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Abstract 
A wealth of animal and human studies demonstrate that perinatal exposure to 
adverse metabolic conditions- be it maternal obesity, diabetes or under-nutrition- 
results in predisposition of offspring to develop obesity later in life. This mechanism 
is a contributing factor to the exponential rise in obesity rates. Increased weight gain 
in offspring exposed to maternal obesity is usually associated with hyperphagia, 
implicating altered central regulation of energy homeostasis as an underlying cause. 
Perinatal development of the hypothalamus (a brain region key to metabolic 
regulation) is plastic and sensitive to metabolic signals during this critical time 
window. Recent research in non-human primate and rodent models has 
demonstrated that exposure to adverse maternal environments impairs the 
development of hypothalamic structure and consequently function, potentially 
underpinning metabolic phenotypes in later life. This review summarizes our current 
knowledge of how adverse perinatal environments program hypothalamic 
development and explores the mechanisms that could mediate these effects. 
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1 Introduction 

In recent years, global metabolic disease levels have reached epidemic proportions. 
Worldwide obesity has nearly doubled since 1980; and upwards of 10% of adults 
worldwide are now classified as diabetic (primarily with type 2 diabetes) (1). Current 
figures also highlight a worrying rise in adolescent obesity and Type 2 diabetes 
(T2DM). Given the significant co-morbidities associated with obesity, the increasing 
incidence of obesity represents an enormous social and financial burden on society.  
 
The recent rise in obesity prevalence cannot be attributed to an individual’s lifestyle 
and diet alone. A hereditary element to obesity susceptibility is undisputed, but the 
rapid nature of the world-wide increase in obesity suggests the increased incidence 
is not solely down to genetic predisposition (2). Indeed only a small proportion of 
the body mass index (BMI) variation within the population can be explained by 
known genetic variants (of which there are around 30), suggesting there is an 
interaction between genetic factors and the environment (3). The current 
obesogenic environment of high- fat, high- sugar diets and increasingly sedentary 
lifestyles is undoubtedly fuelling the obesity crisis. However, evidence from 
numerous clinical and experimental studies show that the occurrence of many non-
communicable diseases- including obesity- can be influenced by the early life 
environment (4). Adverse changes to maternal metabolic phenotype (be it obesity, 
diabetes or under-nutrition) before, during and after pregnancy compromise 
offspring development by contributing to a sub-optimal in utero and neonatal 
environment.  
 
The central nervous system (CNS) is a key player in metabolic regulation, and 



receives constant updates on energy status from the periphery, which it integrates in 
order to coordinate adjustments to appropriate physiological parameters. Over the 
past two decades the importance of the hypothalamus in regulating whole body 
energy homeostasis has become increasingly clear (5). The importance of the 
hypothalamus in maintaining both energy and glucose homeostasis, and the relative 
plasticity of hypothalamic development suggests disruptions to hypothalamic 
development- leading to altered hypothalamic function- may underpin increased 
metabolic disease risk later in life.  
 
The purpose of this review is to summarize our current understanding of how the 
early life environment influences hypothalamic development, structure and 
ultimately function in later life. We also discuss the possible mechanisms responsible 
for mediating the effects of the early life environment on hypothalamic 
development, and highlight areas of experimental discord and gaps in knowledge 
within the field.  

1.1 Different early life exposures with common long term outcomes on offspring 
metabolic health 

1.1.1 In utero under-nutrition  
The link between low birth weight- as a crude measure of restricted fetal growth- 
and later cardio- metabolic disease risk was first noted in the seminal papers by 
Hales and Barker (6-8), in which they proposed the “Thrifty Phenotype Hypothesis”, 
postulating that poor in utero nutrition drives fetal metabolic adaptations that would 
be beneficial should the baby be born into an environment with limited access to 
food. However, if the baby is born into an environment where food is plentiful, these 
fetal adaptations may become detrimental to metabolic health. The original 
observations made by Hales and Barker in the Hertfordshire birth cohort have since 
been reproduced in many different populations worldwide (9), and valuable insight 
into the effects of exposure to under-nutrition have been made in studying 
individuals exposed to the Dutch Hunger Winter in utero (10). The Thrifty Phenotype 
Hypothesis has since been encompassed within the broader terms of the 
“Developmental Origins of Health and Disease” hypothesis, which takes into account 
fetal adaptations due to a range of maternal environments such as increasingly 
prevalent obesity and over-nutrition (11).  

