first estimating equation by calculating E
[
Qhet

d

]
so that E

[∑
Qhet

d

]
is obtained by summation. No inconsistency between trials of the same design is

possible under model (1). Hence, the variation in the estimates from the same design is assumed to be due
to within-study sampling variation and between-study variation. An implication of this for our modelling
framework is that no inconsistency terms should be included in the model for a subgroup analysis where
only trials of the same design are included.

In order to define Qhet
d and evaluate its expectation, we stack the Ydi to form Yd and we use the design-

specific marginal model for this vector

𝐘d ∼ N
(
𝐗d𝜷d,𝐒d + 𝜏2

𝛽
Ind

⊗ Pcd

)
(3)

where ⊗ denotes the Kronecker product and nd is the number of studies of design d. Because Ind
denotes

the nd × nd identity matrix, Ind
⊗ Pcd

is a block diagonal matrix where all submatrices along the block
diagonal are Pcd

. The ‘regression’ design matrix 𝐗d is obtained by stacking nd identity matrices Icd
, and

𝜷d = 𝜹d+𝛀d is a vector containing the design-specific treatment effects. Finally, 𝐒d is the block diagonal
square matrix containing the 𝐒di matrices, which we denote as 𝐒d = diag(𝐒di). The scalar Qhet

d is then
calculated as

Qhet
d =

(
𝐘d − �̂�d

)T
𝐒−1

d

(
𝐘d − �̂�d

)
=

nd∑
i=1

(
𝐘di − �̂�di

)T
𝐒−1

di

(
𝐘di − �̂�di

)
(4)

where �̂�di is the fitted value of 𝐘di under model (3) where 𝜏2
𝛽
= 0. Writing 𝐖d = 𝐒−1

d and Bd = Wd −
WdXd(X

T
d WdXd)−1XT

d Wd, in Appendix A, we show that

E
(
Qhet

d

)
= (nd − 1)cd + Kd𝜏

2
𝛽

(5)

where
Kd = tr

(
Bd

(
Ind

⊗ Pcd

))
(6)
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and tr(⋅) denotes the trace operator. Equation (5) shows that the expectation of the quadratic form Qhet
d

is equal to its associated degrees of freedom plus the product of a fixed constant and the heterogeneity
variance, just as it is in the standard univariate case [8]. Summing (5) across all designs gives

E

[
D∑

d=1

Qhet
d

]
=

D∑
d=1

(nd − 1)cd + 𝜏2
𝛽

D∑
d=1

Kd

Replacing E
[∑

Qhet
]

with its observed value and 𝜏2
𝛽

with 𝜏2
𝛽
, we obtain our first estimating equation:

D∑
d=1

Qhet
d =

D∑
d=1

(nd − 1)cd + 𝜏2
𝛽

D∑
d=1

Kd (7)

where (6) can be used to evaluate Kd. We propose solving (7) for 𝜏2
𝛽

to produce an ‘untruncated’ (possibly
negative) estimate 𝜏2

𝛽
.

3.1.2. The second estimating equation. We will obtain our second estimating equation by calculating
E[Qnet]. We now vertically stack all the 𝐘d to produce 𝐘 and use the marginal model implied by our
model described in Section 2:

𝐘 ∼ N
(
𝐗𝜹,𝐒 + 𝜏2

𝛽
P1 + 𝜏2

𝜔
P2

)
(8)

where 𝐒 is the block diagonal matrix containing the 𝐒d and so contains the 𝐒di matrices. The vector 𝜹
contains the basic parameters, so that 𝜹 = (𝛿AB, 𝛿AC, 𝛿AD, · · ·)T and the design matrix 𝐗 provides the
mean structure for 𝐘 described in Section 2.1; 𝐗 is therefore not obtained by stacking the 𝐗d matrices in
Equation (3). The matrices P1 and P2 are square matrices of appropriate dimension that contain entries
from the set {0, 1∕2, 1} to provide the variance structures described in Sections 2.2 and 2.3, respectively.
This means that P1ij = 0 if the corresponding entries of 𝐘 in model (8), 𝐘i and 𝐘j, are from separate
studies; otherwise, P1ii = 1 and P1ij = 1∕2 for i ≠ j. Similarly, P2ij = 0 if the corresponding entries 𝐘i
and 𝐘j are from different designs; otherwise, P2ij = 1 if 𝐘i and 𝐘j relate to the same treatment effect and
P2ij = 1∕2 if 𝐘i and 𝐘j relate to different treatment effects within the same design.

We have that

Qnet = (Y − Ŷ)TW(Y − Ŷ).

where W = S−1 and Ŷ is the fitted value of Y under model (8) with 𝜏2
𝛽

= 𝜏2
𝜔

= 0. Defining
B = W − WX(XTWX)−1XTW, in Appendix B, we show that

E[Qnet] =

(
D∑

d=1

ndcd

)
− c + 𝜏2

𝛽
tr(BP1) + 𝜏2

𝜔
tr(BP2) (9)

so that our second estimating equation is

Qnet =

(
D∑

d=1

ndcd

)
− c + 𝜏2

𝛽
tr(BP1) + 𝜏2

𝜔
tr(BP2) (10)

We propose substituting the ‘untruncated’ estimate from (7) into (10) and solving for 𝜏2
𝜔

to produce an
‘untruncated’ (again, possibly negative) estimate 𝜏2

𝜔
. Together, Equations (7) and (10) provide simulta-

neous equations, and hence, in practice, we estimate the two unknown variance components at the same
time. By producing ‘untruncated’ estimates of the unknown variance components by matching moments
in this way, these untruncated estimators are unbiased under the assumptions of the model.
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3.2. Inference for the average treatment effects

As in the univariate case [8], the estimated variance components can be negative unless they are truncated
to prevent this. In the event that either or both of them are negative, we propose following the univariate
convention and truncating 𝜏2

𝛽
and 𝜏2

𝜔
to zero when making inferences about the treatment effects, which

results in positive bias. We then follow the further convention of approximating the true variance com-
ponents with their estimates when making inferences about the average treatment effects. We denote the
total estimated variance of 𝐘 by

𝐕 = 𝐒 + 𝜏2
𝛽
P1 + 𝜏2

𝜔
P2 (11)

Then the estimated basic parameters, which are the average treatment effects relative to treatment A, are

�̂� = (𝐗T𝐕−1𝐗)−1𝐗T𝐕−1𝐘 (12)

which is approximately multivariately normally distributed with covariance matrix

Var(�̂�) = (𝐗T𝐕−1𝐗)−1 (13)

so that confidence intervals and the results from hypothesis tests can be obtained.
The estimates of the basic parameters contained in �̂� describe the average treatment effects relative

to the reference treatment A. The average treatment effects relative to other treatments can be obtained
as appropriate linear combinations of �̂�. The normality approximation for �̂� results in straightforward
inference for these linear combinations and hence for all average treatment effects estimable from the
network meta-analysis. The treatment effects are interpreted as average treatment effects across all studies
of all designs.

