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A non-proteolytic role for ubiquitin in
deadenylation of MHC-I mRNA by the
RNA-binding E3-ligase MEX-3C
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The regulation of protein and mRNA turnover is essential for many cellular processes. We

recently showed that ubiquitin—traditionally linked to protein degradation—directly regulates

the degradation of mRNAs through the action of a newly identified family of RNA-binding E3

ubiquitin ligases. How ubiquitin regulates mRNA decay remains unclear. Here, we identify a

new role for ubiquitin in regulating deadenylation, the initial and often rate-limiting step in

mRNA degradation. MEX-3C, a canonical member of this family of RNA-binding ubiquitin

ligases, associates with the cytoplasmic deadenylation complexes and ubiquitinates

CNOT7(Caf1), the main catalytic subunit of the CCR4-NOT deadenylation machinery. We

establish a new role for ubiquitin in regulating MHC-I mRNA deadenylation as ubiquitination

of CNOT7 by MEX-3C regulates its deadenylation activity and is required for MHC-I mRNA

degradation. Since neither proteasome nor lysosome inhibitors rescued MEX-3C-mediated

MHC-I mRNA degradation, our findings suggest a new non-proteolytic function for ubiquitin

in the regulation of mRNA decay.
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M
essenger RNA (mRNA) turnover plays a critical
role in the regulation of the majority of cellular
processes. Up to 50% of the changes seen in gene

expression are estimated to occur at the level of mRNA
stability1,2, although how mammalian mRNA decay is regulated
remains poorly understood. Although ubiquitin is traditionally
associated with protein degradation, we recently identified
a role for ubiquitin in the degradation of mRNA3. Of the
more than 600 E3 ubiquitin ligases described, at least 15 contain
an RNA-binding domain4 in addition to the RING domain,
which defines the largest family of E3 ligases and is required
for the ubiquitination reaction. In a small interfering RNA
(siRNA) ubiquitome screen, we identified MEX-3C, a canonical
member of this novel family of RNA-binding ubiquitin
E3-ligases, which regulates the cell surface expression of major
histocompatibility complex (MHC) class I proteins, via the
post-transcriptional regulation of MHC-I mRNA. MEX-3C
therefore provides a direct link between ubiquitination and
mRNA degradation3.

The four members of the mammalian MEX-3 gene family
(MEX-3A–D) each contain two RNA-binding KH domains and a
ubiquitin E3-ligase RING domain5. This family has arisen by
gene duplication from the MEX-3 orthologue in Caenorhabditis
elegans, which also has two RNA-binding KH domains but lacks
the RING domain. MEX-3C binds the 30 untranslated region
(UTR) of its target mRNA HLA-A2 (an MHC-I allotype) through
its KH domains and together with its cargo mRNA shuttles from
the nucleus to the cytosol3,5. This HLA-A2 mRNA substrate
bound to MEX-3C cannot be translated into protein, a function
conserved with its C. elegans MEX-3 ancestor that also binds
mRNA but lacks the RING domain6. However, although the C.
elegans MEX-3 inhibits translation of its substrate mRNA6, MEX-
3C not only inhibits translation but also induces the degradation
of its target mRNA in a ubiquitin-dependent manner3. In the
absence of a RING domain, MEX-3C is still able to inhibit
substrate translation, but there is an absolute requirement for the
RING domain, and therefore E3-ubiquitin ligase activity, for
HLA-A2 mRNA degradation. RINGless MEX-3C therefore
behaves more like its C. elegans ancestor, in that its substrate
HLA-A2 mRNA is effectively sequestered and not translated, but
is no longer degraded.

Eukaryotic mRNAs are protected from decay at their 5’ and 3’
ends by the cap and poly(A) tail, respectively. The degradation of
mRNAs starts with the removal of the poly(A) tail by a process
called deadenylation. This process is mediated by the concerted
action of two complexes, namely CCR4-NOT and PAN2-PAN3.
Studies in several model organisms show that deadenylation is a
rate-limiting step for mRNA degradation7, and its impaired
regulation is associated with a variety of cellular conditions in
mammalian cells8. However, how mammalian deadenylation is
regulated remains poorly understood.