1.1.2 Maternal obesity 
Obesity is rapidly increasing among women of a childbearing age (12, 13), with one 
in five women obese at the time of conception (14). It has been known for some 
time that there is an association between maternal BMI and offspring BMI. Analysis 
of the 1958 British birth cohort revealed that the BMI of offspring increases 
proportionally with BMI of parents (15). Additionally high maternal BMI before and 
during pregnancy is a predictor of offspring obesity, adiposity and metabolic 
syndrome as a young adolescent and as an adult (16-18).  
 
Compared to siblings born before the mother underwent bariatric surgery and 
subsequent weight loss, children born after surgery display an improved metabolic 
profile as adolescents. In particular, offspring born post-surgery have decreased 



birth weight and macrosomia, decreased obesity incidence, increased insulin 
sensitivity, lower blood pressure, improved lipid profile and decreased adiposity (19-
21). These findings are consistent with the hypothesis that development in utero 
within an obesogenic environment increases the risk of obesity and metabolic 
dysfunction. Importantly the decrease in transmission of obesity to offspring after 
weight loss surgery occurs even in mothers who remain overweight despite their 
weight loss (21), showing that a complete reduction of body weight is not necessary 
to see improvements in offspring outcome, and suggesting that body weight per se is 
not the most important maternal programming factor. This concept is further 
supported by results from studies in non-human primates, and is discussed later in 
the review (Section 5.2). 

1.1.3 Gestational diabetes mellitus 
Maternal glucose levels during pregnancy- independent of diabetes- can impact on 
offspring metabolic outcome. In non-diabetic mothers, average circulating glucose 
levels have been shown to positively correlate with offspring body fat percentage 
and BMI as an infant (22, 23).  
 
Gestational diabetes mellitus (GDM) is diagnosed when glucose intolerance occurs 
either at the onset of pregnancy, or later during gestation. Maternal GDM is 
particularly common among overweight and obese mothers, and as such the 
prevalence is increasing in line with the obesity epidemic (24). Current estimates 
suggest that 10% of pregnancies are complicated by diabetes (25). Studies of siblings 
discordant for in utero GDM exposure show that in utero exposure to diabetes 
programs metabolic disease risk in the offspring. Children born after maternal 
diabetes diagnosis have a significantly higher risk of T2DM later in life than siblings 
born before the mother developed diabetes; additionally among non-diabetic 
offspring of diabetic mothers, the exposed offspring have an increased BMI 
compared to their unexposed siblings (26).   

1.1.4 Post-natal growth as a predictor of metabolic disease risk 
It is becoming increasingly apparent that rapid post-natal growth is associated with 
later life disease risk. One of the biggest risks for later life metabolic disease appears 
to be crossing growth percentiles during early life. A high weight velocity in the early 
post-natal period is often found in combination with small for gestational age (SGA) 
births, and may explain why a low birth weight predisposes offspring to metabolic 
disease (27). Additionally, studies of the ALSPAC cohort and others have revealed a 
rapid post-natal weight velocity is linked to insulin resistance and increased T2DM 
risk (28). The effects of rapid post-natal weight gain are long lasting; it has been 
demonstrated that peak weight velocity up to 2 years old is positively correlated 
with blood pressure, waist circumference and BMI at 31 years of age (29).  
 
Infant nutrition during the early post-natal period has a significant impact on early 
growth and metabolic disease risk in adulthood. Infants fed a nutrient-enriched 
formula feed display accelerated early growth compared to breast fed infants, and 
increased overweight and obesity risk as adults (30-32). Thus, developmental 
programming in humans is not limited to the in utero environment and nutritional 



status during the post-natal environment has a considerable impact on later life 
metabolic disease risk. 

2 Insight from animal models of maternal programming 

Whilst it is primarily desirable to examine data from human studies when 
investigating maternal programming of offspring metabolic systems, a greater 
understanding of the heritability of obesity between mother and offspring is needed 
to better interpret human studies. Additionally, the majority of human studies are 
inevitably complicated by confounding factors such as diet and lifestyle. Therefore 
researchers have utilized animal models with a controlled genetic background, and 
in which pre- and post-natal diet of both the mother and offspring can be strictly 
regulated. Recently, the use of genetically altered rodent models has enabled 
researchers to begin to examine the molecular mechanisms underpinning 
programming of offspring phenotype. Information obtained from these studies, 
alongside physiological observations from larger mammalian species such as non-
human primates (NHP) and sheep, will be instrumental in understanding how the 
early life nutritional environment shapes later life metabolic disease risk. 

