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Imputation of KIR Types from SNP Variation Data

Damjan Vukcevic,1,2 James A. Traherne,3,4 Sigrid Næss,5,6 Eva Ellinghaus,7 Yoichiro Kamatani,8,9

Alexander Dilthey,10 Mark Lathrop,11,8 Tom H. Karlsen,5,12 Andre Franke,7 Miriam Moffatt,13

William Cookson,13 John Trowsdale,3,4 Gil McVean,10 Stephen Sawcer,14 and Stephen Leslie1,2,*

Large population studies of immune system genes are essential for characterizing their role in diseases, including autoimmune condi-

tions. Of key interest are a group of genes encoding the killer cell immunoglobulin-like receptors (KIRs), which have known and hypoth-

esized roles in autoimmune diseases, resistance to viruses, reproductive conditions, and cancer. These genes are highly polymorphic,

which makes typing expensive and time consuming. Consequently, despite their importance, KIRs have been little studied in large co-

horts. Statistical imputation methods developed for other complex loci (e.g., human leukocyte antigen [HLA]) on the basis of SNP data

provide an inexpensive high-throughput alternative to direct laboratory typing of these loci and have enabled important findings and

insights for many diseases. We present KIR*IMP, a method for imputation of KIR copy number. We show that KIR*IMP is highly accurate

and thus allows the study of KIRs in large cohorts and enables detailed investigation of the role of KIRs in human disease.
Introduction

Over the past decade, studies of the genetics of human dis-

ease have benefitted greatly from the interrogation of large

cohorts of samples genotyped at hundreds of thousands of

markers. Formal genetics has extensively been replaced by

the analysis of large amounts of SNP genotype or, more

recently, sequence data, as the cost of obtaining such data

has dramatically reduced, in part because of automation.

In spite of these advances, some regions of the genome

are refractory to detailed investigation because performing

automated typing is difficult. This is because they arehighly

variable between individuals or because they exhibit copy-

number variation (CNV). One such region is the major his-

tocompatibility complex (MHC). Allelic typing of human

leukocyte antigen (HLA) class I and II genes within the

MHC is critical for transplantation and is informative for

many disease associations. Until recently, the high cost of

accurateHLA typinghas precluded large-scale, disease-asso-

ciation studies for HLA alleles. The application of statistical

methods to typing alleles via linkage disequilibrium with

combinations of adjacent SNPs, known as imputation,

has allowed large numbers of samples to be typed with

high accuracy1–5 so that massive cohorts of affected and

control individuals can be studied.6–8

Another genomic region of interest in this regard encom-

passes the KIR genes, which are part of the leukocyte recep-
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tor complex (LRC) in human chromosomal region

19q13.4. KIR genes encode receptors that are expressed

on natural killer (NK) cells and some Tcells. KIRs are highly

variable in terms of gene arrangement and copy number

(see Appendix A for more information about KIR genes

and nomenclature). Haplotypes can comprise 4–20 KIRs.9

Some haplotypes are relatively common. The A haplo-

types, for instance, are found in all populations studied.

They are relatively stable in copy number, although the

genes they contain can exhibit considerable sequence vari-

ation. In contrast, B haplotypes exhibit extensive CNVand

vary in frequency. In individuals of European ancestry, in

terms of copy number, 11 haplotypes are present at a fre-

quency of over 1%.9 Haplotypes are composed of combina-

tions of motifs on either side of a recombination hotspot.

Motifs are referred to as ‘‘centromeric’’ or ‘‘telomeric’’

with respect to this hotspot.

The high level of variation in KIRs, coupled with their

functional relationship with HLA class I, suggests that their

variation is driven by resistance to disease.10,11 Indeed,

combinations of HLA and KIRs have been associated with

HIV infection, autoimmune conditions, and cancers.12

Further, they have significant relevance in clinical out-

come in hematopoietic stem cell transplantation.13

Weight at birth is subject to strong evolutionary selection,

and combinations of HLA-C (MIM: 142840) and KIRs have

been linked to birth weight and pregnancy conditions
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such as pre-eclampsia (MIM: 189800).12 More generally,

co-evolution with HLA, with varying types of selection,

has strongly influenced patterns of diversity in the KIR

region.14

In view of their importance for human disease, a method

is necessary for rapidly and inexpensively typing KIRs for

large cohorts of individuals. So far, KIR typing has involved

laborious, time-consuming methods, except in one case

where variation in KIR3DL1 and KIR3DS1 (MIM: 604946)

copy number was tagged with a single SNP.15 SNP-based

imputation has proved invaluable, and now essential, for

large-scale HLA typing. Given this, and the availability of

extensive SNP data, we here explore its potential for KIR.

The complexities of the KIR region, namely the high level

of CNV and the high homology shared by independent

alleles and loci, mean that methods that have been devel-

oped for HLA are not necessarily applicable to KIRs. Thus,

we have developed KIR*IMP, a technique designed specif-

ically to impute KIR CNV and haplotypes defined by KIR

copy number. We also assess the performance of some ex-

isting HLA-imputation methods applied to KIRs and show

that KIR*IMP outperforms these methods.
Material and Methods

We first give an overview of our approach before describing each of

the steps in more detail. Readers may skip directly to the Results

section after reading the overview.

Overview
In typical genetics applications, imputation methods use a set of

individuals for whom SNP genotype data are available and the

variation to be imputed (the ‘‘target variable,’’ e.g., HLA or KIR

alleles) is also known. This is known as the ‘‘training data’’ or

‘‘reference panel.’’ A statistical model is fitted to the training

data. This associates the SNP variation to the target variable. Using

this model, one can then impute the target variable for individuals

for whom only the relevant SNP genotypes are available. Typically,

this results in a probability distribution over the possible types,

and individuals are usually assigned the type with the highest

probability from this distribution. Our method, KIR*IMP, can

impute a number of target variables representing different defini-

tions of KIR loci: KIR gene copy number, KIR A or B haplotype, and

gene-content haplotypes (see KIR and SNP Typing below for

details). These latter two are defined by the combinations of indi-

vidual KIR genes that are present on a haplotype.

We developed and validated KIR*IMP by using data from two

cohorts of European individuals typed for both SNP genotypes

and KIR copy number. A cohort of UK families formed our primary

dataset; resolving phase and familial relationships resulted in a

reference panel of 479 unrelated haplotypes (‘‘UK reference

panel’’). We used this for training a statistical model on the basis

of the random-forests algorithm. A separate panel of 1,338 unre-

lated and unphased Norwegian and German individuals was pre-

pared for validation (‘‘NG validation panel’’).

Both cohorts were typed for copy number at 17 KIR loci. For the

UK reference panel, this also served as a basis for a fine-scale clas-

sification of KIR haplotypes (KIRhaplotype) and a standard broad

classification of A and B KIR haplotypes (AvsB), giving us a total
594 The American Journal of Human Genetics 97, 593–607, October
of 19 KIR types for this panel. SNP genotyping for both cohorts

used the Illumina Immunochip array (see Figure 1) but resulted

in different sets of SNPs after quality-control procedures. The re-

sults shown below use SNPs in a 400 kb region that covers the

KIR genes.
DNA Samples
Our primary dataset, the UK cohort, comes from the UK DNA

Banking Network (DBN), as described in Jiang et al.9 It consists

of families of individuals ascertained for having either asthma or

atopic dermatitis. All subjects are of self-reported European

ancestry. Of the 1,768 individuals reported in Jiang et al., 149

were removed because of missing data and haplotype ambiguity,

leaving 1,619 individuals in 419 families. All of these individuals

were typed for KIR copy number at all loci. SNP genotypes were ob-

tained for 998 individuals from 449 families, which partially over-

lapped the above set. For logistical reasons, we were not able to

obtain both KIR and SNP types for exactly the same individuals.