Our characterization of MEX-3C’s E3 ligase activity in the
regulation of mRNAs decay now establishes a new role for
ubiquitin in the regulation of deadenylation. Here, we show
that MEX-3C associates with different members of the cyto-
plasmic deadenylation complexes and ubiquitinates CNOT7,
the main catalytic subunit of the CCR4-NOT deadenylation
machinery. Ubiquitination of this subunit (CNOT7) by
MEX-3C regulates its deadenylation activity and is required
for HLA-A2 mRNA degradation. Moreover, since neither
proteasome nor lysosome inhibitors, nor the use of ubiquitin
mutants that prevent the formation of protein degradation
signalling K11- and K48-linked chains, rescued MEX-3C-
mediated mRNA degradation, our findings point to a new
non-proteolytic function for ubiquitin in the regulation of mRNA
decay.

Results
MEX-3C interacts with the major deadenylation complexes. To
establish the ubiquitin-related mechanism responsible for
MEX-3C-mediated degradation of mRNAs, we first sought
to identify MEX-3C-binding partners involved in mRNA
degradation, or potential ubiquitination substrates. We per-
formed a pull-down with RINGless MEX-3C expressed in
HEK293T cells in the presence of RNAse-I, followed by mass
spectrometry analysis (Supplementary Table 1). The rationale
behind this experiment was that the RINGless mutant form of
MEX-3C, which is unable to ubiquitinate, should act as a sub-
strate trap and remains bound to its ubiquitination substrates.
Analysis of the RINGless MEX-3C interactome reflected
MEX-3C’s involvement in different stages of RNA metabolism,
primarily mRNA processing, with an emphasis on mRNA
degradation (Fig. 1a).

The cytosolic degradation of eukaryotic mRNAs requires the
initial shortening of the 30-poly(A) tail (deadenylation) and
subsequent removal of the 50-cap (decapping). Deadenylation is
mediated by the concerted action of two complexes, CCR4-NOT
and PAN2-PAN3, both of which were found in association with
MEX-3C and subsequently confirmed in immunoprecipitated
(IP) blots following RNAse-I treatment (Supplementary Table 1,
Fig. 1b and Supplementary Fig. 1a for control IP). PolyA-binding
protein interacts with MEX-3C through its RNA cargo5. To
control for effective RNAse-I treatment, we showed that under
the experimental conditions used, our mass spectrometry analysis
did not identify PolyA-binding protein bound to MEX-3C
(Supplementary Table 1).

The identification of MEX-3C bound to the cytosolic dead-
enylation complexes is especially relevant as, despite dead-
enylation of mRNAs being the initial and often rate-limiting
step in mRNA degradation9, little is known about how these
deadenylases are regulated in mammalian cells. To determine
whether MEX-3C promotes the deadenylation of its endogenous
model substrate, HLA-A2 mRNA in-vivo, we used an reverse
transcription–PCR-based assay to measure the length of
HLA-A2 mRNA poly(A) tail in MEX-3C-expressing cells
(Fig. 1c) following fluorescence-activated cell sorting (FACS)
(Supplementary Fig. 1b). MEX-3C promotes the shortening of the
poly(A) tail of HLA-A2 mRNA (Fig. 1c right panel), but not of
the ACTIN control mRNA (Fig. 1c left panel); an activity that
requires its ubiquitin-ligase activity as it is not seen with its
RINGless mutant form (Fig. 1c). Similar results were obtained for
FF-Luc-HLA-A2 30UTR reporter mRNA3. Taken together, these
results led us to hypothesize that MEX-3C’s E3 ligase activity
controls mRNA decay through the regulation of deadenylation
(Fig. 1d).

We wanted to determine which deadenylase subunit was
responsible for the mRNA degradation, and therefore used
siRNAs to deplete cells of deadenylase components. MEX-3C
bound both the CCR4-NOT and PAN2-PAN3 deadenylation
complexes in HEK293T cells. Despite effective depletion of all
deadenylase components (Supplementary Fig. 2c), only the
siRNA-mediated depletion of CNOT7/8(Caf1), a component
of the CCR4-NOT complex, significantly rescued MEX-3C-
mediated degradation of endogenous HLA-A2 mRNA
(Supplementary Fig. 2b) and of the reporter FF-Luc-HLA-A2
30UTR mRNA3 (Fig. 2b). By analogy with RINGless MEX-3C,
depletion of the CNOT7/8(Caf1) deadenylase subunit prevented
mRNA degradation, but importantly did not affect MEX-3C’s
ability to repress HLA-A2 translation (Fig. 2a and Supplementary
Fig. 2a). The FF-Luc-HLA-A2 30UTR reporter system3 was used in
this experiment as we previously showed it reduces the bias seen
with endogenous HLA-A2 at the transcriptional level3 and
following mRNA maturation. Although depletion of CNOT7/
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8(Caf1), and not CNOT6/6L(CCr4), rescued MEX-3C-mediated
degradation, this was not surprising as each deadenylation
subunit (CNOT7/8(Caf1) or CNOT6/6L(CCr4)) regulates the
expression of distinct groups of mRNAs with little
overlap10. Previous studies have shown that only CNOT7/
8(Caf1) knockdown cells showed a pronounced defect in
P-body formation9.