2.1 Maternal Obesity 
NHP offspring of mothers fed a high-fat diet (HFD) display increased adiposity (33), 
non-alcoholic fatty liver disease (NAFLD) (34) and pancreatic inflammation and 
insulin resistance (35). It has also been reported that the offspring in this model 
develop a range of neuronal phenotypes, including female specific increased anxiety-
like behaviour, circadian disruption and alterations to the fetal thyroid axis (36-39).  
 
One of the most consistent findings in rodent studies of maternal obesity is 
increased body weight in offspring (40-44). This usually begins during the early post-
natal period and continues throughout adult life. Offspring obesity is often 
accompanied by insulin resistance, progressively disrupted glucose homeostasis and 
the development of T2DM later in life (40, 42, 45, 46). Pancreatic β-cell dysfunction 
(47, 48) as well as insulin resistance contributes to the development of T2DM and 
hypothalamic dysfunction could contribute to both of these parameters.  
 
In order to make translatable observations in rodent models of maternal obesity, it is 
important to note that in many rodent models the dams display a 10-20% increase in 
body weight as a result of the HFD consumption. According to many human 
classifications, this would result in the dams being labeled ‘over-weight’ rather than 
obese. However, the recent use of highly palatable diets combining high fat and high 
sucrose content have led to several recent papers in which the dams show up to a 
30% increase in body weight, making the metabolic state of dams in these studies 
more similar to the human classification of obesity. 
 

2.2 Maternal glucose levels 
Gestational diabetes is commonly associated with fetal macrosomia (49-51), as a 
result of increased fetal insulinemia in response to high maternal glucose levels. 



Perhaps surprisingly, the fetus can develop insulin resistance whilst still in utero as a 
result of maternal hyperglycemia (52). Macrosomic GDM offspring display increased 
body weight, hyperinsulinemia and reduced glucose tolerance as adults (51). 
Additionally, maternal hyperglycemia has significant effects on placental growth and 
function (53), which may explain the alterations to birth weight commonly reported 
in GDM offspring.  
 

2.3 Maternal under-nutrition and Intra-uterine Growth Restriction 
NHP models of gestational under-nutrition have reported a wide range of offspring 
phenotypes, including disrupted cardiac function (54), altered hepatic function 
leading to glucose intolerance (55-57) and increased activation of the HPA axis (58). 
A loss of hepatic and pancreatic function resulting ultimately in loss of glucose 
homeostasis has also been reported in sheep models of under-nutrition and IUGR 
(59-61). In rodents, both models of total calorie restriction (62), and macro nutrient 
restriction (most commonly reduced protein in the maternal diet) result in a loss of 
glucose homeostasis in offspring (63), and this phenotype is worsened with age (64). 
Mimicking human studies, the effects of exposure to maternal low protein during 
gestation are exacerbated by rapid post-natal catch up growth, resulting in a strong 
T2DM-like phenotype in offspring that are cross fostered to a control diet-fed dam in 
the post-natal period (65, 66). 

3 Hypothalamic development 

3.1 Development of hypothalamic circuits governing energy homeostasis  
Due to the relatively immature state at which rodent offspring are born, full 
hypothalamic development does not occur during gestation. Roughly speaking, 
neurogenesis in rodents occurs pre-natally, whilst full circuit formation and 
connectivity is not achieved until the post-natal period (Figure 1). Therefore both the 
fetal and neonatal period represent critical periods of vulnerability of the 
hypothalamus. Early studies of neurogenesis using thymidine labeling suggested the 
majority of neurons in the murine hypothalamus are formed between E11-14 (67). 
Recent studies using more sophisticated labeling methods have identified a peak in 
hypothalamic neurogenesis at E12 and further characterised neurogenesis in 
individual hypothalamic nuclei. The majority of neurons in the paraventricular 
nucleus (PVH) and dorsomedial nucleus (DMH) are generated between E12-E14, 
whereas the arcuate nucleus (ARC) and ventromedial nucleus (VMH) have longer 
periods of neuronal generation from E12-E16 (68, 69). In contrast to rodents, 
neurogenesis and circuit formation are both achieved predominantly during the pre-
natal period in humans and NHP (70, 71) (Figure 1). In the human fetus hypothalamic 
nuclei can be characterised as lateral, core or midline structures when grouped by 
location and timing of development. Lateral hypothalamic structures are the first to 
develop between 9-14 weeks of gestation, followed by the development of core 
structures (mainly intra-hypothalamic projections) between 15-23 weeks. Lastly, 
mid-line structures such as the ARC and PVH develop during the morphogenetic 
period after 34 weeks of gestation (70).   