The overlap between the two sets was 698 individuals from 343

families; these individuals were considered for inclusion in the

UK reference panel, but all individuals were used for phasing

and filtering (see below).

The Norwegian-German cohort consists of 1,338 unrelated Nor-

wegian and German affected individuals and healthy control indi-

viduals from a study of primary sclerosing cholangitis.17 All of

them were typed for KIR copy number at all loci and for SNP

genotypes.

The collection of data complied with relevant ethical standards

and procedures and was approved by the ethics committees over-

seeing research at each of the respective institutions.
KIR and SNP Typing
Copy-number typing of 17 KIR loci was done by qPCR as described

in Jiang et al.9 These include KIR genes, pseudogenes, and major

alleles of some genes, which we collectively refer to as ‘‘loci’’ for

convenience; see Appendix A for more details about the nomen-

clature for the loci and Table S1 for their relationship with the

underlying genes, including MIM references. The KIR genes are

located in the band 19q13.42. For clarity, in the text below we

define the ‘‘extended KIR region’’ as part of chromosome 19,

including 19q13.42 and everything telomeric from it. According

to coordinates from GRCh37 (Genome Reference Consortium),

this corresponds to all positions greater than 53.6 Mb.

For the UK cohort, the availability of KIR types for relatives

allowed resolution of phase and identification of whole haplo-

types. We used the definitions of the haplotypes from Jiang

et al.,9 including their nomenclature of simple numbering

from 1 to 71. In addition, we also used the broad A/B haplo-

type-group classification. We refer to these as the KIRhaplotype

and AvsB types. Table S2 shows how these relate to the copy

number at each of the typed loci. This gave us a total of 19

KIR types for this cohort: 17 loci plus two extended haplotype

classifications.

For the Norwegian-German cohort, we only had available the

copy-number types on a per-individual basis. Because the individ-

uals are unrelated, we did not resolve these into per-haplotype

copy-number types as we did for the UK cohort.

All KIR typing was conducted at the Cambridge Institute for

Medical Research, University of Cambridge, UK.

Typing of SNP genotypes was done with the Illumina Immuno-

chip array.18 The UK cohort was typed at the Centre National de
1, 2015
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Figure 1. The KIR Region
(A) Immunochip SNPs and KIR genes. The relative genomic position of Immunochip SNPs and KIR genes on chromosome 19 according
to the human reference genome (GRCh37) and the annotation provided with the Illumina Immunochip array. KIR genes are shown as
rectangles. Only some KIR genes are present, consistent with the fact that the reference genome is an A haplotype. SNPs are shown as
circles. They vary in y coordinates and border color on the basis of whether they are annotated as being within a particular KIR gene
(including introns). SNPs that were selected as beingmost informative are shaded in light green if they had good clustering andmagenta
if they had poor clustering. SNPs that were monomorphic in the UK reference panel are shaded in orange.
(B) Composition of common KIR haplotypes. The common KIR haplotypes are composed of different centromeric (cA01, cB01, and
cB02) and telomeric (tA01 and tB01) motifs, each of which differs in the content and arrangement of genes. Framework genes, which
are found at the ends and near the middle of the region on nearly all haplotypes, are shaded gray. Some genes (e.g., KIR2DL5) can be
located in both motifs. Different centromeric motifs can be paired with different telomeric motifs through the central reciprocal recom-
bination hotspot between KIR3DP1 and KIR2DL4, as indicated by different dashed lines. KIR haplotypes can be classified into two cat-
egories: group A haplotypes (shaded gray) and group B haplotypes (unshaded). Group A is composed of only cA01 and tA01 motifs,
which have fixed gene-content with one activating gene (KIR2DS4), which on many A haplotypes contains a deletion rendering it
non-functional (see Appendix B). Group B comprises at least one motif of type cB01, cB02, or tB01, which has variable gene-content
between framework genes and more than one activating KIR gene. Less common KIR haplotypes might differ (with slightly different
arrangements and copy number of the KIR genes9) from the ones shown here. This panel is adapted from Roberts et al.16 and relates
to haplotypes of European ancestry.
Génotypage, France. The Norwegian-German cohort was typed at

the Institute of Clinical Molecular Biology, Christian-Albrechts

University of Kiel, Germany.
SNP Genotype Calling and Quality Control
SNP genotypes for both cohorts were called separately via the opti-

Call method.19 For the UK cohort, this resulted in 4,121 success-

fully called SNPs, of which 1,118 were in the extended KIR region,

on chromosome 19. Of these, 1,078 were polymorphic in our sam-

ple and were used for analyses. For the Norwegian-German cohort,
The Americ
this resulted in 2,904 successfully called SNPs, of which 888 were

in the extended KIR region, on chromosome 19. Of these, 881

were polymorphic in our sample and also present in the UK

cohort. SNP and sample quality control before the analysis,

including exclusions based on non-European ancestry, was per-

formed as described in Liu et al.17 A handful of SNPs were subse-

quently excluded after manual inspection of the genotype calls

and SNP-intensity measurements (see SNP Sets and SNP Selection

below). We found that SNP genotype call rates can vary substan-

tially depending on the calling method used. We recommend

that calling and quality-control procedures be carefully scrutinized
an Journal of Human Genetics 97, 593–607, October 1, 2015 595



for maximizing the number of well-called SNPs, especially from

the set of most informative SNPs from our analysis.
Phasing
We phased the SNPs for the UK cohort by using SHAPEIT20,21 and

duoHMM.22 We did not use a reference panel for phasing (there

was no readily available panel based on the Immunochip); how-

ever, we did use the ‘‘HapMap phase II b37’’ recombination map

provided for use with SHAPEIT (see Web Resources). We used the

parameter settings recommended by the authors of duoHMM.

The resulting phasing is expected to be of very high accuracy

because of the family structure of the data. We also phased the

Norwegian-German SNP data with SHAPEIT. We used the phased

UK cohort as a reference panel for phasing (because this is ex-

pected to be of very high accuracy), the same recombination

map, and the default SHAPEIT parameter settings.
Producing the UK Reference Panel
The UK dataset consisted of a combination of individuals, some of

whom hadmissing KIR types and some of whom hadmissing SNP

data. Furthermore, because of the family structure, this dataset

contained haplotypes that were identical by descent. To create

an imputation model, we needed a reference panel with both

SNP and KIR data that consisted of unrelated haplotypes. We pro-

duced this as follows.

First, we determined the parent of origin for each haplotype

where it was unambiguous. We did this separately by using the

KIR types and the SNP genotypes (on the respective subsets of

the dataset where these data were available). For KIR types, we

compared the types directly and required an exact match. For

SNP genotypes, we used all SNPs across 19q13.42 and required

fewer than 20mismatches to declare that the haplotypesmatched.

Second, we merged the parent-of-origin information inferred

from the KIR and SNP comparisons and excluded any haplotypes

for which this could not be done unambiguously.

Third, we excluded related haplotypes from each family. For

example, when data for both parents were present, we only kept

the parental haplotypes. When data were available for only one

parent, then we kept the parent and also any other haplotype

that was identified among the offspring and was not present in

the parent.