MEX-3C’s E3-ligase activity regulates deadenylation. The above
results are reminiscent of the two-step miRNA-mediated
repression of mRNAs by the CCR4-NOT complex, which
requires an initial translational repression step, followed by the
degradation of the target mRNA by deadenylation11. As MEX-3C
interacts with Argonaute proteins5, which play a key role in
RNA silencing, we asked whether MEX-3C’s E3-ligase activity
regulates the transition between these two steps by triggering
deadenylation.

We therefore set up an in-vitro deadenylation assay using a
specific (fluorescein labelled) RNA substrate for CNOT7 (ref. 12).
Strep-MEX-3C pull-downs from wild-type (WT) and RINGless
MEX-3C-expressing cells were incubated with a 50-fluorescein
labelled specific RNA substrate (Flc-50-UCUAAAUA20) to assay

the deadenylation activity of CNOT7 over time. Degradation of
50-fluorescein-labelled RNA deadenylation substrate was
visualized by denaturing polyacrylamide gel electrophoresis.
The deadenylation substrate was readily degraded following
WT MEX-3C IP, an effect not seen with RINGless MEX-3C
(Fig. 3b,c). These results confirm that MEX-3C’s E3-ligase activity
is required for the deadenylation of its substrate.

Ubiquitination of CNOT7 regulates its deadenylation activity.
Since Caf1 (CNOT7/8) is the major catalytic component of the
CCR4-NOT deadenylation complex, and was the only dead-
enylation subunit whose depletion prevented MEX-3C-mediated
degradation of FF-Luc-HLA-A2 30UTR mRNA, we determined
whether CNOT7 was a ubiquitination target of MEX-3C. Endo-
genous or overexpressed (HA-tagged) CNOT7 was IP under
denaturing conditions to prevent interaction with other proteins.
Ubiquitin immunoblot analysis showed CNOT7 ubiquitination
with WT but not RINGless MEX-3C (Fig. 4a,b), confirming that
CNOT7 is indeed ubiquitinated in a MEX-3C-dependent
manner.

This ubiquitination did not promote CNOT7 protein
degradation (Fig. 1b and Supplementary Fig. 3a,b) as CNOT7’s
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Figure 1 | MEX-3C interacts with the major cytoplasmic deadenylation complexes and promotes the shortening of its target mRNA poly(A) tail

through its ubiquitin ligase activity. (a) Gene ontology annotation of proteins binding RINGless MEX-3C. Number of unique proteins is in brackets.

Identity of interacting proteins is shown in Supplementary Table 1. (b) MEX-3C interacts with the two mammalian deadenylation complexes CCR4-NOT and

PAN2-PAN3. IB, immunoblot. The KH containing RNA-binding protein, PCBP2, was used as negative control. Immunoprecipitations were done in the

presence of 20 U ml� 1 RNase-I. EV, empty vector/GFP. (c) Shortening of HLA-A2 mRNA’s poly(A) tail is promoted by MEX-3C’s ubiquitin ligase activity.

RT–PCR-based Poly(A) tail length assay (PAT) for HLA-A2 mRNA in control (EV/GFP), wild-type or RINGless MEX-3C-expressing (FACS sorted) cells (right

panel). ACTIN mRNA was assayed as control (left panel) and Ao PCR controls for loading. Ao: refers to PCR products using primers to amplify the last

100–200 bp of the 3’UTR, excluding the poly(A) tail. NT, no template. (d) Schematic representation of the different components of the mammalian

CCR4-NOT and PAN2-PAN3 deadenylation complexes.
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protein half-life was unaffected following cycloheximide treat-
ment either in the absence (shMEX-3C) or in the presence
of exogenously expressed WT or RINGless MEX-3C
(Supplementary Fig. 3c).