4. Special cases of the method

The previous section describes our proposed method for the analysis of network meta-analysis datasets.
Our method estimates both the heterogeneity and the inconsistency variances but collapses to
simpler models when one or both of these variances are zero. This is reminiscent of random effect models
collapsing to a fixed effect model when the between-study variance is zero. Some simplifications of our
proposed method are therefore both immediate and useful. Although our primary proposal is to fit our
full model, we recognise that others may prefer to use alternative models, and so we describe some
variations that we anticipate other meta-analysts are likely to find attractive. For example, the consistency
model may be preferred when the consistency assumption is supported by the data and loop inconsistency
models may be preferred when the inconsistency in the network is to be attributed to a particular closed
loop or loops.

4.1. Inference under the consistency assumption

In our framework, the consistency assumption is equivalent to assuming that 𝜏2
𝜔
= 0. Hence, our method

could very easily be modified to assume consistency by constraining 𝜏2
𝜔
= 0 in Equations (11), (12) and

(13). This is because (7) provides an estimate of 𝜏2
𝛽

regardless of the value 𝜏2
𝜔

. Furthermore, this 𝜏2
𝛽

could
be used for all values of 𝜏2

𝜔
assumed in the context of a sensitivity analysis if the inconsistency variance

is to be used as the sensitivity parameter.
However, the estimate of 𝜏2

𝛽
from (7) makes no use of the additional information contained in the

consistency assumption. Furthermore, it appears strange that the estimate of one variance component
should be unaffected by the assumed magnitude of another variance component in the model, for this is
not the case when using likelihood-based or Bayesian methods. The issue is whether the sum of squares
due to inconsistency is ignored or attributed to heterogeneity: under the consistency model, either is
correct, but the latter provides more precise estimation. Hence, for an analysis assuming consistency,
we propose calculating 𝜏2

𝛽
from Equation (10) with 𝜏2

𝜔
constrained to be zero, truncating 𝜏2

𝛽
to zero if

necessary and then proceeding as shown in Equations (11), (12) and (13) with 𝜏2
𝜔

set to zero. This does not
result in the same estimation as Lu et al. [13] because here we assume a different, and more conventional,
structure for the between-study variance components.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839
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In a standard univariate meta-analysis, a fitted random effects model ‘collapses’ to (gives the same point
estimate and confidence interval) a fixed effect model whenever the estimated between-study variance is
zero. Fitted consistency models, as described in this section, collapse to a ‘common-effect and consistent’
model (𝜏2

𝛽
= 0 and 𝜏2

𝜔
= 0) when 𝜏2

𝛽
= 0. Furthermore, fitted full models collapse to a common-

effect and consistent model when 𝜏2
𝛽
= 𝜏2

𝜔
= 0. However, a fitted full model does not collapse to the

corresponding fitted consistency model when 𝜏2
𝜔
= 0 when using our proposal for fitting consistency

models. If we instead used Equation (7) to estimate 𝜏2
𝛽

when assuming consistency, then fitted full models

would collapse to fitted consistency models when 𝜏2
𝜔
= 0.

4.2. The standard method of DerSimonian and Laird

In Appendix C, we show that DerSimonian and Laird’s estimating equation for the between-study hetero-
geneity variance is recovered as a special case when all studies are two-arm trials comparing the same two
treatments. No inconsistency terms are included when all studies are of the same design (Section 3.1.1).
Hence, the proposed procedure is a direct extension of DerSimonian and Laird’s method for network
meta-analysis as claimed in the title of the paper.

4.3. Loop inconsistency models

Loop inconsistency models contain a subset of the inconsistency parameters contained in the design-by-
treatment interaction model [18, 23]. Because the proposed model (1) is a special case of the design-
by-treatment interaction model [7], loop inconsistency models with random inconsistency effects can be
incorporated into the estimation procedure by modifying P2. For example, this may involve setting some
further entries to zero (the entries that correspond to any inconsistency parameters in our model that are
not included in the loop inconsistency model).

Estimation then proceeds as explained in the previous text but using this modified P2 matrix. Hence,
the proposed methodology can also incorporate loop inconsistency models. Lu and Ades [17] suggest
comparing the magnitudes of 𝜏2

𝛽
and 𝜏2

𝜔
in the context of loop inconsistency models, and this can also be

performed when using the model presented here by taking the ratio of the point estimates.

5. Further inferences

It is not sufficient to make inferences about only the basic parameters because other aspects of the model
fit are also important [7]. In this section, we describe how to perform other inferences using the proposed
estimation method, and alternative ideas when the proposed method is not so amenable.

5.1. Uncertainty in the variance components

A disadvantage of our proposed approach is that measures of uncertainty in the variance components
are not immediate from the methods described in the previous text just as they were not in the origi-
nal account of DerSimonian and Laird [8]. The recently proposed methods for the interval estimation
of moments-based estimates of between-study variance, developed for univariate random effects meta-
analysis [29] and meta-regression [30], have the potential to be extended for use with the model proposed
here. However, this type of extension is not immediate when studies with more than two treatment arms
are included in the analysis because then some of the estimates are not independent, and here, we have
two unknown variance components. This type of extension could form the subject of future work.

A practical alternative is to use some form of bootstrapping to obtain an indication of the uncertainty
in the variance components. A variety of approaches to performing bootstrapping in meta-analysis have
been proposed [31,32]. These methods could be used to obtain standard errors and/or confidence intervals
of either the truncated and/or the untruncated estimates of the variance components, and we can obtain
these on the variance or the standard deviation scale as desired. However, the best form of bootstrap-
ping for this type of purpose is a special investigation in its own right. For now, we will omit statements
about the uncertainty in the variance components, as is quite common practice when implementing the
more familiar DerSimonian and Laird procedure for random effects meta-analysis, but we do not regard
this as ideal. This comment also applies to the extensions of DerSimonian and Laird’s method for mul-
tivariate (multiple outcomes) meta-analysis [9, 10]. The best way to allow for the uncertainty in the
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variance components when making inferences about the treatment effects is another important topic for
further work.

5.2. Ranking of the treatments

The probabilistic ranking of the treatments is often an important aim in network meta-analysis. For exam-
ple, the intention might be that the results from the network meta-analysis are to feed into a decision
analysis. Probabilistic ranking is most naturally performed in a Bayesian framework, but here, we adopt
a classical approach.

The probabilistic ranking of the treatments can be performed in a similar way to White et al. [23].
Here, we simulate treatment effect vectors from a normal distribution centred at �̂� from Equation (12) and
with covariance matrix given by Var(�̂�) from Equation (13). We then record the proportion of simulated
treatment effect vectors in which each treatment is the most effective, and this estimates the probability
that each treatment is best. The proportion of simulated treatment effect vectors in which each treatment
is the second most effective estimates the probability that each treatment is second best, and so on. It is
important to consider the whole distribution of the rankings for each treatment; the probability of being
the best can be a misleading guide when ranking the treatments, especially when there is little statistical
information about the treatment network. In our first example (Section 7.1), we show the probabilities that
each treatment effect is best so that our new results can be compared with those obtained previously [7].
However, the parameter estimation provides the focus of this paper, and so we do not make any formal
attempt to rank the treatments in either example in Section 7.