The final UK reference panel consisted of 479 haplotypes. For

each one, we had 1,078 SNPs in the extended KIR region and

the full set of KIR types. Summaries of the allele-frequency distri-

butions are shown in Table S3 and Figure S1.
Producing the NG Validation Panel
Of the individuals in the Norwegian-German cohort, we took only

those for whomwe had both KIR and SNP types. This sample con-

sisted of unrelated individuals, so no further filtering of individ-

uals was required.

For this dataset, we phased the SNPs; however, the KIR types

were not phased (unlike the scenario for the UK cohort, for which

we had family relationships that allowed us to phase the KIR

types as well). Therefore, we used this as a validation sample. We

checked that the KIR copy-number distribution was consistent

with that of the UK reference panel under the assumption of

Hardy-Weinberg equilibrium (the comparison is not shown,

although this can be reproduced from the data in Table S3).

Tomake it compatible with the UK reference panel, we excluded

SNPs that were not present in both sets. We then aligned the
596 The American Journal of Human Genetics 97, 593–607, October
SNP allele coding to that of the UK reference panel through

comparison of nucleotide type (purine or pyrimidine) and allele

frequencies.

The final NG validation panel consisted of 1,338 individuals

(2,676 haplotypes). For each one, we had 881 phased SNPs in

the extended KIR region and unphased copy number for all typed

KIR loci. Summaries of the allele-frequency distributions are

shown in Table S3 and Figure S1.
Predicting KIR Types
We used a random-forest model23 as the basis for our imputation

method. This operates by fitting a large number of ‘‘classification

trees’’ to the training data. A single classification tree is a hierarchi-

cal structure consisting of ‘‘internal nodes’’ corresponding to spe-

cific SNPs, ‘‘leaf nodes’’ corresponding to different values of the

target variable (KIR types), and ‘‘branches’’ connecting the nodes

that correspond to alleles at the respective SNPs. A path through

a tree defines a haplotype by traversing a sequence of branches

that correspond to specific alleles at a set of SNP loci (typically a

small subset of those in the training data). The set of all possible

paths thus corresponds to a set of haplotypes, each of which has

an associated prediction for the target variable (via the leaf nodes).

The trees are constructed iteratively with standard algorithms

for this purpose,23 such that new SNP loci are selectively added

to the tree, leading the resulting haplotypes to be informative

for the target variable.

A random forest consists of a large number of such trees,

referred to as an ‘‘ensemble.’’ Because the tree-fitting algorithms

are deterministic, two techniques are used to create variation

among the fitted trees. First, a random subsample (with replace-

ment) is taken from the reference panel and is used as training

data for each individual tree (in other words, each tree is based

on a slightly different training dataset). This is known as ‘‘boot-

strap aggregation’’ or ‘‘bagging.’’24 Second, during the tree-fitting

algorithm, only a random subset of the SNPs are considered

candidates for inclusion as an internal node. This is known

as the ‘‘random subspace method’’25 or ‘‘attribute bagging.’’26

These techniques lead to reduced correlation between the fitted

trees and improved accuracy of the overall ensemble. We used

the implementation of random forests in the randomForests R

package.27

Although random forests are not based on a population ge-

netic model, some insight can be gained into how they model

the data and how this relates to the underlying genetics. A clas-

sification tree is somewhat analogous to a multi-marker SNP tag,

but there is explicit sharing of SNPs across tags, and the tags form

a proper partition of the target variable (see Figure S2). A random

forest then adds an extra layer of flexibility by taking a large

number of such trees and averaging them, effectively creating

a mixture of such haplotype distributions. Thus, we can view

random forests as a sophisticated multi-marker approach, in

which the bagging and subsetting operations add substantial

robustness.

We used the UK reference panel as the training set for all ana-

lyses and the KIR types as the target variable and fitted a separate

model for each KIR locus. We used either all SNPs in the reference

panel or a subset, depending on the analysis of interest.

Using a fitted model for imputation involves applying each tree

to a new dataset of SNP alleles and taking the set of predictions

across the ensemble, which can be summarized as a probability

distribution. To obtain a single predicted type, the simplest
1, 2015



approach is to take the one with the highest probability. We did

this for most analyses we present. In addition, we also explored

the use of probability thresholds, as is often done in practice for

association analyses. This involves setting a lower limit for the

probability required for making an imputation ‘‘call.’’ Imputations

that do not meet the threshold are not called; they are treated as

missing data. The concept is that by omitting the less certain im-

putations, we obtain a set of calls with higher accuracy. The aim is

to set a threshold that gives acceptable call rates (the proportion of

haplotypes or individuals with an imputation call) and high

accuracy.
Parameter Tuning
In a random-forest model, the key parameter that typically needs

tuning is the number of SNPs,m, to be subselected at each attribute

bagging step. The default value is the square root of the total num-

ber of SNPs,27 which gives m ¼ 17 with the use of ~300 SNPs (a

typical number for many of our analyses). We explored a range of

different values for m and evaluated performance by using the

UKsnps set (see SNP Sets and SNP Selection below) and out-of-bag

(OOB) accuracy (seeAssessingAccuracybelow) on theUK reference

panel (see Figure S3). We found that a higher value of m increased

accuracy for some KIR loci. This is presumably due to the fact that

only a small number of SNPs are informative for such loci (see Re-

sults), and if m is too low, then many trees will not include any of

these SNPs. We decided to set m at 100 in order to have sufficient

SNPs to increase accuracy at all loci without losing accuracy as a

result of decreased diversity between trees in the ensemble. Unless

otherwise stated, we used m ¼ 100 throughout.

We also explored varying the number of trees used and the

maximum number of nodes for each tree, but we found that these

did not noticeably affect the accuracy (data not shown). We used

1,000 trees for each model fitted and no limit on the number of

nodes.
Assessing Accuracy
We assessed imputation accuracy in two ways:

d UK cross-validation analysis: 5-fold cross-validation using

the UK reference panel for all 19 KIR types. This was done

on a per-haplotype basis, whereby the imputation accuracy

was calculated as the proportion of haplotypes with correctly

imputed KIR types.

d NG validation analysis: Independent validation using the

NG validation panel for KIR copy-number types only. This

was done on a per-individual basis, whereby the imputation

accuracywas calculated as the proportion of individuals with

correctly imputed KIR types.

For some analyses, instead of the above, we used the OOB accu-

racy to assess imputation performance. We calculated this during

the model-fitting process by using the haplotypes excluded from

the fit for each tree (because of bagging) effectively as a validation

set (for that tree only) and aggregating the predictions on these

haplotypes across the whole ensemble. This mimics cross-valida-

tion but is computationally more convenient. We found that it

was an adequate proxy for full cross-validation (Figure S4) and

thus chose to use it for some analyses.

To assess imputation accuracy for particular alleles, we calcu-

lated the ‘‘sensitivity’’ and the ‘‘positive predictive value’’ (PPV).

These are, respectively, the proportion of correctly imputed types
The Americ
among all haplotypes with that allele and the proportion of

correctly imputed types among all haplotypes imputed with that

allele.

To assess the relative contribution of each SNP to the prediction

accuracy of themodel, we used the permutation strategy described

by Breiman.23 For each tree, the OOB accuracy is calculated for two

versions of the data: (1) the actual data and (2) the data after the

alleles for a particular SNP are permuted across all samples. The re-

sulting difference in prediction accuracy is averaged over all trees

and normalized by the SD of these differences to give a ‘‘vari-

able-importance’’ score for the SNP. This is repeated for all SNPs.
Credible Intervals
To assess the uncertainty of the imputation-accuracy estimates

and the calibration plot, we calculated 95% credible intervals on

the basis of a binomial model and a uniform prior distribution.

