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Abstract

When compared to independent harmonic or stochastic excitation, there exist

relatively few methods to model the response of nonlinear systems to a combina-

tion of deterministic and stochastic vibration despite the likelihood of harmonic

oscillations containing noise in realistic applications. This paper uses the Duff-

ing oscillator to illustrate how the joint probability density function (JPDF)

of the displacement and velocity responds to this form of excitation. Monte-

Carlo simulations were performed to generate the JPDF which was observed

to spread around the attractor that would be seen if only deterministic excita-

tion was present. This paper assesses the ability of a useful class of methods,

global weighted residual methods, to produce the geometrically complex JPDF

responses produced from harmonic and white noise excitation. A technique us-

ing a JPDF in the form of a Gram-Charlier type C series was found to produce

accurate results, although the method fails due to ill-conditioning as the shape

of the JPDF required by the dynamics becomes too complex.
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1 Introduction

When analysing real engineering applications mathematically, many vibration prob-

lems are approximated to systems that are either harmonically or randomly excited.

However, in many cases broadband noise with a series of harmonics is exhibited or de-

liberately generated such as the response of a helicopter,1 vibration of turbine blades

under turbulent flow2 and stochastic resonance.3 More recently, this form of excitation

is of interest in the field of energy harvesting, where devices are tuned to operate within

a narrow frequency band and their robustness to disturbances from noise must be as-

sessed.4 Although still an idealisation, excitation modelled as a sinusoid superimposed

onto broadband noise can more closely resemble the realistic case and should there-

fore more accurately model the system dynamics than approximating the excitation as

simply harmonic or broadband noise.

A number of techniques have been used to model nonlinear responses to this form of

excitation and range from approximate analytical to numerical methods. The former

generally involve a combination of deterministic and stochastic nonlinear techniques

to generate and solve coupled harmonic and noise equations. The methods proposed

in the literature include equivalent linearisation of the coupled equations from mean

and random terms,5,6 the method of multiple scales used with an appropriate closure

technique,7,8 deterministic and random perturbation analysis9 and stochastic averaging

with equivalent linearisation,10,11 with solving the resulting Fokker-Planck equation12

and with harmonic balance.13 These methods have shown reasonable accuracy and

generate rapid solutions. However, the results are limited by the approximations made

in order to generate solvable equations. If further accuracy is desired, numerical ap-

proaches are required.

In the literature the numerical techniques for harmonic and broadband excita-

tion can be seen as an extension of methods that solve the non-stationary Fokker-

Planck equation. The finite difference,14,15 finite element,15–17 path integration18–21

and cell14,22 method are all applicable to non-stationary excitation and have been used

to investigate combined harmonic and broadband excitation.

Of particular interest in this paper are global weighted residual solutions which have

been applied to random vibration problems. These involve proposing the form of the

probability density function (PDF) with unknown coefficients and substituting it into
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the Fokker-Planck equation. Since the PDF will generally not satisfy this equation,

a residual error will occur which can be minimised by being multiplied by a suitable

weighting function and integrated over the entire state-space. A number of weighted

integrals can be taken to generate a simple set of equations that are solved to find the

coefficients that govern the shape of the PDF. In these solutions, the results depend on

selection of a suitable proposed PDF that can reasonably approximate the true PDF

and selection of suitable weighting functions that project the solution onto the relevant

regions of state space.

A proposed PDF in the form of a sum of Gaussian distributions with state variables

of varying exponent as weighting functions has been investigated,23 but found to have

limited accuracy for responses far from Gaussian. An exponential function containing

polynomials of the state variables has been used as the PDF with state variables of

varying exponent multiplied by a Gaussian distribution used as weighting functions.24,25

The sensitivity to the standard deviation used in the Gaussian weighting function is

shown25 to be important and a method for selecting sensible weight functions has been

devised and shown to work well.