This proposed method for the probabilistic ranking of treatments takes the average of all studies and
all designs as the target for inference. We could also rank the treatments in a new study, or a new design,
using our model [7].

5.3. I2 statistics

Because we have based our estimation procedure on Q statistics, it is tempting to calculate I2 statistics as
(Q − v)∕Q, where Q is an appropriate Q statistic and v is its associated degrees of freedom, in the usual
way [16,33]. However, the justification for calculating I2 statistics using this idea requires an explanation
of why the resulting expression estimates a suitable quantity [16,33]. It is not obvious that the Q statistics
used here are capable of producing meaningful I2 statistics in this way. We therefore suggest, if I2 statistics
that describe the impact of the between-study heterogeneity and/or the inconsistency are desired, that the
methods used by Jackson et al. [7] for calculating I2 statistics should also be used with the estimation
procedure suggested here. So that this paper is self-contained, we will also describe these methods in
this section.

We explain how to fit the full model in Section 3, and we refer to this as the ‘random-effects and
inconsistent’ (RI) model, because both between-study heterogeneity and inconsistency are incorporated
into the model. We explain how to fit the model under the consistency assumption in Section 4.1, and we
refer to this as the ‘random-effects and consistency’ (RC) model. It is also straightforward to fit the model
under the assumption that both 𝜏2

𝛽
and 𝜏2

𝜔
are zero; here, we use Equations (11) and (12) with 𝐕 = 𝐒, and

we refer to this as the ‘common-effect and consistent’ (CC) model. We denote the volumes (or generalised
notions of volume in more than three dimensions) of the 95% (or some other coverage probability, this
coverage probability is immaterial) confidence regions for all c basic parameters from these three models
as VCC, VRC and VRI , and the covariance matrices of the estimates of the c basic parameters 𝐂CC, 𝐂RC and
𝐂RI , respectively. The R statistic comparing a model with an additional source (or sources) of variation to
an alternative, reduced model, is given by the cth root of the ratio of the volumes of the confidence regions
resulting from these two models, where the model with additional variation appears in the numerator.

For example, the R statistic comparing the ‘random-effects and inconsistent’ and the ‘random-effects
and consistent’ models, which describes the impact of including inconsistency in the random effects
model, is given by

R =
(

VRI

VRC

)1∕c

=
(|𝐂RI𝐂−1

RC|)1∕2c
(14)

where | ⋅ | denotes the matrix determinant, and we then define I2 statistics as I2 = (R2 − 1)∕R2, where we
multiply these I2 statistics by 100% in order to express them as percentages. The R statistic comparing
the ‘random-effects and inconsistent’ and the ‘common-effect and consistent’ models is obtained by
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replacing ‘RC’ with ‘CC’ in (14); similarly, the R statistic comparing the ‘random-effects and consistent’
and the ‘common-effect and consistent’ models is obtained by replacing ‘RI’ with ‘RC’ and ‘RC’ with
‘CC’, respectively.

If desired, we may also obtain R, and hence I2, statistics for particular subsets of the basic parameters
[16] rather than for all the basic parameters and hence the network meta-analysis as a whole. For example,
we could take 𝐂RI and 𝐂RC as the submatrices for a subset of basic parameters and replace c with the
reduced dimension of either 𝐂RI and 𝐂RC when computing (14). This could be of particular interest
when different types of treatments are included in the network, for example pharmacological and non-
pharmacological treatments, so that the impact of the heterogeneity on different types of treatment can
be quantified. I2 statistics can also be calculated for any linear combination of treatment effects that are
estimable in the network meta-analysis that might be of inferential interest, and not just for the treatment
effects relative to treatment A, by using appropriate linear combinations [16].

An investigation into the use of I2 statistics of the type (Q−v)∕Q may form the subject of future work,
but we suggest that they should not be used until their use is clearly and properly justified. We will also
refrain from giving thresholds to interpret our I2 statistics because meta-analysts may not agree on how to
interpret the magnitudes of standard univariate I2 statistics. Despite this, whatever convention the analyst
is comfortable in using when interpreting standard I2 statistics can also be used when interpreting the
magnitude of the I2 statistics described in this section.

5.4. Model section

Jackson et al. [7] used deviance information criterion (DIC) statistics [34] to determine the model fit and
to decide whether or not the extra variance parameter in the inconsistency model is needed to adequately
describe the data. Here, we do not adopt a likelihood-based approach and so have no such general method
such as DIC or AIC to determine model fit. We leave the best way to assess the adequacy of the consistency
model, compared with the full model, as further work, but for now, the approach of White et al. [23]
is probably the best frequentist approach for assessing the strength of evidence against the consistency
assumption. This approach provides a global hypothesis test for the presence of inconsistency using fixed
effects for the inconsistency parameters.

5.5. Locating inconsistencies in the network

Jackson et al. [7] used the posterior distributions of 𝛀d to identify where the inconsistencies in the net-
work occur. This was convenient because WinBUGS was used to fit the model. However, the resulting
inferences for the 𝛀d could be driven by normality assumptions, and although empirical Bayes estimates
of the 𝛀d using our approach could be derived, this approach is not nearly as convenient when using the
method of moments as proposed here.

Hence, we suggest that alternative methods are more suitable for identifying where the inconsistency
arises. These include the fixed effect inconsistency parameters approach of White et al. [23] and node
splitting [35]. The proposed approach is intended as a simple and direct way of performing pooling across
a network meta-analysis, where the possibility of inconsistency is to be entertained, but it does not provide
a very convenient framework for identifying where the inconsistency might arise.

6. Simulation study

The proposed method uses the estimated variance components as if they were the true values when mak-
ing inferences about the treatment effect parameters. This raises the obvious concern that the uncertainty
in the parameter estimation is not fully being taken into account. This means that the actual coverage
probabilities of confidence intervals are likely to be less than their nominal values, so that the actual signif-
icance levels of hypothesis tests are likely to be larger than their nominal values. The aim of the simulation
study is to explore this issue. We do not compare the proposed method to an alternative ‘gold standard’
method because there is no currently universally accepted gold standard to compare our procedure to.

6.1. The simulation study design

The simulation study imitates previous simulation studies for multivariate meta-analysis in some respects
[9,10,36], but we modified previous simulation study designs to make it more suitable for network meta-
analysis. For each study of each design, we simulated a single within-study variance 𝜎2

di from the scaled
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and truncated 𝜒2 distribution originally proposed by Brockell and Gordon [37] for simulating within-
study variances for log odds ratios. Specifically, we simulate within-study variances as independent 0.25×
𝜒2

1 random variables, where we further truncate so that these variances lie between 0.009 and 0.6. The
within-study covariance matrices were then obtained as Sdi = 𝜎2

di𝐏cd
. This assumes that, within studies,

all within-study variances are the same and that the within-study correlations are 0.5. This was deemed
appropriate because it reflects an equal allocation of participants to each treatment arm within studies.