 
One of the critical periods of hypothalamic development is the generation of the 
neuronal projections originating in the ARC that are key components of the energy 
balance circuitry. In rodents these connections are formed post-natally. Studies by 
Bouret et al have elegantly demonstrated that projections from the ARC do not 
represent an adult distribution until P18, with connections specifically between the 
ARC and PVH forming between P8-10 (72). Further studies in rodents have 
demonstrated that orexigenic neuropeptide Y (NPY) positive neurons from the ARC 
innervate the PVH at P10-11, but brainstem NPY positive neuronal fibers arrive at 
the PVH much earlier and are present from P2 (73). In comparison, in the NHP the 
development of NPY positive projections from the ARC occurs during the third 
trimester of gestation, and offspring are born with an abundance of NPY positive 
fibers originating from the ARC. However, the pattern of ARC projections seen in the 
NHP in late gestation is less dense than in adults, suggesting further refinement of 
the connectivity occurs in the post-natal period (71).  
 
In the pre-natal and early post-natal stages of development it is imperative for 
offspring to maintain a positive energy balance to enable adequate growth, 
therefore homeostatic feedback control of energy intake doesn’t begin until 
relatively late in the post-natal period. In rodents, the plasticity of the hypothalamus 
during early life is reflected in the often paradoxical roles of pathways involved in 
energy homeostasis during early development. The PVH integrates NPY and pro-
opiomelanocortin (POMC) signals from the ARC and regulates downstream 
parameters of energy homeostasis, and this connectivity is flexible during rodent 
post-natal development. Melnick et al reported a developmental switch in NPY and 
melanocortin effects on specific neuronal populations in the PVH during the third 
post-natal week (i.e. neurons changed from being NPY responsive to melanocortin 
responsive) (74).  
 
Recently, Baquero et al have published two elegant papers demonstrating the highly 
plastic nature of the hypothalamus during development. The first of these reported 
that during the early postnatal period leptin depolarizes NPY neurons, in stark 
contrast to leptin hyperpolarisation of NPY neurons in adult mice (75). The second 
publication demonstrates the re-wiring of synaptic input onto NPY neurons that 
occurs during early post-natal life, in particular the increase in inhibitory GABAergic 
tone onto arcuate NPY neurons that occurs up until 10 weeks of age in mice (76). 
This early dominance of orexigenic signals allows the newborn to maintain a positive 
energy balance for early post-natal growth, before switching to an adult profile after 
the rapid growth required for early development is achieved. 
 
NPY is also expressed transiently in areas of the rodent CNS outside of the ARC 
during the early post-natal period. It has been suggested that the novel expression of 
NPY in neurons in the DMH and peri-fornical region (in addition to the ARC) during 
development is another mechanism by which the newborn maintains a positive 
energy balance. The expression of NPY increases in these novel areas between P0-4, 
and reaches a peak by P16. However by P30 NPY expression reflects that of adult 
distribution and is limited to the ARC (73). By conducting an extensive 



characterization of POMC and NPY neuron development, Padilla et al demonstrated 
that a subpopulation of POMC precursors give rise to a population of orexigenic NPY 
neurons (69). This intriguing process likely allows tight coupling of these two 
opposing neuronal pathways in adulthood, however cell fate decisions such as this 
that occur during the perinatal period may be vulnerable to programming by 
maternal and offspring nutrient status.  
 