A Gram-Charlier type A series has been used as the proposed PDF and Hermite

polynomials are used as weighting functions such that their orthogonality can be ex-

ploited to enable rapid solution.26,27 The Gram-Charlier type A series is limited in that

it permits negative probabilities and only near to Gaussian responses so the Gram-

Charlier type C series which accounts for polynomial qualities of the logarithm of the

PDF has been used and produced strong results.28 A similar method has been applied

successfully to harmonic and noise excitation of a first order system.29

Another improvement on the Gram-Charlier type A method26,27 is to use a more

accurate distribution multiplying the polynomial series than the Gaussian of a Gram-

Charlier type A series. This could come from equivalent linearisation, a known analyt-

ical solution of a similar Fokker Planck equation30 or stochastic averaging to find the

PDF of the peak responses.31–33 A set of orthogonal polynomials can then be created

and solved for this distribution. These methods have shown good accuracy and work

well for higher order systems.

A method that has produced good results in the physics literature is the method

of matrix continued fractions.34,35 It is similar to the weighted residual methods dis-

cussed above, but instead of solving coupled algebraic or differential equations for the
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stationary or non-stationary cases respectively, it solves for the PDF coefficients by not-

ing that the equations from the weighted residuals can be formed into a tri-diagonal

recurrence relation and therefore solved using matrix continued fractions.

This paper aims to investigate how global weighted residual solutions can be ex-

tended to model nonlinear oscillators under combined harmonic and white noise exci-

tation. In what follows, the response of the Duffing oscillator to this form of excitation

is presented using Monte-Carlo simulations to generate the JPDF of the response.

Two weighted residual methods are then described and their accuracy and limitations

are investigated by comparing them to results from Monte-Carlo and path integration

methods.

2 Monte-Carlo simulations

This section aims to illustrate the dynamics of an oscillator under combined deter-

ministic and random excitation by investigating the Duffing oscillator’s response to

sinusoidal and white noise excitation using Monte-Carlo simulations. Similar results

have previously been shown using a variety of methods10,14,19–21,36,37 and agree with

those presented here.

The equation describing a Duffing oscillator under harmonic and white noise forcing

is

ẍ+ cẋ+ kx+ εx3 = F cos(ωt) +W (t) (1)

where W (t) is a white noise process such that its autocorrelation function

E[W (t)W (t− τ)] = πS0δ(τ) (2)

where E[X] represents the ensemble average of X, δ(τ) is the Dirac delta function and

S0 is the single-sided spectral density.

The Monte-Carlo method is a simple but computationally expensive technique for

generating the JPDF of the response. The oscillator of equation (1) is excited by a

large number of realisations of the random forcing. The ensemble of responses are

found using the ode45 time integration function in MATLAB and then the likelihood

of the response displaying a given displacement and velocity at a given time can be

found from the proportion of realisations that display this displacement and velocity

at each time step.
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Figure 1: JPDFs from Monte-Carlo simulations of response to combined harmonic and

random excitation at a) t = 28.4 and b) t = 32.4 when c = 0.7, k = 0.5, ε = 0.5,

F = 10, ω = 1 and S0 = 0.05. The response over one cycle for purely harmonic forcing

is superimposed.

Figure 1 shows the Monte-Carlo JPDF in the phase plane for the Duffing oscil-

lator of equation (1) at two times when c = 0.7, k = 0.5, ε = 0.5, F = 10, ω = 1

and S0 = 0.05 and an ensemble of 10000 realisations. The Monte-Carlo simulations

presented in this paper have initial conditions x(0) = ẋ(0) = 0. However, the figures

display the responses when the system is at steady-state at times that illustrate the

characteristic dynamics. It can be seen that the response follows the deterministic

trajectory superimposed onto the figure and the noise perturbs the response about the

deterministic case.

The ensemble average of the response of the noisily forced oscillator, found from

the steady-state JPDF over one cycle of the harmonic component of the forcing, is

compared with the mean trajectory when only harmonic forcing is applied in Figure

2. The mean response is affected by the presence of the white noise, but still displays

approximately the same path.

When subjected to harmonic excitation, nonlinear oscillators can produce complex

responses such as exhibiting more than one steady-state response depending on initial

conditions and chaotic solutions. It is interesting to investigate the response of such

systems when noise is added to the excitation. A simple example of the former case

is when a Duffing oscillator is excited harmonically such that it exhibits either a high
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Figure 2: Mean response of harmonically excited oscillator with (dashed) and without

(solid) noise.

or low magnitude orbit. The JPDF of this case is displayed in Figure 3 at two times

when c = 0.5, k = 0.5, ε = 0.5, F = 10, ω = 3.05 and S0 = 0.8 and 20000 realisations.