In each dataset, we simulated the entire sample of estimates directly from model (8) using an appropri-
ate design matrix and fixed values of 𝜏2

𝛽
and 𝜏2

𝜔
. We assumed that four treatments appear in the network,

so that we estimate three basic parameters 𝛿AB, 𝛿AC and 𝛿AD. We considered values of 0, 0.024 and 0.168
for both 𝜏2

𝛽
and 𝜏2

𝜔
, because using these three values of 𝜏2

𝛽
correspond to I2 = 0, 0.3, 0.75, where this I2

compares the RC and CC models [9,10,36]. Hence, these values of 𝜏2
𝛽

can be interpreted as no between-
study heterogeneity, mild heterogeneity and more severe heterogeneity respectively. For 𝜏2

𝜔
, these values

correspond to the consistency assumption, mild inconsistency and more severe inconsistency, respec-
tively. Jackson et al. [7] argue that the model should only be used when ‘small amounts of inconsistency
are present’. Hence, 𝜏2

𝜔
= 0.168 represents a situation where the use of network meta-analysis per se is

to be discouraged, but we will investigate what happens if the proposed method is used.
The design matrix X depends on the designs of the studies included in the network meta-analysis, and

three simulation runs were performed to explore different possibilities for X. The first run involved 10
studies and five different designs. For this, we used two studies of each of the five designs ABC, ABD, AB,
AC and AD, so that in total, there were 14 estimated treatment effects. The second run involved 50 studies
and five different designs. For this, we used 10 studies of each of these five designs ABC, ABD, AB, AC
and AD, so that in total, there were 70 estimated treatment effects. The third run involved 50 studies and
10 different designs ABC, ABD, ACD, BDC, AB, AC, AD, BC, BD and CD (that is, all possible two and
three arm designs were included). For this, we used five studies of each of these 10 designs so that again
there were 50 studies that provide 70 treatment effects. The important difference between the second and
third runs is that the latter involves more designs so that 𝜏2

𝜔
can be better estimated. We simulated data

assuming all treatment effects are zero, so that in model (8), we use 𝜹 = 0, but this is immaterial because
the estimation of the variance components is location-invariant and the point estimation of the means is
just translated when using an alternative 𝜹 ≠ 0.

6.2. The number of simulated datasets

Three-thousand independent datasets were simulated for each combination of X, 𝜏2
𝛽

and 𝜏2
𝜔

. Biases were
estimated as the average difference between parameter estimates, and the true value and coverage proba-
bilities of nominal 95% confidence intervals were estimated as the proportion of the intervals that cover
the true value. Three-thousand datasets were used because a slight decrease from the nominal coverage
probability of 0.95 was expected, and 2

√
0.92 × 0.08∕3000 ≈ 0.01, which means that estimated coverage

probabilities can be taken to be accurate to within around 0.01 of the correct value.

6.3. Results using the full model

For the first two runs, the results for 𝛿AC and 𝛿AD were in agreement (within Monte Carlo error). This is
appropriate because the designs of these two networks are symmetrical in treatments C and D. For the
third run, the results for all three basic parameters were in agreement, which is also appropriate. Hence,
we present results for 𝛿AB and 𝛿AC for the first two runs and the results for 𝛿AB only for the third run.
Because before truncation the estimates of 𝜏2

𝛽
and 𝜏2

𝜔
are obtained by matching moments, they are truly

unbiased if truncation is not performed (this was confirmed by the simulation study; results not shown).
However , truncation invokes a positive bias in the variance components, and the coverage probabilities
of nominal 95% confidence intervals deviated from 0.95 as expected.

Hence, in Table I, we show the empirical and the average model-based standard errors of the esti-
mated basic parameters, and the estimated actual coverage probabilities of the corresponding nominal
95% confidence intervals. The model-based standard errors are obtained from (13) whereas the empir-
ical standard errors are obtained as the standard deviation of the point estimates; if the modelling and
estimation are both adequate, then empirical and model-based standard errors will be in good agreement.
We also show the excess kurtosis of the estimates of treatment effect to assess whether the distribution of
the estimates have heavier tails than a normal distribution, which would imply that the use of quantiles
from a t distribution could be more appropriate than those from a standard normal when calculating con-
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fidence intervals and performing hypothesis tests. The excess kurtosis is the kurtosis minus 3 (3 is the
kurtosis of a normal distribution), so that the excess kurtosis of a normal distribution is 0. Positive values
of excess kurtosis suggest that a t distribution could perform better than a standard normal distribution
when making inferences. Finally, in Table I, we also show the average (with standard deviations) of the
truncated estimates of the variance components.

From Table I, we see that the truncation of the variance components results in notable positive bias
when the sample size is small (run 1), but this bias is much smaller in runs 2 and 3. The proposed approach
is conservative (the actual coverage probabilities of the confidence intervals are larger than the nomi-
nal 0.95) when the consistency assumption is true

(
𝜏2
𝜔
= 0

)
, as one should anticipate, because then the

model allows for a superfluous variance component. This is reminiscent of the conservatism of the uni-
variate random effects model when the fixed effect assumption is true. When the inconsistency is present
(𝜏2

𝜔
= 0.024, 0.168), the actual coverage probabilities drop from the nominal 0.95. This is because the

proposed method does not take into account the uncertainty in the estimated variance components. Given
the simplicity of the method, the general picture from Table I is that the method performs reasonably
well. The proposed method is conservative when the empirical standard errors are less than the average
model-based standard errors and is anti-conservative when the empirical standard errors are more than
the average model-based standard errors, as expected.

It is interesting, and perhaps slightly disconcerting, that actual coverage probabilities in run 2 are not
better than those from run 1 and, in fact, appear to be slightly worse. This is despite the fact that run 2
involves 50 studies but run 1 only involves 10 studies. This can be explained because run 2 involves the
same number of designs as run 1, so the estimation of 𝜏2

𝜔
is not impressively better in run 2 than in run

1; this can be seen from the magnitudes of the standard deviations of the estimates of the inconsistency
variances. The precision of the estimated treatment effects becomes considerably greater in run 2 as
expected, but the magnitude of the uncertainty in 𝜏2

𝜔
relative to this precision remains large in run 2.

Hence, the impact of taking 𝜏2
𝜔

as fixed and known remains considerable in run 2. This is because in
moving from run 1 to run 2, we have begun to take a limit in an artificial way: we have begun to allow the
number of studies to tend towards infinity while holding the number of designs fixed. For the proposed
approach to perform well, we require that both variance components are well estimated, so that ideally,
we need large numbers of studies and designs. This is the case in run 3, where we have 50 studies and
10 designs. The actual coverage probabilities in run 3 are closer to the nominal level than in runs 1 and
2, which emphasises that the amount of replication within and across designs together determine the
accuracy of the proposed method in practice.

The values of excess kurtosis in Table I are both positive and negative, which makes it unlikely that a
consistent improvement could be obtained simply by using quantiles from a t distribution, rather than a
standard normal, when making inferences. However, the excess kurtosis is generally greatest when both
𝜏2
𝛽

and 𝜏2
𝜔

are zero, which suggests that the distributions of the estimates of treatment become heavy-tailed
when superfluous variance components are included in the model.