The binomial model assumes that the imputed values across indi-

viduals are independent. For cross-validation, this assumption

does not hold because the training sets partially overlap (between

cross-validation folds), and in fact no known estimator of the vari-

ance works well in general.28 Thus, we treat this as an approxima-

tion only. For the independent validation, the independence

assumption is reasonable.
SNP Sets and SNP Selection
We explored different choices of SNP sets by using the UK refer-

ence panel. Initial exploration with large numbers of SNPs (e.g.,

all 1,078 SNPs in the extended KIR region) showed that those

with the highest variable-importance scores were concentrated

closest to the KIR genes. We therefore focused on 305 SNPs that

had genomic coordinates (GRCh37) between 55.1 and 55.5 Mb

and were polymorphic in the UK reference panel. Using this

smaller set did not reduce accuracy (data not shown).

Of these305 SNPs, fourwere eventually excludedbecauseofpoor

clusteringof genotype intensities (see below).We refer to the result-

ing 301 SNPs as the UKsnps set and the full 305 as the UKplus4snps

set. The cross-validation analyses were done with the UKsnps set.

The independent validation analysis required SNPs present in

both panels. Of the UKsnps set, 231 SNPs were also present in the

NG validation panel; we refer to this as the UKNGsnps set.

To explore how the inclusion or exclusion of key SNPs affects ac-

curacy,wefitted a series ofmodelswherewe iteratively removed the

SNP with the highest variable-importance score; at each step, we

fitted a model to the remaining SNPs and also one to the set of

removed SNPs (in the latter case, we set the tuning parameter m

to the total number of SNPs). This allowed us to determine how

the accuracy increased or decreased as we gradually added or

removed, respectively, the most influential SNPs (Figure S5).

Although the general relationship was as expected, we observed

some non-monotonicity. This is due partly to the stochastic nature

of the random-forest model (which is especially visible when the y

axis range is narrow) and partly to its sensitivity to which SNPs are

included (particularly for the models fitted with very few SNPs).

To create a single set of the most informative SNPs, for each KIR

locus we took the minimal number of SNPs necessary for reaching

high accuracy on the basis of a visual assessment of the results of

the inclusion and exclusion experiments and took their union

across all loci (the number of SNPs taken from each locus is shown

in Figure S5).

We inspected plots of SNP-intensity measurements and geno-

type calls for these SNPs to check whether their genotype calls
an Journal of Human Genetics 97, 593–607, October 1, 2015 597



were reliable (Figure S6). We looked for evidence that the intensity

clusters inferred by the genotype-calling algorithm either did not

reflect true underlying SNP genotypes (e.g., that the inferred clus-

ters did not form visually distinct groups) or were not being reli-

ably called in a way that would be reproducible across samples

(e.g., that the underlying clusters did not show enough separa-

tion). We refer to SNPs that we judged as failing this visual test

as having ‘‘poor clustering’’ and refer to those that passed as hav-

ing ‘‘good clustering.’’ We excluded the SNPs with poor clustering

from all validation and comparison analyses. It is likely that other

SNPs are also candidates for exclusion for similar reasons. It is

impractical to inspect plots for all SNPs, and we did not do this.

Instead, we concentrated on the most informative SNPs because

we reasoned that the others would minimally influence the final

outcome.

We refer to the set of most informative SNPs, excluding those

with poor clustering, as the UKselectedSnps set. This set contains 12

SNPs (see Results). Models fitted with this set used m ¼ 10 for the

tuning parameter. We refer to the SNPs in the UKsnps set, which

were not in the UKselectedSnps set, as the UKnotSelectedSnps set.
Other Imputation Methods
We compared KIR*IMP against three existing methods developed

for imputing HLA alleles: HLA*IMP:01,1,2 HLA*IMP:02,3 and

HIBAG.5 In the comparison, we also included the simple approach

of using a single tag SNP. We did not include SNP2HLA,4 another

prominent HLA-imputation method, because its implementation

is specific to HLA and is not easily amenable to working with other

genes (although in principle, this is possible).

We formatted our data in such a way that the methods would

treat each KIR locus as if it were a HLA gene and treat each type

at each locus as a HLA gene allele.

For the methods that operate on a per-haplotype basis

(HLA*IMP:01 and tag SNPs), we evaluated themby using both vali-

dation strategies described earlier. The standard implementations

for the remaining methods (HLA*IMP:02 and HIBAG) operate on

a per-individual basis by using unphased SNP genotypes as input.

For these methods, we created a synthetic training set from the UK

reference panel by randomly pairing the haplotypes (without

replacement) to form pseudo-individuals (one haplotype had to

be discarded because there was an odd number). The output

from these methods was also unphased; for simplicity, we only

show the performance of these methods for the NG validation

analysis, which is on a per-individual basis. We used unthre-

sholded calls for all comparisons.

All methods were provided with the physical positions of the

SNPs according to GRCh37. HLA*IMP:01 required a recombina-

tion map, and we provided it with the same one (from the

1000 Genomes Project) used for phasing the data (see above).

HLA*IMP:02 required a (single) physical position for each of the

KIR loci. We created surrogate positions for each locus in a number

of ways. For KIR genes and pseudogenes, if Immunochip SNPs

were annotated as being within them, we took the mean of their

positions. If there were no such SNPs, we took the mean of the

gene’s annotated endpoints. For genes that did not appear on

the A haplotype, and thus did not have an annotated position,

we found the closest SNP in each of the two most adjacent genes

and took the mean of their annotated positions. For non-copy-

number KIR loci (such as KIRhaplotype), we took the weighted

(by the variable-importance score) mean of the positions of the

top five most informative SNPs from our KIR*IMP model for that
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locus. We ran eachmethod by using its default parameter settings.

For HLA*IMP:02, the localization feature was turned on for all loci.

We selected tag SNPs for each copy-number locus and AvsB by

taking the SNP that gave the highest prediction accuracy (in the

training set) when it was used as a simple classifier rather than tak-

ing the one with the highest Pearson correlation, as is often done.

We used this criterion because it is the metric we used to compare

the different methods. For reporting actual tag SNPs and their

properties, we used statistics based on the full training data. For re-

porting comparisons against other methods, we used statistics

from the validation strategies described above. These can give

rise to slightly different accuracy estimates; we used the full

training data for the former in order to obtain a single tag SNP,

which is not guaranteed to be the best tag under each fold of

cross-validation.
Other SNP Genotyping Arrays
Toassess imputationperformanceonusing SNPdata fromgenotyp-

ing arrays other than the Immunochip, we fittedmodels by using a

subset of the SNPs corresponding to those that could be typed on

each specific array. Specifically, we obtained lists of SNPs for many

Illumina and Affymetrix arrays (from their respective websites; see

Web Resources). For each array, we took the intersection between

the SNPs on the array and those in the UKsnps set (by matching

on the GRCh37 genomic coordinates) and used the UK reference

panel to fit a model with just those SNPs. This mimics the (best-

case) scenario, where all the SNPs in the intersection are perfectly

typed in a study sample. In practice, typing for some SNPs will

most likely fail, leading to possibly lower imputation accuracy.
Results

Imputation Accuracy

We assessed accuracy by 5-fold cross-validation on the UK

reference panel and independent validation on the NG

validation panel. Table 1 shows accuracy estimates from

these analyses. For typing copy number in the UK refer-

ence panel and using the UKsnps set, we observed greater

than 98% accuracy for the majority of loci, at least 95% ac-

curacy for half the remaining loci, and better than 90% for

the rest. For distinguishing the broad A and B haplotype

groups, KIR*IMP achieved 98.5% accuracy. For the more

challenging task of imputing the fine-grained haplotype

groups, accuracy was 87.1%. As discussed below, this is

mainly due to the presence of many rare haplotypes,

which are naturally hard to impute. We also show below

that we could improve accuracy by limiting ourselves to

the types imputed with higher certainty. These results are

based on all available SNPs in the region and our training

set. Table 1 also shows that using the smaller UKNGsnps

set, emulating applying KIR*IMP in practice, had little

impact on performance.