Similar to the simple case of Figure 1, the response spreads around one or other of the

deterministic orbits and the noise can make the response jump from oscillations about

one orbit to oscillations about the other.

When a nonlinear oscillator is harmonically excited a chaotic response can be ob-

served that is both non-periodic and sensitive to its initial conditions. Chaotic systems

contain an underlying fractal structure that can be uncovered by sampling the response

at the frequency of the harmonic forcing in the phase plane to find a ‘Strange Attrac-

tor’. In the periodic solutions above with noise and harmonic excitation, the JPDF

spreads out around the periodic trajectory that would be observed if only harmonic

excitation were applied. However, in the deterministic chaotic case there is no periodic

trajectory for the response to spread around and the trajectory is extremely sensitive

to small perturbations from noise. As can be seen from Monte-Carlo simulations of a

chaotic system in Figure 4, when noise is added to the harmonic excitation the JPDF

remains close to fractal, similar to a strange attractor, but it has diffused slightly due
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Figure 3: JPDF from Monte-Carlo simulations of Duffing oscillator excited in a con-

figuration where, under harmonic excitation, two responses (solid lines) exist. c = 0.5,

k = 0.5, ε = 0.5, F = 10, ω = 3.05 and S0 = 0.8, a) t = 34 and b) t = 37.

to the noise. With noise added to the harmonic excitation, the chaotic case is therefore

similar to the periodic cases above in that the noise spreads the JPDF around the de-

terministic attractor although in the chaotic case, the individual realisations can differ

dramatically.

Diffuse chaotic attractors from noisy and harmonic excitation have been simulated

using the path integration method and the possibility of using a no-noise limiting

case of stochastic methods to model deterministic chaos has also been discussed.37 A

time-invariant PDF of a noisy chaotic response averaged over one forcing period has

been calculated using the matrix continued fractions method and assuming the PDF’s

response is periodic.36 The necessary periodicity of the response has been discussed

and the effect of increasing noise is shown to generate a more diffuse attractor.36 The

periodicity is illustrated here in Figure 5 by observing the mean square velocity of the

Monte-Carlo results over time. The periodic nature at steady-state suggests that the

JPDF’s moments are periodic so it may be possible to obtain useful information about

the chaotic response despite not being able to mathematically describe the complex

shape of the JPDF.
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Figure 4: JPDFs at time a) t = 141.1 and b) t = 142.8 from Monte-Carlo simulations

of a bi-stable Duffing oscillator with a noisy chaotic response. c = 0.1, k = −0.5, ε = 1,

F = 10, ω = 1 and S0 = 1× 10−3 and 20000 realisations.
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Figure 5: Time history of mean squared velocity of chaotic response.
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3 Global weighted residual methods

In the light of the complexity of a noisy chaotic attractor and the computational ex-

pense of Monte-Carlo and path integration methods, it is interesting to investigate how

the global minimisation properties of the weighted residual methods attempt to gener-

ate complex instantaneous attractor geometries. In this section two weighted residual

methods are taken from the literature and extended to model the response to harmonic

and white noise excitation then compared to Monte-Carlo and path integration results.

3.1 Theory

In a weighted residual method, the form of the proposed PDF is important as it dictates

the range of possible shapes the PDF can display. Two different proposed PDFs, pA

and pC , are compared in this section; the Gram-Charlier type A series, equation (3),

and Gram-Charlier type C series, equation (4), and relevant solution methods27,28 are

used. These two methods were chosen because they can be solved similarly, are simple

and elegant due to the use of Hermite orthogonality and should be representative of

the majority of weighted residual methods.

pA(z, ż, t) = C exp

(
−z

2

2
− ż2

2

) ∞∑
m=0

∞∑
n=0

amn(t)Hm (z)Hn (ż) (3)

pC(z, ż, t) = C exp

[
∞∑
m=0

∞∑
n=0

amn(t)Hm (z)Hn (ż)

]
(4)

where C is a normalisation constant such that
∫∞
−∞

∫∞
−∞ p dxdẋ = 1 and amn are time

varying coefficients to be found. Hn(z) is a nth order Hermite polynomial defined as