We then wanted to determine which CNOT7 lysine residue is
ubiquitinated by MEX-3C and use these findings to ask how
MEX-3C-mediated ubiquitination of CNOT7 affects its dead-
enylation activity in-vitro, and the stability of the FF-Luc-HLA-A2
30UTR reporter mRNA in-vivo. The choice of lysines to be
mutated by site-directed mutagenesis was based on the structure
of CNOT7 and the lysine residues (K200 and K206) reported to
be ubiquitinated in mass spectrometry data sets13,14. A
representation of CNOT7’s structure highlights (in blue) the
exposed lysine residues mutated (Supplementary Fig. 4a). (The
CNOT7 K203R variant was toxic to cells and therefore excluded
from this and further experiments). In comparison to WT
CNOT7, ubiquitination of the K206R mutant was mildly

impaired, whereas ubiquitination was completely lost with the
4K (K196R,K200R,K203R,K206R) CNOT7 mutant (Fig. 4c).

Using the in-vitro CNOT7 deadenylation assay we found that
the CNOT7 4K-mutant, which is no longer ubiquitinated by
MEX-3C (Fig. 4c), failed to efficiently degrade CNOT7’s dead-
enylation substrate in vitro (Fig. 4d). Furthermore, overexpression
of this mutant form of CNOT7 (4K-mutant) inhibited MEX-3C-
mediated degradation of the FF-Luc-HLA-A2 30UTR reporter
mRNA in vivo (Fig. 4e).

To control for the structural integrity of CNOT7 4K-mutant,
we performed the in-vitro CNOT7 deadenylation assay following
CNOT7 pull-down in the absence of exogenous MEX-3C as
previously described (Suzuki et al.)12. This CNOT7 4K-mutant
remains functionally active in the absence of MEX-3C
(Supplementary Fig. 4b) suggesting that the folding of CNOT7
4K-mutant and its ability to form a functional deadenylation
complex (Fig. 4d) remained intact. Although ubiquitination is not
required for CNOT7’s basal deadenylation, these results highlight
that this deadenylation activity can be modulated in a novel
ubiquitin-dependent manner in mammalian cells for specific
mRNAs.

A new non-proteolytic function for ubiquitin in mRNA decay.
In addition to its role in proteolysis, ubiquitin provides a signal
for a range of non-proteolytic functions15, by virtue of forming
chains of distinct topologies depending on whether they are
linked through one of its seven Lysine (K) residues or at the
N-terminus15,16. Substrates modified by K48-linked polyubiquitin
chains are targeted to proteasomes for degradation. In
contrast, K63-linked chains provide non-proteolytic signals, as
characterized in DNA damage and repair pathways, kinase
signalling pathways and endocytosis16. Since neither proteasome
nor lysosome inhibitors rescued MEX-3C-mediated degradation
of the FF-Luc-HLA-A2 30UTR mRNA (Fig. 5a and Supplementary
Fig. 4c for expression levels), a new non-proteolytic function for
ubiquitin in the regulation of mRNA decay was suggested.

To determine the ubiquitin chain linkage required for MEX-3C-
mediated degradation of HLA-A2 mRNA, we used a range of
Lysine-to-Arginine Ubiquitin-Green Fluorescent Protein (UB-GFP)
mutants15. These ubiquitin mutants are particularly useful as the
co-translational cleavage of GFP from ubiquitin provides a
quantitative surrogate marker for mutant ubiquitin expression15

(Fig. 5b). None of the ubiquitin lysine mutants rescued endogenous
HLA-A2 protein levels (Fig. 5b) from MEX-3C downregulation,
and this was in keeping with RINGless MEX-3C, which lacks
E3-ubiquitin ligase activity3, and is still able to inhibit HLA-A2
translation without triggering its mRNA degradation. Similar results
were obtained for firefly luciferase protein levels (measured
as relative luciferase activity against renilla luciferase), when the
FF-Luc-HLA-A2-30UTR reporter was used3 (Fig. 5c).