The data described in this section is essentially limited to rodents, as there is a 
distinct lack of data on hypothalamic development in relation to NHP and humans. 
Although the highly conserved functions of hypothalamic regions between rodents 
and higher organisms suggest that many developmental mechanisms may be shared, 
our knowledge of NHP and human hypothalamic development is far from complete.  
 

3.2 Programming of hypothalamic development 
A common cause of the increased body weight observed in offspring of obese dams 
is hyperphagia (44, 45), implicating altered CNS regulation of food intake as an 
underlying cause of the programmed metabolic phenotypes. The plasticity of 
hypothalamic development during the perinatal period means it is susceptible to 
disruption by exposure to adverse environments, and represents a mechanism by 
which changes in metabolic homeostasis are permanently programmed in offspring.  

3.2.1 Neurogenesis and cell number 
Our knowledge on how the perinatal environment impacts on early neurogenesis in 
the hypothalamus is limited, but one study has reported that the fetuses of HFD-fed 
dams display increased neurogenesis around the third ventricle during gestation, 
and increased neuronal migration from this area to other areas of the hypothalamus 
where neurons ultimately display an orexigenic phenotype (77). Furthermore, 
Plagemann and colleagues have demonstrated that offspring exposure to GDM 
results in the malformation of medio-basal hypothalamic nuclei, which may be 
secondary to reduced neuron formation (78-80). Whilst this remains the extent of 
our knowledge of maternal programing of hypothalamic neurogenesis, a recent 
paper has demonstrated that exposure to maternal obesity alters the expression of 
genes in the Notch signaling pathway- a key regulator of neural stem cell 
differentiation- in cerebral neural stem cells of offspring (81), and thus similar 
mechanisms may act in the hypothalamus.  

3.2.2 Intra-Hypothalamic Connectivity 
Intra-hypothalamic projections, particularly those originating in the ARC, are 
particularly susceptible to programming by the perinatal environment (Figure 2). The 
offspring of GDM mothers display decreased projections of AgRP and POMC 
neuronal fibers from the ARC to PVH as adults, which is due to disrupted axonal 
projections rather than decreased neurogenesis in the ARC (82). Furthermore, cross- 
fostering of control offspring to a GDM dam during the lactation period has been 
shown to cause perturbations to the development of hypothalamic energy balance 
circuitry, suggesting exposure to milk from a diabetic mother could cause long term 
changes to body weight and food intake in offspring (80).  
 



Vogt et al have recently carried out a wider characterisation of ARC connections in 
the offspring of obese dams, and reported reduced ARC projections to the PVH, 
DMH and lateral hypothalamus (83). This programming of ARC projections occurs 
even when offspring exposure to maternal obesity is limited to the suckling period, 
which corresponds with the reported timing of development of these projections. 
This suggests that the disrupted circuitry reflects a disruption of axonal projections, 
rather than a cellular defect. As well as maternal diet, the exact composition of 
offspring diet during the early post-natal period impacts on hypothalamic 
development, as neonatal mice fed a diet containing either low omega-6 or high 
omega-3 fatty acid display reductions in both anorexigenic and orexigenic 
projections from the ARC to the PVH (84). 
 
Decreased POMC projections from the ARC to the PVH are also reported in offspring 
exposed to IUGR (85, 86), revealing that opposite nutritional challenges have similar 
effects on hypothalamic connectivity. Whether the changes in hypothalamic 
structure reported in these divergent nutritional states are a result of 
neurodevelopmental adaptation or dysfunction remains to be elucidated. However 
these common effects on hypothalamic connectivity may explain how these 
different nutritional challenges in early life have the same effect on regulation of 
energy balance later on in life. 
 
Recently, Sanders et al have made some interesting progress in uncovering the 
molecular mechanisms underpinning the reduction in ARC to PVH projections that 
are commonly reported in offspring exposed to an adverse perinatal environment. 
This group reported that the classical axon guidance molecule Netrin-1 and its 
receptors are expressed along the ARC to PVH tract during late gestation, suggesting 
Netrin signaling may be key to the formation of projections along this route (87). 
They further demonstrated altered expression of key Netrin receptors on NPY 
neurons in offspring exposed to maternal obesity, and proposed that disruption of 
Netrin signaling mediates the decreased NPY projections from the ARC to the PVH in 
offspring exposed to maternal obesity (87).  
 