Hn(z) = (−1)ne
z2

2
dn

dzn
e−

z2

2 (5)

where

z(t) =
x− xm(t)

σx(t)
(6)

ż(t) =
ẋ− ẋm(t)

σẋ(t)
(7)

and xm(t), ẋm(t) and σx(t), σẋ(t) are estimates of the mean and standard deviation

of the displacement and velocity respectively found from an equivalent linearisation
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method for non-stationary excitation.5 The transformation from x to z is used to

ensure that the JPDF is defined around the deterministic response as suggested from

the results of the Monte-Carlo simulations section and is scaled to an appropriate

magnitude according to the noise present. This transformation is not appropriate for

the chaotic case since it does not spread around the deterministic trajectory.

A proposed PDF is substituted into the relevant Fokker-Planck equation

L (p) =
∂p

∂t
+ ẋ

∂p

∂x
− ∂pg(ẋ, x, t)

∂ẋ
− πS0

∂2p

∂ẋ2
= 0 (8)

where g(x, ẋ, t) = cẋ+ kx+ εx3−F cos(ωt). The Duffing nonlinearity is taken here as

an example, but any integer power nonlinearity could be used.

The substitution of either equation (3) or (4) into equation (8) will not be equal

to zero in the nonlinear case with a finite Gram-Charlier series thus a residual error,

∆, remains such that ∆A = L (pA) and ∆C = L (pC). Using the well-known Galerkin

method, this residual can be multiplied by appropriate weighting functions and min-

imised by integrating over state space. The weighted integrals for the Gram-Charlier

type A and C series are ∫ ∞
−∞

∫ ∞
−∞

Hr(z)Hs(ż)∆Adżdz = 0 (9)

∫ ∞
−∞

∫ ∞
−∞

Hr(z)Hs(ż)e−
z2

2
− ż2

2
1

pC
∆Cdżdz = 0 (10)

where the orthogonality properties of Hermite polynomials, equations (11) and (12),

have been exploited to greatly reduce the number of terms in the resulting equations.∫ ∞
−∞

Hr(z)Hn(z)e−
z2

2 dz =
√

2πn!δrn (11)

∫ ∞
−∞

Hr(z)Hm(z)Hn(z)e−
z2

2 dz =


√
2πr!m!n!

(s−r)!(s−m)!(s−n)! r +m+ n even

0 r +m+ n odd
(12)

where 2s = r +m+ n.

It is clear that for computation of this method, the infinite Gram-Charlier series

must be truncated in some way. A truncation method known to produce good results28

is adopted and involves removing terms above a chosen order, N , such that m + n ≤
N . In the weighted integrals of equations (9) and (10), r and s therefore vary from
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0 → N − s and 0 → N − r respectively to produce a number of coupled differential

equations of the form
dars
dt

= frs(a00, a10, a01, a11...) (13)

that can be solved using a numerical ODE solver such as ode45 in MATLAB to yield

the required amn coefficients.

3.2 Results

The results found from the weighted residual methods (abbreviated to WR-A and WR-

C for type A and C respectively) will now be compared in terms of accuracy and speed

to results from Monte-Carlo simulations (MC) and the path integration method19 (PI)

and described in the appendix. Despite the noise, the MC simulations will be taken

as the benchmark, since the method most realistically models the dynamics provided

a large enough ensemble is taken.

A qualitative comparison of the results is shown for a strongly nonlinear, highly

damped oscillator in Figure 6 where the JPDFs at two times are shown using each

of the methods and Figure 7 provides a more quantitative comparison by comparing

only the displacement PDFs. The WR-A method shows poor similarity to the MC

simulations and regions of negative probability in Figure 7(a) whereas it provides a

reasonable approximation in Figure 7(b). The PI method does not appear to produce

the complexity of the MC JPDF and its mean value is incorrect in Figure 7(b).

The WR-C results provide a good approximation of the Monte-Carlo simulations,

although the tail probability in Figure 7(b) is less accurate. This is due to the form of

the Gram-Charlier type C series meaning that when the JPDF is constructed, it can

produce regions of exponentially growing probability away from the mean response. To

ensure these high probabilities do not affect the JPDF in the region of interest, only

the probabilities in the vicinity of the mean are taken. This also increases the speed

of the construction of the JPDF since calculations are only performed in regions of

significant probability. The effect of this truncation is observed in Figure 7(b) where

the displacement PDF does not drop smoothly to zero, but has been truncated abruptly.