We therefore determined the effect of the ubiquitin mutants on
MEX-3C-mediated mRNA degradation. Degradation of the
FF-Luc-HLA-A2-30UTR reporter mRNA was rescued by ubiquitin
mutants that cannot form K6- and K63-linked chains (Fig. 5d)
suggesting an important role for these lysine residues in
deadenylation. Furthermore, CNOT7 ubiquitination by MEX-
3C was significantly reduced with the K6R and K63R ubiquitin
mutants (Supplementary Fig. 4d). Conversely, neither MEX-3C-
mediated ubiquitination of CNOT7 (Supplementary Fig. 4d) nor
the degradation of FF-Luc-HLA-A2-30UTR target mRNA was
impaired in the presence of K11- or K48-linkage ubiquitin
mutants, which are traditionally associated with protein degrada-
tion signals (Fig. 5d). Taken together, these results suggest a non-
proteolytic function for ubiquitin in the regulation of mRNA
decay by MEX-3C.
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Figure 2 | MEX-3C-mediated degradation of FF-Luc-HLA-A2-30UTR

reporter mRNA is rescued by the depletion of CNOT7/8(Caf1), the major

catalytic component of the CCR4-NOT deadenylation complex.

(a) Depletion of the catalytic components of the deadenylation complexes

cannot rescue MEX-3C’s downregulation of HLA-A2 expression. Flow

cytometric analysis of cell surface HLA-A2 levels in siRNA-treated

HEK293T cells expressing wtMEX-3C or empty vector. GFP is a surrogate

marker for MEX-3C expression. For quantification of HLA-A2 protein

and mRNA levels, see Supplementary Fig. 2a–b. (b) Depletion of

CNOT7/8(Caf1) rescues MEX-3C-mediated degradation of its target

mRNA. FF-Luc-HLA-A2-30UTR mRNA levels were analysed by qRT–PCR.

Results are relative to siControl and expressed as mean±s.d. of three

independent experiments (n¼ 3). **P-value o0.005 versus siCTRLþMEX-

3C; NS, not significant; unpaired Student’s t-test (Supplementary Fig. 2c

shows validation of knockdowns).
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Discussion
We have identified a new role for ubiquitin in the regulation of
deadenylation, the initial and rate-limiting step in mRNA
degradation. MEX-3C, a member of the recently described family
of RNA-binding ubiquitin E3-ligases4, associates with the
cytoplasmic deadenylation complexes, and ubiquitinates

CNOT7, the main deadenylase subunit of the CCR4-NOT
machinery. Ubiquitination of CNOT7 by MEX-3C promotes its
deadenylation activity and therefore MHC-I mRNA degradation.

In addition to its established role in protein regulation/
degradation, ubiquitination provides a critical signal for many
other cellular regulatory functions15 and here, we have uncovered
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a new non-proteolytic role for ubiquitin in the regulation of
mRNA decay. Ubiquitination of CNOT7 did not lead to its
degradation (Fig. 1b and Supplementary Fig. 3a–c) or did
proteasomal or lysosomal inhibitors rescue MEX-3C-mediated
degradation of its target mRNA (Fig. 5). Degradation of the target
mRNA was, however, rescued in the presence of ubiquitin
mutants that cannot form K6- and K63-linked chains,
presumably due to reduced ubiquitination of CNOT7
(Supplementary Fig. 4d). These results add a new signalling
function to K6- and K63-linked ubiquitin chains. K6-linked
chains have recently been associated with parkin’s regulation of
mitochondrial quality control17 and to the stabilization of
RING1b18 and BRCA1/BARD19, both involved in histone
modification and DNA repair. K63-linked chains mediate
different processes including endocytosis, assembly of DNA
repair complexes and the activation of the nuclear factor-kB
pathway. In fact, MEX-3C was recently reported to activate the
nuclear factor-kB pathway by ubiquitinating RIG-I after viral
infection in a K63-linked manner20.

Ubiquitination of CNOT7 was not a prerequisite for basal
deadenylation activity. However, the loss of specific mRNA
degradative activity with the CNOT7 4K-mutant, highlights a
novel role for ubiquitin in regulating deadenylation of certain
mRNAs in the mammalian system. This is important since the

mechanisms that regulate deadenylation in mammalian cells are
highly regulated but poorly understood. Deadenylation and RNA
turnover play an important role in a broad range of cellular
conditions including development, mRNA surveillance, DNA
damage, cell differentiation and cancer8. Understanding how
ubiquitin regulates mRNA abundance and protein production
will provide a better mechanistic understanding of different
disease states.

A number of potential mechanisms may account for MEX-3C’s
ability to regulate mRNA decay through ubiquitination. Ubiquitin
may induce conformational changes in CNOT7 that activate
deadenylation. Alternatively, ubiquitinated CNOT7 provides a
scaffold to recruit accessory proteins for activation of the
degradation machinery. A similar ubiquitin-mediated regulation
has been observed in the activation and disassembly of the
spliceosome at distinct steps of the splicing reaction21.