A recent publication from the Bouret laboratory has demonstrated a previously 
unknown role for the metabolic hormone ghrelin in development of projections 
from the ARC to the PVH (88). This is particularly interesting given the recent finding 
that neonatal over-nutrition causes central ghrelin resistance (89), and demonstrates 
that changes to both ghrelin and leptin levels caused by the perinatal nutritional 
environment can have long term consequences for hypothalamic development 
(discussed in 4.1).  

3.2.3 Gene expression and neuropeptide profile 
Given the altered hypothalamic structure that has been reported in offspring 
exposed to an adverse early life environment, it is perhaps not surprising that the 
perinatal environment can also impact on the expression and regulation of 
hypothalamic neuropeptides. Such changes in functional pathways within the 
hypothalamus can perturb the fine balance between orexigenic and anorexigenic 



pathways, thus changing the overall tone of hypothalamic control and underpinning 
food intake phenotypes commonly observed in offspring. 
 
Offspring exposure to maternal obesity and/or over-nutrition have been shown to 
cause significant changes to expression of feeding related genes at a basal state in 
the hypothalamus (77, 90, 91), plus changes to the normal gene regulation in 
response to metabolic state (92-94). Reported changes in gene expression may 
change the tone of feeding regulation within the hypothalamus, and reflect an 
altered body weight set-point. Poon et al identified distinct populations of 
hypothalamic neurons expressing low- and high- levels of orexigenic neuropeptides, 
and found that isolated hypothalamic neuronal cultures from E19 offspring exposed 
to HFD in utero display a shift from low to high orexigenic peptide expressing 
neuronal populations (95).  
 
GDM offspring are reported to display altered expression of catecholamines in the 
hypothalamus, in particular increased levels of both noradrenaline and dopamine in 
the PVH, and an increase in NPY positive neurons in the ARC (50, 96). Plagemann and 
colleagues have demonstrated that offspring exposure to GDM results in significant 
disruptions to the expression of neuropeptides in both orexigenic and anorexigenic 
circuits (78, 79). Interestingly, this phenotype can be rescued by pancreatic islet 
transplantation in GDM dams, suggesting that either maternal hyperglycemia or 
hypoinsulinemia is the main contributor to programming of hypothalamic 
malformations in the offspring. Similar changes in the gene expression of key feeding 
regulated neuropeptides has been reported in both rodent and NHP models of 
maternal under-nutrition and IUGR (57, 97-99), again demonstrating that distinct 
adverse environments result in similar hypothalamic outcomes. 
 
Unfortunately, many of the above-mentioned studies have provided conflicting 
reports as to whether the expression of anorexigenic and orexigenic genes is 
increased or decreased in offspring. This may be due to differences in the individual 
set up of the study (i.e.- mother’s diet and metabolic state, age and sex of offspring) 
or because some groups have investigated the hypothalamus as a whole and not 
examined transcription in individual areas. However it is clear the perinatal 
environment has the potential to program dysfunction in hypothalamic 
neuropeptide pathways at the level of gene expression, and this may be a molecular 
mechanism underpinning some of the physiological phenotypes reported in 
offspring.  
 
Hyperphagia in offspring exposed to maternal obesity and /or GDM is frequently 
associated with resistance to the anorectic adipokine leptin (100-102). Central leptin 
resistance has been attributed to changes in the expression and regulation of 
downstream hypothalamic neuropeptides such as NPY and AgRP (102, 103). An 
association has also been reported between hyperphagia in offspring and increased 
expression of the Fat mass and obesity-associated (FTO) gene, variants of which are 
associated with increased risk of obesity (104).  



3.2.4 Food preferences and reward-related feeding 
Maternal obesity can also influence offspring feeding behaviour and dietary 
preferences. Maternal consumption of a junk food or HFD- resulting in maternal 
obesity- has been reported to increase the preference for fatty and sugary food in 
offspring, leading to obesity (41, 105). The offspring of obese mothers also display 
increased frequency of feeding episodes, and a longer duration of feeding during a 
given episode (106). Interestingly, it has also been reported that the offspring of 
obese mothers may display alterations to reward systems in the brain that could 
explain the frequently reported hyperphagia. Several studies have reported 
programming of the mesolimbic reward system in offspring, resulting in altered 
activation in response to diverse stimuli including feeding (105, 107). Furthermore it 
has been demonstrated that the offspring of dams fed a junk food diet display 
increased hypothalamic levels of serotonin and dopamine (106). Whilst 
indiscriminate increases in the activity of both the seretoninergic and dopaminergic 
systems do not explain the observed altered feeding behaviour, it demonstrates the 
widespread effects of maternal obesity on all aspects regulating offspring food 
intake. 