6.4. The implications of making the consistency assumption

The consistency assumption is commonly, and sometimes implicitly, made. In Table II, we present the
results where we apply the consistency analysis described in Section 4.1 to the simulated datasets (we
omit the results 𝜏2

𝜔
because this is assumed to be zero in a consistency analysis). Hence, we calculate 𝜏2

𝛽

from Equation (10) with 𝜏2
𝜔

constrained to be zero.
From Table II, we can see that the consistency analysis is less conservative than the proposed method

(Table I) when the consistency assumption is true (𝜏2
𝜔
= 0) . The consistency analysis also results in

more precise estimation of 𝜏2
𝛽

when the consistency assumption is true. However, the consistency anal-
ysis becomes misleading when inconsistency is present. When 𝜏2

𝜔
> 0, the truncated 𝜏2

𝛽
becomes even

more positively biased, because the consistency model attempts to describe the additional variation in the
data. Despite this, the consistency model fails to adequately describe the data and the nominal coverage
probability drops accordingly. The results in Table II make it clear that analyses that incorrectly make
the consistency assumption can be misleading.

To summarise, the simulation study reassures us that the proposed method performs adequately. Indeed,
the method performs better than many might suspect given its simplicity. However, it requires sufficient
replication both within and between designs to perform very well. Because the proposed method is con-
servative when the consistency assumption is true, it provides a very viable option under the assumption
of consistency or when a small amount of inconsistency is present. These are exactly the circumstances

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839
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under which the use of network meta-analysis should be encouraged, and so the proposed method
performs best in the situations where we anticipate that most network meta-analyses will be performed.

7. Examples

In this section, we apply our new method to two real examples and we compare the results to those
obtained using Bayesian analyses performed using WinBUGS. Details of the prior specification used for
the first example (Section 7.1 in the succeeding text) are given by Jackson et al. [7], and the same priors
were used for the second example (Section 7.2), but we also briefly give details here. All location param-
eters were given vague (normal with very small precision) prior distributions. Uniform prior distributions
from 0 to 5 were used for the standard deviations 𝜏𝛽 and 𝜏𝜔. Because the prior distributions used for vari-
ance components are often influential in Bayesian analyses, these particular priors are only intended to
provide some illustrative results. Investigating the sensitivity of conclusions to the prior distributions is
highly recommended in practice.

A very large burn-in of 30 000 was used for the first example to ensure convergence, which was checked
by running three chains at different starting values. The second example is of much lower dimension and
presents considerably less of a challenge for Markov chain monte carlo (MCMC) algorithms, so here,
Bayesian analyses were performed using single chains with burn-ins of 20 000. For making inferences
for the first and second examples, 450 000 and 100 000 draws from the posterior distributions were
used, respectively.

7.1. Example one: osteoarthritis of the knee

This example was used previously by Jackson et al. [7]. Here, there are 87 trials of 38 designs, each com-
paring a subset of 22 treatments for pain relief for osteoarthritis of the knee. The outcomes are continuous
measurements, and the standardised mean difference of pain at the end of the trial is used to compare
treatments, where a negative treatment effect indicates benefit. For one trial, only treatment contrasts were
available, and two arms were in the same treatment category. Jackson et al. [7] treated these treatment
effects as from a multi-arm trial with a shared random effect contributing to each treatment effect. The
proposed approach does not allow this type of flexibility in the modelling, and here, we instead chose one
of the treatment effects to use in the analysis at random. This example involves many different studies
and designs, but there is relatively little replication of studies within designs.

The results are shown in Table III. The previous WinBUGS analysis reported the results in terms of the
standard deviations 𝜏𝛽 and 𝜏𝜔 so in Table III, we present the truncated estimates 𝜏𝛽 and 𝜏𝜔, which were
obtained by square-rooting the moments-based estimates of the two variance parameters. The probabili-
ties that each treatment is best were obtained as explained in Section 5.2 using 10 000 simulated treatment
effect vectors. The two sets of results are in reasonable agreement, but the main difference is that the
proposed method provides a truncated estimate 𝜏2

𝜔
= 0. This is not surprising because the DIC statistic

from the Bayesian analysis of these data assuming consistency is smaller than the corresponding DIC for
the full model (132.61 vs. 133.23) [7]. This indicates that the consistency model adequately describes
the data as reflected in the truncated 𝜏2

𝜔
= 0. However, this results in smaller standard errors for the esti-

mated basic parameters, and the inferences from the proposed method are in better agreement with the
previous Bayesian analysis where consistency was assumed [7].

The results for this example in Table III are therefore in reasonable agreement with the results obtained
previously, and the discrepancies are easily explained. However, the proposed method appears to under-
state the uncertainty in the results from an analysis that allows for the possibility of inconsistency. This is
despite the relatively large sample size of the osteoarthritis of the knee dataset. The I2 statistics however
are quite similar to those obtained previously using WinBUGS: the I2 statistic comparing the RI and RC
models is 12%, the I2 statistic comparing the RI and the CC models is 71% and the I2 statistic compar-
ing the RC and the CC models is 68%; in the previous WinBUGS analyses, these three I2 statistics were
19%, 75% and 69%, respectively.

7.2. Example two: topical antibiotics

This example is taken from a Cochrane Systematic Review Topical antibiotics without steroids for chron-
ically discharging ears with underlying eardrum perforations [38]. Here, 13 studies, two of which are
three-arm studies, provide outcome data on treatment failure due to persistent discharge. The network
meta-analysis involves four treatment arms: A (no treatment), B (topical quinolone antibiotic), C (topical

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839
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Table III. Results for the osteoarthritis of the knee data.

New procedure Previous Bayesian analysis

Treatment Parameter Estimate P (best) Estimate P (best)

A: standard care — 0.00 0.00
B: placebo 𝛿AB 0.04 (0.20) 0.00 0.04 (0.23) 0.00
C: no medication 𝛿AC 0.60 (0.32) 0.00 0.59 (0.35) 0.00
D: acupuncture 𝛿AD −0.78 (0.16) 0.08 −0.78 (0.19) 0.07
E: balneotherapy 𝛿AE −0.46 (0.25) 0.00 −0.49 (0.30) 0.01
F: braces 𝛿AF −0.15 (0.46) 0.02 −0.15 (0.50) 0.02
G: aerobic exercise 𝛿AG −0.59 (0.22) 0.03 −0.57 (0.25) 0.03
H: muscle exercise 𝛿AH −0.37 (0.11) 0.00 −0.36 (0.15) 0.00
I: heat treatment 𝛿AI −0.03 (0.30) 0.00 −0.02 (0.33) 0.00
J: insoles 𝛿AJ −0.01 (0.35) 0.00 0.00 (0.41) 0.00
K: tai chi 𝛿AK −0.28 (0.29) 0.01 −0.28 (0.34) 0.01
L: weight loss 𝛿AL −0.35 (0.26) 0.01 −0.35 (0.29) 0.01
M: sham acupuncture 𝛿AM −0.25 (0.23) 0.00 −0.28 (0.28) 0.00
N: ice/cooling 𝛿AN −0.25 (0.37) 0.01 −0.25 (0.39) 0.01
O: interferential 𝛿AO −1.11 (0.48) 0.52 −1.11 (0.51) 0.49
P: laser 𝛿AP −0.25 (0.36) 0.00 −0.24 (0.42) 0.01
Q: manual 𝛿AQ −0.29 (0.30) 0.00 −0.29 (0.32) 0.01
R: NMES 𝛿AR 0.46 (0.55) 0.00 0.45 (0.58) 0.00
S: PES 𝛿AS −0.70 (0.32) 0.08 −0.73 (0.36) 0.09
T: PEMF 𝛿AT 0.01 (0.32) 0.00 0.01 (0.38) 0.00
U: static magnets 𝛿AU −0.78 (0.57) 0.24 −0.78 (0.61) 0.23
V: TENS 𝛿AV −0.63 (0.22) 0.01 −0.61 (0.24) 0.01