MEX-3C is not the only ubiquitin E3-ligase to bind and
regulate RNA, but belongs to a family of at least 15 RNA-binding
proteins with ubiquitin ligase activity. Another prominent
member of this family is CNOT4, itself a component of the
CCR4-NOT deadenylation complex, and has been best studied in
yeast where its orthologue (Not4) has multiple functions. These
include nuclear transcriptional regulation, mRNA maturation
and quality control22, co-translation protein quality control23 and
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proteasome assembly24. Not4’s contribution to mRNA
deadenylation by Ccr4 (yeast homologue of CNOT6) and Caf1
(yeast homologue of CNOT7/8) is unclear. By analogy to MEX-
3C, CNOT4 may also play a role in activation of the deadenylases
in the CCR4-NOT complex and mRNA degradation.

Previous studies25 had suggested a link between ubiquitination
and mRNA decay in the turnover of some AU-rich (ARE)
mRNAs. Overexpression of deubiquitylating enzymes of the UBP
family prolonged the half-life of specific ARE-mRNAs25.
Furthermore proteasome inhibition prevented the rapid
turnover of ARE-mRNAs, without altering the stability of non-
ARE mRNAs. This latter result is in agreement with our data as
HLA-A mRNA lacks AREs. Together these results suggest a
differential role for ubiquitin in the regulation of mRNAs and
highlight the diversity of this system. It will be critical to further
dissect the mechanisms responsible for these different types of
regulation. Further studies on MEX-3C and the ubiquitin-
dependent regulation of its mRNA substrates will therefore
provide an excellent platform to delineate how ubiquitin controls
mRNA degradation. It is remarkable that the role of ubiquitin
now extends beyond protein degradation to include the
regulation and turnover of nucleic acids.

Methods
Cells, plasmids and transfections. HEK293T cells were grown in RPMI-1640
medium supplemented with 10% FCS. Cells were transfected using 293-Transit
Reagent (Mirus Bio) and analysed by flow cytometry or immunoblotting at 48 or
72 h following transfection.

The Streptag-His-MEX-3C and myc-MEX-3C proteins and the FF-Luc-HLA-
A2-30UTR reporter are as previously described3. The UB-GFP mutants are as
described by Boname J.M. et al.15. The pCMV5-HA-CNOT7 construct is
previously described10. The Lysine mutant forms of CNOT7 were made by site-
directed mutagenesis as described in Mittal S. et al.10.

For the luciferase quantitative PCR assays, an TK Renilla luciferase reporter
(pRL-TK) gene was co-transfected at a 1:20 ratio to provide an internal control. All
assays were performed in triplicate, with the Renilla-luciferase control used to
standardize transfection efficiency. Results are relative to control levels (set as 1),
and expressed as the mean±s.d. of at least three independent experiments.

siRNA-mediated depletion in HEK293T cells was performed using
Oligofectamine (Invitrogen) at 75 nM final concentration and following the
manufacturer’s guidelines. The siRNAs used were ON-TARGET plus pools of four
from Dharmacon: MEX-3C (RKHD2; LU-006989-00-0002), CNOT7 (CAF1; LU-
012897-00-00022); CNOT6L (CCR4; LU-016411-00-0002), CNOT6 (LU-019101-
00-0002), CNOT8 (LU-018791-00-0002), PAN2 (LU-021192-00-0002), DCP1A
(LU-021242-00-0002). MEX-3C depletion using shRNAmir against MEX-3C
(shMEX-3C) was as previously described3. Mock knock-downs (siCONTROL)
were performed using RISC-free Universal Control (Sigma). Cells were cultured for
60 h and then assayed by FACSCalibur (BD) or quantitative reverse transcription
(qRT–PCR).