The NG validation results in Table 1 confirm that

KIR*IMP is accurate at typing copy number for themajority

of KIR loci. These results are per individual, so they are

not directly comparable to the UK results, which are per

haplotype. To determine whether the reported accuracies

are similar for each analysis, we calculated the expected
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Table 1. Imputation Accuracy

Locus

UK NG

UKsnps UKNGsnps UKselectedSnps UKNGsnps

KIRhaplotype 87.1 85.4 85.6 –

AvsB 98.5 98.5 98.5 –

KIR2DS2 99.0 99.0 99.0 99.8

KIR2DL2 98.3 98.3 98.3 98.0

KIR2DL3 98.8 98.8 98.8 98.6

KIR2DP1 91.0 90.0 92.5 85.1

KIR2DL1 90.6 89.3 91.9 82.2

KIR3DP1 96.9 96.7 96.5 91.6

KIR2DL4 97.1 97.1 96.9 91.1

KIR3DL1ex4 99.0 99.0 99.0 94.5

KIR3DL1ex9 98.8 98.8 98.8 94.7

KIR3DS1 97.5 97.5 97.7 96.2

KIR2DL5 92.5 90.2 92.1 82.2

KIR2DS3 90.4 90.4 89.6 81.3

KIR2DS5 95.8 96.2 94.6 95.0

KIR2DS1 99.0 99.0 99.0 94.9

KIR2DS4TOTAL 98.8 98.8 98.8 94.8

KIR2DS4WT 99.6 99.6 99.6 98.6

KIR2DS4DEL 98.8 98.8 98.8 96.9

Estimates of KIR*IMP imputation accuracy from the validation analyses. For the
UK cross-validation analyses, the percentage of correctly imputed haplotypes is
shown, whereas for the NG validation analyses, the percentage of correctly
imputed individuals is shown (thus, the two are not directly comparable).
The three columns for the UK correspond to different SNP subsets used for
training the model (UKsnps, UKNGsnps, and UKselectedSnps), as described in
the main text. Note that KIRhaplotype and AvsB are only defined on a haplotype
level and thus are not available in the NG validation panel.
per-individual accuracy by using the UK imputation results

and pairing haplotypes at random. If this assumption is

adequate, and the amounts of KIR genetic variation in the

UK and NG panels are sufficiently representative of each

other, these should roughly match. This comparison is

shown in Figure S7; they indeed match well.

Previous imputation approaches (for HLA) have shown

that accurate imputation of a given variant often depends

on how many instances of the variant are represented

in the training data.1 This is also true for KIR imputation.

Figure 2 shows the relationship between imputation accu-

racy and the number of times a gene or haplotype appears

in the UK reference panel. Although in some instances

KIR*IMP obtained high accuracy with a relatively small

number of training examples, high accuracy was only reli-

ably obtained with over 100 such examples.

KIR*IMP assigns probabilities to predictions. An impor-

tant question is whether these are meaningful, i.e., does

a probability of 0.9 mean that about 90% of such imputa-

tions are correct? Figure 3 shows an assessment of this by

comparing the level of certainty against the observed accu-
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racy for imputations with that level of certainty. The prob-

abilities for our model are mostly well calibrated, in the

sense described above. If anything, they are slightly con-

servative, such that the imputations of moderate certainty

(with probability of around 0.8) are slightly more accurate

than expected.

We assessed the effect of imposing a probability

threshold on the imputations. Figure S8 shows a compari-

son of accuracy against call rate for various thresholds. For

example, a threshold of 0.5 substantially increases the

accuracy of the KIRhaplotype imputations from 87% to

92% while retaining a call rate of above 90%. In this

case, the haplotypes that are refractory to a call are primar-

ily the rarer ones, which are imputed with less certainty.

Stricter thresholds result in higher accuracy: a threshold

of 0.7 results in accuracy above 95% at all loci and call rates

varying roughly from 80% to 100%.

Given that we fitted models both for whole haplotypes

(KIRhaplotype) and on a per-gene basis, a natural ques-

tion is whether these give equivalent performances. We

assessed this by converting the whole-haplotype imputa-

tions, which by nature were fine-grained, into locus-

specific ones by ‘‘coarsening’’ them to copy-number values

for each locus. In Figure S9, a comparison of the two

approaches shows that they are effectively equivalent.

Comparison of Imputation Methods

There are no current methods specifically designed for

imputing KIR variation and thus no clear candidates for

comparison. It is possible to adapt existing imputation

methods for other gene families to type KIR variation.

For the purposes of comparison, we did this with several

leading HLA-imputation algorithms (HLA*IMP:01,

HLA*IMP:02, and HIBAG). We also included the simple

method of using a single tag SNP. Figure 4 shows a compar-

ison of all of these methods. To the extent possible, we as-

sessed eachmethod by using the same validation approach

as for KIR*IMP. Standard implementations of HLA*IMP:02

and HIBAG use only unphased data, and thus we only

show their performance for the NG validation analysis.

Similar conclusions can be drawn from both analyses in

Figure 4. Mostmethods performedwell formost loci. It was

harder to impute a few loci, notably KIR2DP1, KIR2DL1,

KIR2DL5, and KIR2DS3, highlighting differences between

the methods. For these loci, KIR*IMP was the most accu-

rate. The slightly poorer performance of the HLA-based ap-

proaches here might be due to their making assumptions

that are likely to be inappropriate for KIR (see Discussion).

For many KIR loci, single tag SNPs do quite well at

capturing variation in copy number (see Table S4) in that

they perform similarly to using all SNPs and amore sophis-

ticatedmodel. This highlights the fact that, for these loci, a

small number of SNPs is sufficient for building accurate

imputation models. We explore this further in the next

section.

Overall, KIR*IMP was consistently the (uniquely or

equally) most accurate method for imputing KIR types.
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Figure 2. Per-Allele Imputation Accuracy
Estimates of the sensitivity and positive
predictive value (PPV) for each KIR-type
allele (i.e., the different possible values for
each of our KIR loci) from theUK cross-vali-
dation analysis of KIR*IMP. These are
plotted against the number of times each
allele appeared in the UK reference panel.
Each point corresponds to a single allele.
In addition, KIR*IMP has two important advantages: (1) it

has fewer requirements (e.g., no need for a recombination

map), making it more convenient to train and use, and (2)

it is very fast (fitting the model typically takes much less

than 1 min per locus with the use of our reference

panel and a modern computer, and imputing with a fitted

model is almost instantaneous). Further, it provides

imputations on a per-haplotype basis, which is of greater

interest than unphased types in applications. It does

require that the input SNP data be phased, but this is

accurately and efficiently achieved via existing methods

(e.g., SHAPEIT20,21).