Heterogeneity 𝜏𝛽 0.42 0.42 (0.06)
Inconsistency 𝜏𝜔 0 0.14 (0.10)

NMES, neuromuscular electrical stimulation; PES, pulsed electrical stimulation; PEMF, pulsed
electro- magnetic fields; TENS, transcutaneous electrical nerve stimulation.
Two sets of results are shown, those using the new ‘DerSimonian and Laird’ method and those
from the previous analysis using WinBUGS are also shown for comparison. For the new procedure,
estimates are followed by standard errors in parentheses. For the previous WinBUGS analysis, the
estimates are posterior means, which are followed by posterior standard deviations in parentheses.
P (best) is the probability that each treatment is best; these probabilities are included so that the
results using the new method can be compared with those obtained previously and are not adequate
for the full probabilistic ranking of the treatments.

non-quinolone antibiotic) and D (topical antiseptic). Unlike the previous example, here, binary outcome
data are available. Hence, when using the Bayesian implementation of the model proposed by Jackson
et al. [7], exact binomial within-study distributions can be used in an arm-based analysis as explained in
section 2.6 of their paper. Hence, when using WinBUGS to produce results to compare those from the
new method with, both these binomial distributions and normal approximations to the log odds ratios
were used. The Bayesian results using binomial distributions give us an indication of the adequacy of the
normal approximations used in the other two analyses. The variances of the log odds ratios used in the
normal approximations were obtained in the usual way, and the within-study covariances were obtained
as the variance of the log odds in the baseline treatment arm. The proposed method uses the normal
approximations as explained in Section 2.4. Because the treatment effects are log odds ratios comparing
the other treatments to treatment A, and the outcome is harmful, negative basic parameters indicate that
treatments B, C and D are more beneficial than treatment A (no treatment).

The results are shown in Table IV, which sets out the results in the same way as in Table III. Com-
paring the two sets of WinBUGS results, we can see that the use of normal approximations dilutes the
estimated treatment effects, which shows that the use of normal approximations can have quite a con-
siderable impact unless the studies are very large. The proposed procedure further dilutes the estimated
treatment effects, and the standard errors are very considerably smaller than the posterior standard devia-
tions from the Bayesian analyses. One reason why the proposed method results in smaller standard errors
is because it does not take into account the uncertainty in the variance components, which is very con-
siderable in relatively small and highly inconsistent networks such as this one. However, the proposed
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Table IV. Results for the topical antibiotics data.

New procedure Bayesian (normal) Bayesian (binomial)
Treatment Parameter Estimate Estimate Estimate

B: quinolone 𝛿AB −1.92 (0.64) −2.07 (1.09) −2.26 (1.11)
C: non-quinolone 𝛿AC −1.35 (0.74) −1.46 (1.21) −1.65 (1.30)
D: antiseptic 𝛿AD −0.67 (0.67) −0.77 (1.15) −0.93 (1.13)

Heterogeneity 𝜏𝛽 0.50 0.56 (0.37) 0.68 (0.38)
Inconsistency 𝜏𝜔 0.55 0.96 (0.70) 1.11 (0.74)

Three sets of results are shown, those using the new method and then two sets of results using Win-
BUGS are also shown for comparison: those using normal approximations (normal) and those using
binomial within-study distributions. For the new ‘DerSimonian and Laird’ procedure, estimates are
followed by standard errors in parentheses. For the WinBUGS analyses, the estimates are posterior
means, which are followed by posterior standard deviations in parentheses.

method also results in a much smaller 𝜏𝜔 than the Bayesian analyses, and this too reduces the standard
errors. Better agreement can be expected in situations where the estimated variance components using
the various estimation methods are smaller and more similar. Although the simulation study reassures
us that the repeated sampling properties of the proposed method are not unacceptable in small networks,
this example provides a pertinent reminder that the proposed method will, in general, result in artificially
small standard errors of the treatment effects unless the network is large. Methods that attempt to take
into account the uncertainty in variance components, which are analogous to those proposed in multi-
variate meta-analysis [36, 39], are clearly worth developing for use in examples such as this one but are
beyond the scope of this paper.

The I2 statistics are generally reasonably similar to those obtained from the Bayesian analyses. Using
the proposed method, the I2 statistic comparing the RI and RC models is 30%, the I2 statistic comparing
the RI and the CC models is 80% and the I2 statistic comparing the RC and the CC models is 72%. In the
Bayesian analysis using normal approximations, these I2 statistics are 56%, 92% and 81%, respectively.
In the Bayesian analysis using binomial within-study distributions, these I2 statistics are 66%, 93% and
80%, respectively.

8. Discussion
We have proposed an extension of DerSimonian and Laird’s procedure for random effects meta-analysis
that can be used for network meta-analysis. Our method retains all the advantages of DerSimonian and
Laird’s approach but also inherits all its limitations. Furthermore, by extending DerSimonian and Laird’s
method to a model for network meta-analysis with two random effects, the limitations of this method
might be thought to be exacerbated, but the simulation study reassures us that the proposed method
performs adequately. The main limitations are that normal approximations are used, reasonably large
datasets are required for accurate inference and the estimation of the variance components is not based on
sufficient statistics, so that more precise inferences for 𝜏2

𝛽
and 𝜏2

𝜔
are likely to be possible using likelihood-

based methods. The question of how to make good inference about the uncertainty in the estimated
variance components remains an open one, but some form of bootstrapping provides a practical approach.
The second example illustrates that the use of normal approximations can have considerable impact, but
our simulation study reassures us that the repeated sampling properties of the proposed method are rea-
sonable when these normal approximations are adequate. The simulation study suggests that five different
designs is probably the minimum number required to adequately estimate the inconsistency variance.
Sufficient replication is also required within designs in order to adequately estimate the between-study
heterogeneity variance. The proposed method only works very well when the departure from the consis-
tency assumption is small, but network meta-analyses are, in any case, to be generally discouraged when
the inconsistency in the network is large. The main advantages of the proposed method is that no iteration
is required, the estimation is simple and transparent and that it is closely related to methods that many
working in meta-analysis will already be familiar with. Another advantage is that the method is semi-
parametric (the formula for the expectation of a quadratic form used in the Appendices does not require
the normality assumption (Searle [40], p. 55)) so that valid meta-analyses can be performed in large sam-
ples without requiring the assumption that either the between-study heterogeneity or the inconsistency
follow normal distributions.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839
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Our estimation method is based on the recently proposed decomposition of the Q statistic. Alternative
quadratic forms could also be used and warrant further investigation. More general variance structures for
the between-study heterogeneity and inconsistency parameters should be considered in datasets where
these may be well identified, and extending the method to accommodate them also warrants further inves-
tigation. Likelihood-based frequentist methods could easily accommodate alternative assumptions for
the random effects but have the disadvantage of requiring iterative methods to maximise the likelihood.
Although the proposed model is a type of linear mixed model, models for meta-analysis such as ours
require the use of fixed and known within-study variances. This makes many standard algorithms for lin-
ear mixed models either inappropriate or difficult to use. The developing of likelihood-based methods
for fitting the model, and variants of this model, is left as an important avenue for further work.