IP and immunoblotting. For IPs, cells were lysed 72 h post transfection in 1% NP-
40 in Tris-Buffered Saline (TBS) with 1 mM ZnCl2, 0.5 mM phenylmethyl sulphonyl
fluoride (PMSF), 10 mM iodoacetamide (IAA) and Roche complete protease
inhibitor for 30 min on ice. Strep-His-tagged proteins were IP with Streptactin
sepharose beads (IBA GmbH) for 2 h. After three washes in lysis buffer, samples
were eluted in SDS sample buffer (10 min at 98 �C). (For myc-tagged MEX-3C
proteins, IPs were done as previously described in Cano et al.3) IP proteins were
then separated by SDS–PAGE, and transferred to polyvinylidene difluoride
(Millipore) for immunoblotting. The membranes were blocked for 1 h at room
temperature, and incubated with primary antibodies overnight at 4 �C in PBST
containing 5% milk. Antibodies used were: rabbit polyclonal anti-RKHD2
(MEX-3C; Abcam) used at 1:5,000 dilution and rabbit anti-CNOT1 (Proteintech),
rabbit anti-CNOT7 (abN1C1, GeneTex), rabbit anti-CNOT3 (abC2C3, GeneTex),
Rabbit anti-PAN2 (kindly provided by Dr Jens Lykke-Andersen, University of
California San Diego, USA)—all used at 1:1,000 dilution. Rabbit Anti-PCB2 was
used as negative control. Membranes were developed in West Pico Extended
Chemiluminescent substrate (Thermo FisherScientific). Full images of western
blots and gels are shown in Supplementary Fig. 5.

For mass spectrometry analysis of RINGless MEX-3C pull-downs, HEK293T
cells were transfected with pQE empty vector (EV), WT and RINGless Strep-His-
MEX-3C, lysed in 1% NP-40 buffer. Lysates were incubated with 20 U ml� 1

RNase-I for 3 min at 37 �C and IP on Streptactin beads as described above.
Co-immunoprecipitated proteins were digested with trypsin using the filter-aided
sample preparation protocol and analysed by LC-MSMS. Raw spectra were
processed using Proteome Discoverer 1.2 and searched against a Uniprot Human

database using Mascot Daemon 2.3.2. A false-discovery rate for peptides of 0.05
was applied and reported proteins required a minimum of two peptides and a score
higher than 35.

For detection of ubiquitination on CNOT7, cell lysates from 5� 106 HEK293T
cells at 72 h post transfection were lysed for 30 min in 1% SDS (in TBSþ 1 mM
ZnCl2, 0.5 mM PMSF, 10 mM IAA, Roche complete protease inhibitor and
benzonase nuclease (Sigma)) and heated for 10 min at 85 �C to remove non-
covalently bound ubiquitination before IP. Samples were then diluted tenfold in
0.1% Triton X-100 buffer (in TBSþ 1 mM ZnCl2, 0.5 mM PMSF, 10 mM IAA,
Roche complete protease inhibitor) and IP for 2 h using rabbit anti-
CNOT7þ protein-A sepharose beads or anti-HA beads (EZview Red Anti-HA
Affinity Gel, Sigma). For the blotting of ubiquitinated species, polyvinylidene
difluoride membranes were incubated in 0.5% glutaraldehyde before probing with
VU-1 antibody (LifeSensors) following the manufacture’s guidelines.

Deadenylation assays. The deadenylation activity assay of purified MEX-3C
complexes was adapted from Suzuki et al.12. Briefly, HEK293T cells (106) were
transfected with pQE (empty vector, EV), WT and RINGless Strep-His-MEX-3C
and HA-CNOT7 constructs. After 72 h, cells were lysed (1% NP-40 in TBS with 5%
glycerol, 1 mM ZnCl2, 0.5 mM PMSF and protease Inhibitors) for 30 min on ice.
Strep-His-MEX-3C proteins were IP for 2 h at 4 �C using Streptactin beads. After
three washes with lysis buffer, IPs were washed twice in deadenylation buffer
(50 mM HEPES-NaOH, pH7.4, 150 mM NaCl, 2 mM MgCl2, 1 mM ZnCl2, 10%
glycerol, 1 mM dithiothreitol). To elute bound proteins, Streptactin beads were
incubated in 20ml of deadenylation buffer containing D-desthiobiotin
(LifeTechnologies) at 5 mM (2� ) for 60 min at 37 �C with occasional mixing. Nine
microlitres of eluates were incubated with 1.5 ml of 50-fluorescein (Flc)-labelled
RNA substrate (Flc-50-UCUAAAUA20) at 1 mM for 60 min (or appropriate time
point) at 37 �C with occasional mixing. Reactions were stopped by adding 12 ml
TBE/Urea RNA sample buffer (Bio-Rad) and heated for 3 min at 85 �C. Reaction
products were separated using 7 M urea/15% polyacrylamide gel (Bio-Rad)
electrophoresis and stained with SYBR Green-II RNA Gel stain (Molecular
Probes). The intensity of the remaining RNA down each lane was measured using
ChemiDoc MP Gel System and ImageLab 4.1 software (Bio-Rad).