It appears the method is providing a good approximation to the true response in the

vicinity of the mean motion, but worse results elsewhere. This is discussed further in

the limitations section below.
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ẋ
)

0

0.1

0.2

0.3

0.4

(d)

Displacement

V
el

oc
ity

 

 

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

p
(x

,
ẋ
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ẋ
)

0

0.2

0.4

0.6

0.8

(g)

Displacement

V
el

oc
ity

 

 

−4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

p
(x

,
ẋ
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Figure 6: JPDFs from MC a) and b), WR-A c) and d), WR-C e) and f) and PI g) and

h) at times t = 17.3 a), c), e) and g) and t = 18.8 b), d), f) and h). c = 3.0, k = −0.5,

ε = 1, F = 10, ω = 1 and S0 = 0.5.
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Figure 7: Probability density functions of displacement from MC (dotted line with

circles), WR-A (dash-dot line with squares), WR-C (solid line with crosses) and PI

(dashed line with triangles) methods at times a) t = 17.3 and b) t = 18.8.

In order to compare the statistical moments retrieved from each method, the vari-

ation of the mean square velocity has been plotted against time in Figure 8. The

equivalent linearisation and WR-C method show almost identical results and both

closely resemble the MC solution. Negative mean square velocity values are displayed

for the WR-A solution suggesting there are times when the JPDF is largely negative

and therefore extremely inaccurate. The JPDF using the PI method is only solved for

every quarter cycle, and generates results slightly worse than equivalent linearisation

and WR-C.

For the solutions above, an ensemble of 10000 realisations was used and the weighted

residual solutions were truncated at N = 5 and N = 3 for the type A and C respec-

tively. For the type A solution, the value was selected since a smaller value shows

little divergence from the Gaussian JPDFs of equivalent linearisation results whereas a

larger value produces highly inaccurate and negative JPDFs. For the type C solution,

the value was chosen high enough to allow for a complex JPDF shape, but low enough

to avoid ill-conditioning as discussed in the limitations section below.

For the case shown in Figures 6 to 8 the times taken to compute the response are

displayed in Table 1, where the equations were solved from t = 0 to t = 20 with a

time step, dt, of dt = 0.01 for the MC and weighted residual methods, and a time step

of a quarter of the period of the harmonic excitation frequency, dt = 1.6, for the PI
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Figure 8: Mean square velocity against time from MC (dashed), WR-A (dash dot),

WR-C (solid), PI (circles) and equivalent linearisation (dotted). b) Shows an enlarged

view of the time history in a).

method. An 80× 80 grid in the phase-plane has been used for each method.

Table 1: Computation time for solution methods.

Method Computation Time (s)

Monte-Carlo 1.4× 104

Weighted Residual type C 4.5

Weighted Residual type A 6.8

Path Integration 64

Equivalent linearisation 0.78

It is clear that the MC method is the slowest, although it strongly depends on the

accuracy of the response desired and therefore the ensemble size used. The weighted

residual methods solve rapidly and the accuracy of the JPDF from the type C solutions

suggests it is an appropriate method to use for investigating this form of excitation if a

fast method is required. However, depending on the desired information, the equivalent

linearisation method may be sufficient.

The path integration method is known to be robust and able to produce complex

JPDF shapes. In this case however, the results have shown worse accuracy than the
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WR-C solutions and taken longer to perform. Additionally, the solution is only found

at each quarter cycle and using shorter time steps would require significantly more

computational effort. It should be noted that only a simple PI method21 has been

investigated and modifications may improve the method significantly.

3.3 Limitations of the weighted residual type C method

The weighted residual type C method produces good results for the parameters chosen

above, but has obvious limitations due to the possible shapes made available by the

truncated Gram-Charlier type C series (e.g. the JPDF will never be fractal like the

chaotic case). Additionally, it has been observed that when the parameters require a

JPDF too complex for the shapes allowed by equation (4), the ODEs of equation (13)

will become unstable and fail to solve.