Most of the types of inference that are used in the context of likelihood-based or Bayesian analyses are
also available when using the method of moments in the way we propose, but no DIC or AIC model fit
statistics are immediate. This is one of the prices we pay for using the method of moments rather than a
likelihood-based or a Bayesian analysis. Here, we focus on a new method for performing the estimation,
but appropriate graphical displays [41] are important in practice to help visualise the data and informally
assess the model fit. Determining the most appropriate graphical displays to accompany our method may
form the subject of future work.

We have used random effects for the inconsistency parameters, but fixed effects, or node splitting, are
probably more suitable for exploring where any inconsistency in the network arises. White et al. [23]
describe how fixed effects inconsistency parameters can be used in the context of multivariate meta-
regression models, and we refer the reader to this approach if a frequentist network meta-analysis, similar
to ours but with fixed effects inconsistency parameters, is to be used.

To summarise, we have proposed a simple, transparent and direct method for network meta-analysis
that we believe is accessible to applied researchers. An R function is available in the Supporting Infor-
mation that implements the proposed method, and we hope that this will also serve to make our method
attractive to the meta-analysis community.

Appendix A

We define �̂�d as the estimate under model (3) where 𝜏2
𝛽
= 0. From standard regression models with

correlated errors, we have that �̂�d = (XT
d WdXd)−1XT

d WdYd where Wdi = S−1
di and Wd = diag(Wdi); that

is, Wd is the block diagonal matrix containing the Wdi. In order to derive the properties of (4), we write
this in matrix form. We have that

Yd − Ŷd =
(

Indcd
− Xd

(
XT

d WdXd

)−1
XT

d Wd

)
Yd

and (4) can be written as

Qhet
d = (Yd − Ŷd)TWd(Yd − Ŷd).

After a little manipulation, we can write

Qhet
d = YT

d BdYd (A.1)

where Bd = Wd − WdXd(X
T
d WdXd)−1XT

d Wd. Substituting 𝐘d = 𝐗d𝜷d + 𝐙d, where 𝐙d ∼
N
(
𝟎,𝐒d + 𝜏2

𝛽
Ind

⊗ Pcd

)
, into (A.1), and using the properties of Bd give

Qhet
d = ZT

d BdZd (A.2)

Searle [40], theorem 1 on p. 55, implies that when x ∼ N(0,V), then E[xTAx] = tr(AV). Then applying
this result to (A.2) means that

E
[
Qhet

d

]
= tr

(
𝐁d

(
Sd + 𝜏2

𝛽
Ind

⊗ Pcd

))
(A.3)

Then we have tr(BdSd) = tr(Indcd
−Hd)where Hd is the hat matrix corresponding to a standard unweighted

regression where the design matrix is W1∕2
d Xd. This means that tr(BdSd) = (nd−1)cd, which is the degrees

of freedom associated with the regression. This result and (A.3) immediately result in (5).
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Appendix B

This appendix proceeds in a very similar way to the previous one. We define �̂� as the estimate under
model (8) where 𝜏2

𝛽
= 𝜏2

𝜔
= 0. From standard regression models with correlated errors, we have that

�̂� = (XTWX)−1XTWY where W = diag(Wd). In order to derive the properties of Qnet, we write this in
matrix form. We have that

Y − Ŷ = (Ia − X(XTWX)−1XTW)Y,

where a is the dimension of Y so that a is the total number of estimates from all studies of all designs,
and Qnet can be written as

Qnet = (Y − Ŷ)TW(Y − Ŷ)

After a little manipulation, we can write

Qnet = YTBY (B.1)

where B = W − WX(XTWX)−1XTW. Substituting 𝐘 = 𝐗𝜹 + 𝐙, where 𝐙 ∼ N
(
𝟎,𝐒 + 𝜏2

𝛽
P1 + 𝜏2

𝜔
P2

)
,

into (B.1), and using the properties of B give

Qnet = ZTBZ

Then applying Searle [40], theorem 1 on p. 55, implies that

E[Qnet] = tr(B(𝐒 + 𝜏2
𝛽
P1 + 𝜏2

𝜔
P2))

As in the previous Appendix, we obtain tr(B(𝐒)) as the degrees of freedom in the regression so that

E[Qnet] =

(
D∑

d=1

ndcd

)
− c + 𝜏2

𝛽
tr(BP1) + 𝜏2

𝜔
tr(BP2)

as given in Equation (9).

Appendix C

Recalling that Xd is obtained by stacking identity matrices, we can continue from Appendix A and evalu-
ate Bd = Wd −Md, where the ith by jth block of Md is equal to Wdi𝐖−1

d+Wdj, where 𝐖−1
d+ denotes the sum

of the W−1
di matrices for studies of design d. Then (A.3), after some algebra that makes use of 𝐒−1

d = 𝐖d
and the definition Pcd

= (Icd
+ Jcd

)∕2, results in an equivalent formula for Kd given by

Kd = 1
2

(
tr

(
nd∑

i=1

𝐖di +
nd∑

i=1

𝐖di𝐉cd

)
− tr

(
nd∑

i=1

𝐖di𝐖−1
d+𝐖di +

nd∑
i=1

𝐖di𝐖−1
d+𝐖di𝐉cd

))

This is a much more obvious generalisation of the coefficient in the standard estimating equation provided
by DerSimonian and Laird [8]. If all studies are two-arm trials of the same design, we have Qnet =∑

Qhet
d = Q, where Q is Cochran’s Q statistic and Qinc = 0. Furthermore, all the 𝐖di = wi are scalars,

c1 = 1, and Equation (5) becomes the familiar

E[Q] = (n − 1) +

(∑
wi +

∑
w2

i∑
wi

)
𝜏2

where n = n1 and 𝜏2 = 𝜏2
𝛽
. This proves that the proposed method reduces to the method proposed by

DerSimonian and Laird and so is an extension of this for network meta-analysis as stated.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839

837



D. JACKSON ET AL.

Acknowledgements

DJ, RT and IRW are employed by the UK Medical Research Council (code U105260558). JB is supported by
the UK MRC grant numbers G0902100 and MR/K014811/1. We would like to thank two anonymous reviewers
for their questions and comments that, in particular, helped us to improve the presentation of the model and the
properties of the estimation procedure.