Choice of SNPs

We had available SNPs from a genotyping array (Immuno-

chip) specifically designed to have high coverage of the KIR

region. This enabled us to develop an imputation method

with high accuracy. An important question is whether it is

possible to do this with a small set of SNPs. This would lend

extra flexibility to the method, allowing it to be used

in situations where typing samples on such an array is

not feasible but where typing them at a specific small num-

ber of SNPs is.

We first consider the related question of which SNPs

are contributing the most to imputation performance.

Figure S10 shows the variable-importance scores for all

SNPs at each locus. For most loci, a few SNPs show high

importance. We also see a spatial pattern that accords

with our knowledge of the relative position of KIR genes:

the SNPs showing up as most important for each gene

tend to be located on either the centromeric or the telo-

meric side of the region, consistent with the typical loca-

tion of the gene. Four loci have SNPs with high importance

on both ends of the region: KIR2DP1, KIR2DL1, KIR2DL5,

and KIR2DS3. These are precisely those where KIR*IMP had

higher imputation accuracy than the HLA-based methods,

indicating that those methods might not be adequately

capturing information from all parts of the region.

KIR3DP1 and KIR2DL4 did not have any particular SNPs
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with very high importance. These

loci showed very little overall varia-

tion (nearly all haplotypes have copy

number 1), and none of the models

could impute their rare variants

accurately (in fact, nearly all

imputed values, for all models except
HLA*IMP:01, were for copy number 1). The absence of

SNPs with high importance merely reflects this fact.

The fact that only a small number of SNPs showed high

importance for most loci suggests the possibility of

training an accurate model with a few SNPs. To explore

this, we ran a series of analyses to select and evaluate

the most influential SNPs (see Material and Methods).

Figure S5 shows the results from these experiments, and

the final set of selected SNPs is shown in Table 2 and

Figure 1.

A number of insights are evident from these results. First,

the two haplotype-based types, KIRhaplotype and AvsB,

require approximately ten SNPs to achieve accuracy almost

similar to that of the full model. Removing those SNPs sub-

stantially decreased the accuracy for these types, indicating

that most information is concentrated in a small group of

SNPs. Second, we see differing behavior for the centro-

meric and telomeric KIR loci. Centromeric loci (e.g.,

KIR2DS2) required only one to two SNPs to achieve high

accuracy, and performance degraded rapidly as these

were removed. Many telomeric loci also had high accuracy

with only one to two SNPs, but their performance did not

degrade substantially when they were removed. Thus,

there was more redundancy in the SNP information for

the telomeric loci than for the centromeric loci.

We fitted models by using just the selected SNPs (in fact,

just 12 of these, referred to as the UKselectedSnps set; see

Material and Methods) to assess their utility for imputa-

tion. Figure 5 compares the performance of these models

against those fitted with all SNPs and all but the selected

SNPs. Two observations stand out from this comparison.

First, the UKselectedSnps set performed similarly to using

all SNPs. Second, the models based on the non-selected

SNPs performed well for telomeric loci but poorly for

centromeric loci, confirming our observation that there is

very little redundancy in the SNP information for centro-

meric loci, i.e., specific SNPs are crucial for accurate impu-

tation of centromeric loci. At this stage, we cannot rule out

the possibility that this might simply be due to the design



Figure 3. Calibration of Imputation Probabilities
A calibration plot of the KIR*IMP imputation probabilities. The
probabilities used are those associated with the OOB imputations
across all KIR loci, imputed on the UK reference panel by KIR*IMP
trained with the UKsnps set. The imputed KIR types are grouped
by their maximum posterior probability (MAP) into ten bins
of equal width (on the probability scale) covering the range of
the probabilities. For each bin, the observed imputation accuracy
and corresponding 95% credible interval (see Material and
Methods) are plotted against themeanMAP. Note that the number
of values in each bin varies, as reflected by the differing widths of
the intervals. Perfect calibration is indicated by the dashed line.
of the SNP array and that alternative choices of SNPsmight

provide more redundancy.

A related question is how accurately we can impute KIR

by using SNP data from a different array. For each array, we

assessed this by using those SNPs that are both present

in UKsnps and typed on the array (assuming that all are

perfectly typed). The results are shown in Table S5; we

note that fairly high accuracy can potentially be achieved

with many of the arrays.
Discussion

We have developed a statistical imputation method for

typing KIR gene copy number from SNP genotypes and

have shown that it is highly accurate. By leveraging

existing SNP-genotyping technology, this method allows

high-throughput, low-cost KIR typing, enabling a number

of applications.

Uses for Our Method

As for HLA imputation, an important use of KIR*IMP will

be for genetic association studies for diseases and complex

traits. Of particular interest is the substantial number of

autoimmune and other diseases for which HLA has been

implicated. HLA class I molecules and KIRs are known to
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interact biologically,12 suggesting that many such diseases

are likely to also involve KIRs.

Many disease studies have typed their samples on the

Illumina Immunochip or one of the other arrays we as-

sessed. Our method can be immediately applied to these

data for analyzing potential associations with KIRs. For

other studies, if it is not feasible to type the samples on

an appropriate array, an alternative is to type the small

set of informative SNPs we have identified by using tar-

geted methods, e.g., TaqMan.29 We have shown that these

SNPs are sufficient for accurate KIR imputation. Further-

more, for the centromeric genes, these SNPs are also neces-

sary, meaning successful imputation of these loci relies

crucially on the availability of these markers (although

future studies might discover alternative SNPs [not on

the Immunochip array] that are also informative for these

loci). This should guide designs of future arrays if they are

to be used for KIR imputation.

We have shown that many KIR loci are well tagged by

SNPs. Nevertheless, we recommend that KIR*IMP, in addi-

tion to other standard analyses such as single-SNP tests,

be used for assessing disease association within the KIR re-

gion. Many of the KIR loci are more accurately imputed

by KIR*IMP, and thus this approach will lead to greater

power. For example, for the broad A/B haplotype-group

classification, we achieve imputation accuracy of 98%,

compared to 87% for the best tag SNP (the actual impact

of this on power will vary depending on many factors and

can be estimated by simulations or analytical approxima-

tions30,31). Given that interactions between HLAs and KIRs

are expected, it is particularly important that typing is as ac-

curate as possible: the power to detect interactions drops off

rapidly as measurements become less accurate.31 Further-

more, because KIR*IMP imputes variants of direct biological

interest, any findings are more likely to be causal.32

In the future, as accuracy is improved, rapid determination

of KIRs by imputation could be used for additional clinical

purposes, for example, for rapid screening for determina-

tion of compatibility for transplantation.

Relationship to Existing HLA Methods

We explored existing methods for imputing gene varia-

tion, in particular those designed for HLA genes, for poten-

tial use in the KIR context. Even though they are not

optimized for KIR variation, we found that these methods

generally performed well, although none performed

consistently the best across all loci.