Poly(A) tail-length (PAT) assay. The PCR-based poly (A) tail assay was con-
ducted using the Poly(A) Tail-Length Assay Kit from Affymetrix and following the
manufacturer’s conditions. Total RNA was isolated from FACS-sorted MEX-3C-
expressing cells3 using RNeasy kit (Qiagen). The specific upstream primer sequence
for HLA-A2 mRNA is PAT-Fwd2: 50-TGCATGTGTCTGTGTTCGTG-30 ,
and the downstream primer A2-3UTR-Rev 50-ATCTTCTAGATTTAATAGG
GAAGGAAGAAGTTACAGC-3. The universal reverse and actin 30UTR primers
were provided by the kit. PCR reactions were performed in 20 ml containing
1� PCR buffer, 0.4 mM each primer, 0.5 U Taq DNA polymerase and 100 ng
of cDNA. The amplification protocol was: 2 min at 95 �C, followed by 33 cycles of
15 s at 95 �C, 30 s at 58 �C and 30 s at 72 �C, and was completed by a final
extension of 5 min at 72 �C. PCR products were electrophoresed on 2.0% agarose
gel, stained with ethidium bromide and visualized by exposure to ultraviolet
light.

RNA extraction and qRT–PCR analysis. Total RNA was extracted using the
RNeasy Plus kit (Qiagen). Total RNA (2mg) was reverse transcribed into cDNA
using a poly(d)T primer and Super RT reverse transcriptase (HT Biotechnology
Ltd.) following the manufacturer’s instructions. Real-time qRT–PCR was
performed using the ABI Prism 7700HT Sequence Detector Systems (Applied
Biosystems) and SYBR Green Master mix kit (Applied Biosystems). Briefly, all
reactions were performed with 120 ng of cDNA, 12.5 ml of SYBR GREEN PCR
master mix and 0.2 mM forward and reverse primers in a final reaction volume of
25 ml. Cycling parameters were 95 �C for 10 min, followed by 40 cycles of 94 �C for
30 s, 58 �C for 1 min.

Firefly and Renilla luciferase primers and PCR conditions were as described in
Cano et al.3. RT–PCR primer sequences are as follows: MEX-3C-Fwd: 50-
TGAACGGGGAGCAGGCG-30 , MEX-3C-Rev:50-TGACTTGGACGGTGGTT
TGA-30; CNOT7-Fwd: 50-AGGAACTTCAACTTGGCAGTTT-30 , CNOT7-Rev:
50-GACAACCATTTGACCCCTTCA-30 ; CNOT6-Fwd: 50- CCTGACCCTCGGAG
GATGTAT-30 , CNOT6-Rev: 50- GCTTGGCAATGTCTGAAGGAA-30; DCP-1A-
Fwd: 50-GAATGACTGTCACCGCATAGC-30 , DCP-1A-Rev: 50-CTGAGTGCTT
GGCTGTAACCC-30; PAN2-Fwd: 50-GTGGGTGTACCTGTTTCCGTC-30 and
PAN2-Rev: 50-GCTCTGGATCTGCCGAATATCA-30 . GAPDH was used as an
internal control to normalize the difference in the amount of input cDNA. GAPDH
primers used were as follows: GAPDH-Fwd: 50-ATGGGGAAGGTGAAGGTCG-30

and GAPDH-Rev: 50-CTCCACGACGTACTCAGCG-30 .

Flow cytometry. Cells were stained with mAb BB7.2 (anti-HLA-A2) primary
antibody in PBSþ 5% FCS and visualized with goat anti-mouse Cy5-conjugated
secondary antibody (Jackson ImmunoResearch Laboratories). Cells were fixed in
PBS with 1% paraformaldehide (PFA), read on a FACSCalibur (BD) and analysed
in FlowJo.
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Proteasome and lysosome Inhibition. HEK293T cells were transfected with
either pQE empty vector (EV) or WT and Strep-His-MEX-3C, together with the
FF-Luc-HLA-A2 30UTR and Renilla luciferase reporter (pRL-TK, at a 1:20 ratio).
After 48 h transfection, cells were incubated for 4 h before lysis with 40 mM MG-
132, 10mM Lactacystin, 100 nM Concanamycin A or 200 nM Bafilomycin. FF-Luc-
HLA-A2-30UTR reporter mRNA levels were analysed by qRT–PCR and normalized
to Renilla-Luc, to standardize for transfection efficiency.
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