References
1. Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many

benefits, many concerns for the next generation evidence synthesis tool. Research Synthesis Methods 2012; 3:80–97.
2. Li T, Puhan MA, Vedula SS, Singh S, Dickerson K. Network meta-analysis – highly attractive but more methodological

research is needed. BMC Medicine 2011; 9:79.
3. Song F, Loke YK, Glenny AM, Eastwood AJ, Altman DG. Methodological problems in the use of indirect comparisons

for evaluating healthcare interventions: survey of published systematic reviews. British Medical Journal 2009; 338:932.
4. Cipriani A, Higgins JPT, Geddes JR, Salanti G. Conceptual and technical challenges in network meta-analysis. Annals of

Internal Medicine 2013; 159:130–137.
5. Veroniki A, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. International

Journal of Clinical Epidemiology 2013; 9:332–345.
6. Nikolakopoulou A, Chaimani A, Veroniki A, Vasiliadis HS, Schmid CH, Salanti G. Characteristics of networks of

interventions: a description of a database of 186 published networks. Plos One 2014; 7(1):e86754.
7. Jackson D, Barrett JK, Rice S, White IR, Higgins J. A design-by-treatment interaction model for network meta-analysis

with random inconsistency effects. Statistics in Medicine 2014; 33:3639–3654.
8. Dersimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7:177–188.
9. Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random

effects meta-analyses. Statistics in Medicine 2010; 29:1282–1297.
10. Jackson D, White IR, Riley RD. A matrix-based method of moments for fitting the multivariate random effects model for

meta-analysis and meta-regression. Biometrical Journal 2013; 55:231–245.
11. Lumley T. Network meta-analysis for indirect treatment comparisons. Statistics in Medicine 2002; 21:2313–2324.
12. Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS – a Bayesian modelling framework: concepts, structure, and

extensibility. Statistics in Computing 2000; J9:325–337.
13. Lu G, Welton NJ, Higgins JPT, White IR, Ades AE. Linear inference for mixed treatment comparison meta-analysis: a

two-stage approach. Research Synthesis Methods 2013; 2:43–60.
14. Krahn U, Binder H, König J. A graphical tool for locating inconsistency in network meta-analyses. BMC Research

Methodology 2013; J3:5.
15. König J, Krahn U, Binder H. Visualizing the flow of evidence in network meta-analysis and characterizing mixed treatment

comparisons. Statistics in Medicine 2013; 32:5414–5429.
16. Jackson D, White IR, Riley RD. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses.

Statistics in Medicine 2013; 31:3805–3820.
17. Lu G, Ades A. Assessing evidence consistency in mixed treatment comparisons. Journal of the American Statistical

Association 2006; J01:447–459.
18. Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE, White IR. Consistency and inconsistency in network meta-analysis:

concepts and models for multi-arm studies. Research Synthesis Methods 2012; 3:98–110.
19. Konstantopoulos S. Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis

Methods 2013; 2:61–76.
20. Salanti G, Ades AE, Higgins JPT, Ioannidis JPA. Evaluation of networks of randomised trials. Statistical Methods in

Medical Research 2008; J7:3105–3124.
21. Hong H, Carlin BP, Chu H, Shamliyan TA, Wang S, Kane RL. A Bayesian missing data framework for multiple continuous

outcome mixed treatment comparisons. Methods Research Report 2013. No.13-EHC004-EF.
22. Zhang J, Carlin BP, Neaton JD, Soon GG, Nie L, Kane R, Virnig BA, Chu H. Network meta-analysis of randomized clinical

trials: reporting the proper summaries. Clinical Trials 2014; 11:246–262.
23. White IR, Barrett JK, Jackson D, Higgins JPT. Consistency and inconsistency in network meta-analysis: model estimation

using multivariate meta-regression. Research Synthesis Methods 2012; 3:111–125.
24. Zhang J, Fu H, Carlin BP. Detecting outlying trials in network meta-analysis. Statistics in Medicine 2015; 34:2695–2707.
25. Zhang J, Chu H, Hong H, Virnig BA, Carlin BP. Bayesian hierarchical models for network meta-analysis incorporating

nonignorable missingness. Statistical Methods in Medical Research 2015. (epub).
26. Franchini AJ, Dias S, Ades AE, Jensen JP, Welton NJ. Accounting for correlation in network meta-analysis with multi-arm

studies. Research Synthesis Methods 2012; 3:142–160.
27. Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associa-

tions. Statistics in Medicine 2012; 31:3821–3839.
28. Rücker G, Schwarzer G. Reduce dimension or reduce weights? Comparing two approaches to multi-arm studies in network

meta-analysis. Statistics in Medicine 2014; 33:4353–4369.
29. Jackson D. Confidence intervals for the between-study variance in random effects meta-analysis using generalised Cochran

heterogeneity statistics. Research Synthesis Methods 2013; 4:220–229.
30. Jackson D, Turner R, Rhodes K, Viechtbauer W. Methods for calculating confidence and credible intervals for the residual

between-study variance in random effects meta-regression models. BMC Research Methodology 2014; 14:103.

838

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839



D. JACKSON ET AL.

31. Van den Noortgate W, Onghena P. Parametric and nonparametric methods for meta-analysis. Behavior Research Methods
2005; 37:11–22.

32. Viechtbauer W. Confidence intervals for the amount of heterogeneity in meta-analysis. Statistics in Medicine 2007;
26:37–52.

33. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002; 21:1539–1558.
34. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit. Journal of the

Royal Statistical Society, Series B 2002; 64:583–639.
35. Dias S, Sutton AJ, Caldwell DM, Lu G, Ades AE. Checking consistency in mixed treatment comparison meta-analysis.

Statistics in Medicine 2010; 29:932–944.
36. Jackson D, Riley RD. A refined method for multivariate meta-analysis and meta-regression. Statistics in Medicine 2014;

33:541–554.
37. Brockwell SE, Gordon IR. A simple method for inference on an overall effect in meta-analysis. Statistics in Medicine 2007;

26:4531–4543.
38. Macfadyen CA, Acuin JM, Gamble C. Topical antibiotics without steroids for chronically discharging ears with underlying

eardrum perforations. Cochrane Database of Systematic Reviews 2005; CD004618.
39. White IR. Multivariate random-effects meta-regression: updates to mvmeta. The Stata Journal 2011; J1:255–270.
40. Searle SR. Linear Models. Wiley: New York, 1971.
41. White IR. Network meta-analysis. The Stata Journal 2015. (epub).

Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s
web site.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 819–839

839


	Extending DerSimonian and Laird's methodology to perform network meta-analyses with random inconsistency effects
	Abstract
	Introduction
	The model
	The average treatment effects
	The between-study heterogeneity
	The inconsistency parameters
	The within-study variation

	Estimation
	The estimating equations
	The first estimating equation
	The second estimating equation

	Inference for the average treatment effects

	Special cases of the method
	Inference under the consistency assumption
	The standard method of DerSimonian and Laird
	Loop inconsistency models

	Further inferences
	Uncertainty in the variance components
	Ranking of the treatments
	I2 statistics
	Model section
	Locating inconsistencies in the network

	Simulation study
	The simulation study design
	The number of simulated datasets
	Results using the full model
	The implications of making the consistency assumption

	Examples
	Example one: osteoarthritis of the knee 
	Example two: topical antibiotics

	Discussion
	Appendix A
	Appendix B
	Appendix C
	References