Some of the methods rely on assumptions that,

although accurate in other parts of the genome, are not

appropriate for KIRs. These include the assumptions that

(1) the relative genomic positions of SNPs and genes are

fixed and known and (2) an accurate recombination map

that adequately describes the LD patterns in the region is

available. It is known that there is extensive structural vari-

ationbetween individuals, such that genes such asKIR2DL5

appear either in the centromeric or the telomeric (or both)

part of the region, making the notion of fixed relative
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A B

Figure 4. Comparison of Imputation Methods
Estimates of the imputation accuracy for the different methods and the associated 95% credible intervals (see Material and Methods).
(A) The percentage of correctly imputed haplotypes from the UK cross-validation analysis.
(B) The percentage of correctly imputed copy-number types for individuals from the NG validation analysis.
positions unrealistic. Furthermore, a recombinationmap is

unlikely to properly capture the effect of extensive non-

allelic homologous recombination that has shaped this

region. This stimulated thedevelopment of KIR*IMP,which

is based on the flexible random-forest model and does

not rely on such assumptions. We expect that as we learn

more about the structure of genetic variation in the KIR re-

gion, more-accurate models can be devised to outperform

generic approaches such as random forests.

The model used by HIBAG is similar to a random forest

in that it takes advantage of an ensemble of classifiers

and uses techniques such as bagging. The main difference

is that, for each classifier, HIBAG uses the haplotype distri-

bution defined by all genotypes across a selected set of

SNPs, whereas the classification trees used in a random for-

est allow different subsets of SNPs to define each haplotype

(see Material and Methods and Figure S2). Another differ-

ence is in the implementation of phasing: HIBAG takes un-

phased genotypes as input and phases them by using an

expectation-maximization algorithm, whereas KIR*IMP

works directly on phased input (which can easily be ob-

tained with the best current phasing algorithms).

Limitations of Our Method

Some limitations of KIR*IMP are worth noting. Our

training data are exclusively of European ancestry. There-

fore, KIR*IMP might not be accurate for non-European

individuals, particularly those who do not share recent

common ancestry with Europeans for their KIR genes.

Although it is known that KIR genes can vary widely
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between people of different ancestry,33 it is possible that

the more common KIR haplotypes in our reference panel

might appear with appreciable frequency in other popula-

tions as well. Another limitation is that we can only

impute variants that exist in our reference panel and

only do so accurately if there are sufficient examples.

It will be difficult or impossible to impute rare types

successfully.

The natural solution to both of these limitations is to in-

crease the size and diversity of the reference panel. This has

been successful for HLA imputation,3 and we expect the

same for KIR*IMP as more training data become available.

Possible Extensions

The SNPs on the Immunochip array all have annotated

positions on the human reference genome, which is an

A haplotype (based on KIR gene content; see Figure 1).

SNPs that appear exclusively on B haplotypes are therefore

excluded from the design of the array. Given the substan-

tial structural variation, especially among B haplotypes,

such SNPs would presumably be highly informative of

B haplotype variation and would be valuable for inclusion

in the model if they could be typed.

KIR*IMP was designed explicitly to work with SNP

alleles. This was for simplicity and generality (see Uses

for Our Method above). We have observed that extra

information is available in the SNP-intensity measure-

ments, including CNV in the SNPs themselves, which

can be exploited for increasing accuracy (see Appendix C

and Figure S11).
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Table 2. Most Informative SNPs

SNP ID rsID Position Allele 1 Allele 2 Gene Gene Location
In the NG
Validation Panel?

Poor
Clustering?

rs587560 rs587560 55,245,738 A G KIR3DL3 intronic yes no

rs17207383 rs17207383 55,248,107 A C – intergenic no no

seq-rs10409751 rs10409751 55,249,570 C G – intergenic no no

seq-rs643236 rs643236 55,251,418 A G KIR2DL3 intronic no no

seq-t1d-19-59977961-T-C – 55,286,149 A G KIR2DL1 intronic no yes

imm_19_59986266 – 55,294,454 A G KIR2DL1 coding no yes

seq-rs670795 rs670795 55,306,645 A C – intergenic yes no

seq-rs35656676 rs35656676 55,314,897 C G – intergenic yes no

seq-rs17173106 rs17173106 55,314,949 A G – intergenic yes no

seq-rs592645 rs592645 55,320,927 A T KIR2DL4 intronic yes no

seq-rs3865510 rs3865510 55,324,239 A C KIR2DL4 intronic yes no

rs581623 rs581623 55,326,739 A G – intergenic yes no

seq-t1d-19-60034052-C-T – 55,342,240 A G – intergenic no no

rs4806585 rs4806585 55,346,424 A C KIR2DS4 intronic no no

seq-rs62122181 rs62122181 55,347,366 A G KIR2DS4 intronic no yes

seq-t1d-19-60056605-A-T – 55,364,793 A T KIR3DL2 intronic no yes

The set of SNPs selected as being the most informative for KIR imputation. All of these SNPs were in the UK reference panel, but only a subset (as indicated) were
also present in the NG validation panel. SNPs with poor clustering (as indicated; see Figure S6) were excluded from the training set for all analyses unless otherwise
stated. The SNP and gene information is from the annotation provided with the Illumina Immunochip array.
In addition to showing CNV, KIR genes also exhibit sub-

stantial allelic variation, especially among the A haplo-

types.14,34 Indeed, the variation within our SNP data is

consistent with this fact (see Appendix B and Figure S12).

We had available only CNV data and thus developed

KIR*IMP specifically for this. Nevertheless, we expect that

our method can be easily extended to imputing allelic vari-

ation as more data become available.
Appendix A: KIRs, Genes, and Nomenclature

We follow the KIR gene nomenclature approved by the

HUGO Genome Nomenclature Committee (HGNC)35

and available online (see Web Resources). A full list,

including MIM references, is shown in Table S1.

In brief, the names represent the protein structures en-

coded by the genes and are organized as follows:

d Start with the acronym KIR.

d Add a single digit corresponding to the number of

immunoglobulin (Ig) domains in the molecule, fol-

lowed by the letter D (denoting ‘‘domain’’).

d Add one of the letters L, S, or P to signify a long cyto-

plasmic tail, short cytoplasmic tail, or pseudogene,

respectively.

d Add a final digit to distinguish between genes

encoding the same protein structure (e.g., KIR2DL1,

KIR2DL2, and KIR2DL3 all encode proteins with two

Ig domains and a long cytoplasmic tail).
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In addition to the above, the standard nomenclature dis-

tinguishes between two different versions of KIR2DL5,

namely KIR2DL5A and KIR2DL5B. These can alternatively

be referred to as KIR2DL5T and KIR2DL5C for the telomeric

and centromeric versions, respectively.9

We deviate slightly from the above as follows (and as is

shown in Table S1):
d We do not distinguish between the two types of

KIR2DL5. Instead, we measured the total copy num-

ber of both versions and thus refer to them together

as KIR2DL5.

d We measured copy number of KIR3DL1 by using two

different assays, which targeted two different exons of

the gene: exon 4 and exon 9 (see Jiang et al.9 for de-

tails). We report each of these separately and refer to

them as KIR3DL1ex4 and KIR3DL1ex9 for exons 4

and 9, respectively.

d We distinguish between different versions of KIR2DS4:

one with a 22-bp frameshift deletion and the (full-

length)wild-type form.Wemeasured the copynumber

of each by using separate assays and refer to them as

KIR2DS4DEL and KIR2DS4WT for the deletion and

theWT, respectively. In addition, we used a third assay

to detect both forms of KIR2DS4; we refer to this as

KIR2DS4TOTAL.See Jiangetal.9 fordetails of theassays.

The distinction between genes and alleles is somewhat

blurred in the KIR region because of intensive non-allelic
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Figure 5. Imputation Accuracy with Different SNP Sets
Estimates of the KIR*IMP imputation accuracy from the UK cross-
validation analysis are compared across different SNP subsets
for training: the main set of SNPs used for the cross-validation
analyses (UKsnps), the SNPs selected as being highly informative
(UKselectedSnps), and the remaining set of SNPs (UKnotSelectedSnps).