These coupled equations have been investigated to assess the cause of the instabil-

ity. The dependence of the right hand side of each individual equation on each amn

coefficient is found by differentiating every equation by every coefficient. A matrix,

Kij, is therefore formed where Kij = ∂fi/∂aj if frs and amn are written as vectors fi

and aj. The condition number of this matrix gives an indication of the conditioning

of the equations and has been plotted against time in Figure 9 for a high damping

case that provides a stable solution and a lower damping case that goes unstable at

t = 5.2. The sharp peak in condition number at this point, along with the preceding

peaks show that the equations are ill-conditioned therefore numerical errors grow with

time leading to instability.

Observing the JPDF at the point of instability illuminates more physically what

occurs in the unstable equations. The JPDF is projected by the Gaussian distribution

in the weighting function of equation (10) into a region around the mean response.

The weighted residual solutions will therefore model the response well in this region,

but at the expense of an accurate JPDF further from the mean. This often results

in areas of large probability far from the mean that are removed by truncating the

JPDF as described in the results section. When the dynamics requires a complex

JPDF shape, in order to approximate it near the mean, the global minimisation of

the weighted residuals allow the response just away from the mean to be less accurate.

The equations have been seen to become unstable when the true JPDF becomes a
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Figure 9: Condition number against time c = 1 (solid) and c = 4 (dashed) and

k = −0.5, ε = 1, F = 10, ω = 1 and S0 = 0.5.

complex shape and cannot be satisfactorily modelled by the truncated Gram-Charlier

type C series. At this time, anomalous external regions of high probability are seen to

move towards and merge with the JPDF around the mean.

A number of parameters affect the stability of the solution. In particular, the order

of the truncated Gram-Charlier series affects the number of coupled equations and the

number of terms in each equation. It is therefore found that truncation at a lower value

generates stable solutions that are less accurate whereas truncation at higher values

produce ill-conditioned equations that show greater accuracy due to a greater range

of JPDF shapes allowable. This effect is shown in Figure 10 where an error, e, from

the difference between the MC and weighted residual results’ mean square velocity is

taken such that

e =
1

Tσ4
ẋ

∫ T

0

(E[ẋ2MC ]− E[ẋ2WR])2dt (14)

where

σ2
ẋ =

1

T

∫ T

0

E[ẋ2MC ]dt (15)

and T is the time period of the harmonic excitation. As nonlinearity increases, the

JPDF increases in complexity so the equations fail to solve. The value of nonlinearity at
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Figure 10: Error, e, against nonlinearity, ε for varying truncation values; N = 3

(dotted), N = 4 (dashed) and N = 5 (solid) when c = 0.5, k = 5, F = 10, ω = 1 and

S0 = 0.5. Where no error point is plotted, the solution has failed to solve.

which the equations fail to solve is lower the higher the order of truncation of the series

due to higher order solutions having worse conditioning. As nonlinearity increases, the

higher order solutions are slightly more accurate by this error measure, but may be

significantly more accurate if an error measure involving the entire JPDF was used.

Improvements to this method could potentially be made by using a more suitable

proposed JPDF and weighting function. A method could be used whereby the weight-

ing functions depend on the JPDF calculated at the previous time-step.25 Most mod-

ifications would likely produce a significantly more computationally intensive solution

since orthogonal functions may not exist or would take longer to compute, functions

would have to be calculated at each time-step and numerical integration may be nec-

essary for the weighted integrals. Additionally, it is difficult to envisage the form of a

proposed JPDF that would give enough flexibility for more complex JPDF shapes.

In summary, this method produces good results if the JPDF varies only slightly

from Gaussian. This occurs when nonlinearity is small, damping is large or the noise

is small relative to the harmonic excitation such that the JPDF spreads out in an
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approximately linear region. More complex JPDF shapes such as the solution in the

double response, Figure 3, or chaotic, Figure 4, regions of the Duffing oscillator will

most likely require computation using a different method.

4 Conclusions

The combination of harmonic and white noise vibrations is thought to be a useful

approximation of realistic excitation. Monte-Carlo simulations were used to illustrate

the dynamics of a Duffing oscillator under such excitation, where the response was

found to spread out around the deterministic trajectory. For the chaotic case, the

noise was found to diffuse the JPDF from a chaotic attractor, although the attractor

and therefore the moments were found to settle to a periodic state.