Table B1. Patterns in the Centromeric KIR Region

Haplotypes Motif(s) Apparent Diversity

1, 2, 3, 11 cA01 high

4–10 cB01, cB02 low
homologous recombination. For example, KIR3DL1 and

KIR3DS1 are now known to be alleles of the same gene;

KIR2DL2 and KIR2DL3 are as well.36 Therefore, for conve-

nience we use the term ‘‘loci’’ to collectively refer to all of

these. Table S1 clarifies the relationships between any spe-

cific entities of interest.

The KIR region is highly variable in terms of gene

arrangement and copy number (see Figure 1) in that haplo-

types can comprise 4 to 20 KIR genes.9 The two classes of

haplotypes are designated A and B. The A haplotypes are

relatively stable in copy number, although the genes con-

tained in A haplotypes can have considerable allelic

sequence variation. B haplotypes show extensive CNV

and also many different gene arrangements. Common

haplotypes are typically described in terms of pairs of

motifs on either side of a recombination hotspot. Each

motif is made up of several KIR genes, typically a pair of

‘‘framework’’ genes at either end of themotif and combina-

tions of other KIR genes in between. These motifs are

distinguished according to whether they are on the centro-

meric or the telomeric side of the hotspot and are labeled

accordingly with ‘‘c’’ or ‘‘t,’’ respectively (e.g., cA01, cA02,

tA01, tB01, etc.). Thus, common KIR haplotypes are

defined, for example, as cA01-tA01, cA01-tB01, cB02-

tA01, etc., where each motif is actually a haplotype made

up of specific KIR genes (e.g., cB02 ¼ 3DL3, 2DS2, 2DL2,

and 3DP1; see Figure 1). The less common haplotypes

have gene duplications, deletions, or fusions and are

more complex. Non-allelic homologous recombination is
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the likely mechanism for much of the haplotype variation

observed.

KIRs are members of the immunoglobulin superfamily

of molecules and are present on NK cells and some

T cells. Several KIRs are known to interact with HLA

class I molecules. KIRs with two Ig domains are generally,

but not exclusively, receptors for subsets of HLA-C mole-

cules, whereas some with three Ig domains, such as

KIR3DL1, interact with a subset of HLA-B and HLA-A allo-

types. Some KIRs encode inhibitory immunoreceptor tyro-

sine-based inhibition motifs (ITIMs) in their cytoplasmic

tails, whereas other KIRs (which are, interestingly, closely

related to the former) are activating rather than inhibitory,

given that they are coupled with adaptors with immunor-

eceptor tyrosine-based activation motifs (ITAMs). The

A haplotypes contain mostly inhibitory KIRs, whereas

the B haplotypes usually contain one or more activating

KIRs.9
Appendix B: Structure of the KIR Region and Allelic

Variation

The dense SNP data we have available, together with the

modeling of KIR types, provide some further insight into

the region containing the KIR genes. Figure S12 shows a

visualization of the haplotypes observed in the SNP data

(55.23–55.43 Mb). The KIR haplotypes are grouped to

emphasize their similarities, from which we can also see

the extent of diversity.

One clear observation is that the haplotypes differ in

their diversity. For example, KIR haplotype 9 shows a

distinct ‘‘barcode’’ pattern, such that all haplotypes within

the group have a similar pattern of SNP alleles, suggesting a

relative lack of allelic variation. In fact, haplotypes 7–9 all

show the same barcode pattern, suggesting that they share

a (single) common haplotype background. In contrast,

haplotype 1 shows much more diversity in that it lacks

any single barcode pattern. This suggests the presence of

multiple haplotype backgrounds, possibly reflecting exten-

sive allelic variation.

The KIR haplotypes that show evidence of multiple

haplotype backgrounds (via the absence of a single barcode

pattern) correspond exactly to the A/B classification of the

haplotypes’ centromeric and telomeric motifs (as described

by Jiang et al.9 and shown in Figure 1).

For the centromeric region, a small block of SNPs sur-

rounding KIR2DL3 and KIR2DL1 distinguish two types of

patterns, as described in Table B1. These are consistent

with previous evidence showing that A haplotypes have

greater allelic diversity than B haplotypes.37
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For the telomeric region, a large block of SNPs in the cen-

ter of the figure (surrounding KIR2DL4–KIR3DL2) distin-
guish three types of patterns, as described in Table B2.
Table B2. Patterns in the Telomeric KIR Region

Haplotypes Motif Apparent Diversity

1, 4, 6 tA01 with 2DS4v high

2, 5, 10 tA01 with 2DS4f low

3, 7–9, 11 tB01 low
As before, the first and third of these groups are consis-

tent with previous evidence showing that A haplotypes

have greater allelic diversity than B haplotypes. Interest-

ingly, the second group is an A motif, but it has low diver-

sity (although some more diversity seems to be present

toward the telomeric end of the region, where the barcode

pattern starts to become less apparent).

The two versions of tA01 differ in the version of KIR2DS4

they carry. The first group above has the frameshift dele-

tion variant (2DS4v), which disables that gene, whereas

the second has the full-length form (2DS4f), which is func-

tional. The latter has been shown to have a very specific

role, which arose before separation of the human and

chimpanzee lineages and which has subsequently been

conserved and selected.38 This could lead to low diversity

for this variant, which is consistent with our observations

here. In contrast, the non-functional version is expected to

drift and lead to higher diversity, which is also consistent

with our observations.
Appendix C: CNV of SNPs and SNP-Intensity

Measurements

One potential source of useful information that we are not

currently using is CNV within the SNPs themselves.

KIR*IMP relies on finding combinations of SNP alleles

that differentiate the KIR copy-number types. We have

seen evidence in the raw SNP-intensity measurements

that some SNPs are copy-number variable and most likely

directly capture KIR CNV (data not shown). On the whole,

such signals are much less distinct than standard SNP

allele clusters, and it will be challenging to incorporate

both types of variation. A study that has done this is by

Pontikos et al.,15 who used a single SNP to infer copy

number for one KIR gene (and other genes highly corre-

lated with it). For simplicity and generality, we have cho-

sen to limit ourselves to using only SNP alleles; however,

this is certainly a promising avenue for improving the

method.

To illustrate the potential gains of using the raw inten-

sity measurements more directly, we compared the

performance of KIR*IMP when the four SNPs identified

as having poor clustering were included in the training

set. The results are shown in Figure S11. Adding these
The Americ
SNPs boosted the accuracy for the five loci that are

the hardest to impute: KIR2DP1, KIR2DL1, KIR2DL5,

KIR2DS3, and KIR2DS5. These SNPs are indeed informa-

tive for these loci, given that the calls from the clusters

fitted by the genotype-calling algorithm captured some

of this information. It appears that much of this is

due to noisy SNP alleles, but some of it might also

be due to CNV. In any case, the clusters do not neces-

sarily correspond to a pattern of variation we can confi-

dently say will be consistently called across datasets

(such as true underlying SNP genotypes); hence, we

have chosen to exclude them. Nevertheless, these results

suggest that there is scope for improving the accuracy of

imputation if this information can be distilled in a more

reliable way.
Supplemental Data

Supplemental Data include 12 figures and 5 tables and can be

found with this article online at http://dx.doi.org/10.1016/j.
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