To investigate how a useful solution technique, the global weighted residual method,

models these complex responses, two methods from the literature have been extended

and applied to this form of excitation. When the JPDF takes the form of a Gram-

Charlier type A series, results were seen to become inaccurate and unphysical, even

producing negative mean square velocity. However, a Gram-Charlier type C series was

found to generate accurate and rapid results when compared to Monte-Carlo and path

integration methods.

Despite good solutions within certain parameter ranges, the method has limitations

due to the conditioning of the governing equations. When the dynamics of the system

requires a JPDF with a geometry far beyond what the Gram-Charlier type C series can

produce, the equations become ill-conditioned and fail to solve. The method is therefore

useful for responses where the JPDF does not vary significantly from Gaussian such as

a weakly nonlinear or highly damped cases.
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5 Appendix: Path integration method

The path integration method19 is described in this appendix. For simplicity it is de-

scribed for a system with a single random variable such as a first order system and

can be extended easily to higher dimensions such as the Duffing oscillator. It is based

on the principle that the long-term evolution of the PDF can be found by computing

the evolution over small time-steps. The PDF at the ith time-step, p(x(i), ti), can be

22
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found from the PDF at the previous time-step, p(x(i−1), ti−1), and the transition PDF,

q(x(i), ti|x(i−1), ti−1) such that

p(x(i), ti) =

∫
Rs

q(x(i), ti|x(i−1), ti−1)p(x(i−1), ti−1)dx(i−1) (16)

where Rs is a finite area of state-space that contains all significant probability and the

transition PDF q(x(i), ti|x(i−1), ti−1) represents the probability of the response being

at a position x(i) at one time-step given that it was at position x(i−1) at the previous

time-step.

If a good approximation of the transitional PDF can be found, the evolution of the

PDF over time can be found from an initial distribution, p(x(0), 0), with repeated use

of equation (16). The equation can be discretised for numerical calculation by splitting

state-space into K sub-intervals and each sub-interval into L Gauss-Legendre points

such that equation (16) becomes

p(x(i)mn, ti) =
K∑
k=1

δk
2

L∑
l=1

cklq(x
(i)
mn, ti|x

(i−1)
kl , ti−1)p(x

(i−1)
kl , ti−1) (17)

where δk is the length of sub-interval k, ckl is the weight of the klth Gauss point at

location xkl. The probability of the response being found at the mnth Gauss point

at ti is therefore found by summing the probability given by taking each Gauss point

at the previous time-step and multiplying the probability that the response is at this

point with the probability that the response travels from this point to the mnth point

over a single time-step.

All that remains is to find a suitable transition PDF. For small enough time-steps,

a Gaussian approximation is valid such that Gaussian closure can be used to find the

mean, m1(t), and mean square, m2(t), response from the klth to the mnth Gauss point.

The transition PDF becomes

q(x(i)mn, ti|x
(i−1)
kl , ti−1) =

1√
2πσ(ti)

exp

(
−(xmn −m1(ti))

2

2σ(ti)2

)
(18)

where σ2(t) = m2(t) − (m1(t))
2. For the case of the Duffing oscillator (equation (1))

under combined harmonic and white noise excitation, the moment equations from
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Gaussian closure are

ṁ10 = m01 (19)

ṁ01 = −cm01 − km10 − 3εm10m20 + 2εm3
10 + F cos(ωt) (20)

ṁ20 = 2m11 (21)

ṁ11 = m02 − cm11 − km20 − 3εm2
20 − 2εm4

10 +m10F cos(ωt) (22)

ṁ02 = −2cm02 − 2km11 − 6εm20m11 + 4εm3
10m01 + πS0 + 2m01F cos(ωt) (23)

where mij = E[xiẋj].

For stationary excitation the transition PDF will be the same at every time-step

thus only requires calculation once and can be used repeatedly. For non-stationary ex-

citation the transition PDF will change with time therefore under harmonic excitation,

it will change over the period of the excitation. If the period is split into a suitable

number of time-steps then that number of transition PDFs can be calculated and used

repeatedly for every oscillation of the harmonic excitation. In the simulations above,

the time-step is taken as a quarter of the period of the harmonic excitation.
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