3.2.5 Neuronal nutrient sensing and activation 
Although less studied, there is some evidence that exposure to an adverse 
nutritional state during early life can alter electrophysiological responses of 
hypothalamic neurons. Whereas distinct subpopulations of PVH neurons from 
control animals are excited by metabolic signals including melanocortins and NPY in 
slice preparation, neurons from neonatally over-nourished rats display a switch from 
activation to inhibition following application of these peptides (108). Unfortunately, 
indiscriminate changes in PVH neuronal responses to both orexigenic and 
anorexigenic signals do not explain the obese phenotype observed in offspring in 
other models of neonatal over-nutrition. However, parvo-cellular PVH neurons that 
are normally excited by anorexigenic signals of adiposity such as leptin and insulin 
are inhibited by these same signals in rats exposed to neonatal over-nutrition (109). 
The rewiring in responses of these neurons is thought to occur partly through 
inhibitory input from GABA interneurons, as blockade of GABA signaling normalizes 
neuronal responses in neonatally over-nourished animals. Furthermore, both 
neonatal under- and over-nutrition alters the basal firing rate of LHA neurons, as 
well as their electrical response to dopamine and CCK administration (110). These 
studies demonstrate that perinatal nutrition can have significant effects on neuronal 
activation, resulting in negative feedback from metabolic signals such as leptin, 
insulin and melanocortins being replaced by positive feedback signals. This type of 
adjustment of neuronal response to nutrient status could underpin a difference in 
body weight set point, causing the hypothalamus to ‘defend’ a higher body weight 
and result in increased body weight phenotypes in offspring. It is important to note 
that the neuronal activity changes in neonatally over-nourished rats mentioned 
above are not independent of offspring body weight. However, alterations in VMH 
nutrient sensing have been reported in rat offspring exposed to a maternal HFD 
when the offspring do not themselves display a body weight phenotype, 
demonstrating that changes to hypothalamic neuronal activity independent of 
offspring body weight can occur (111).  



 
Recently, Plagemann and colleagues have used a novel system to examine the 
effects of transient exposure to hyperglycemia independent of other metabolic 
factors during early life by artificially modulating glucose levels in chick embryos 
inside eggs. Exposure to hyperglycemia during late gestation results in decreased 
neuronal glucose sensitivity in hypothalamic brain slices, and altered expression of 
glucose transporters (112). The authors propose that these changes in hypothalamic 
glucose sensing- which are independent of changes to the offspring’s body weight- 
are indicative of pre-natally acquired hypothalamic glucose resistance that could 
contribute to the development of diabetes later in life.  

4 Hunting for the ‘programming factor’ 

Despite the rapidly increasing number of human and animal studies, the 
mechanisms underpinning maternal programming of offspring metabolic disease risk 
are still unclear. Simply put, we still have little idea of the ‘programming factor’ 
through which maternal nutritional status impacts on offspring in utero 
development. The identification of programming factor(s) is imperative from an 
intervention perspective, to know what to target and whether the intervention 
should target the mother or the fetus. Both obesity and diabetes cause changes to 
the hormonal milieu, which is of particular significance when these disease states 
occur during pregnancy as the developing fetus is exposed to altered levels of 
maternal metabolic hormones.  
 
Recently, attention has focused on the roles of metabolic hormones in hypothalamic 
development. Although circulating factors such as insulin and leptin are classically 
thought of as regulating metabolic state, both have roles in neuronal development. 
The dual roles of these hormones is a powerful mechanism for coupling neuronal 
development with fetal nutrient status, allowing transmission of signals to the 
developing organism in response to alterations in the nutritional environment, and 
enabling neuronal adaptation in line with the Thrifty Phenotype Hypothesis. 
However, the involvement of metabolic hormones in neuronal development also 
leaves the brain extremely vulnerable to disrupted development if the maternal 
metabolic milieu is altered due to e.g. obesity or diabetes, and may cause 
maladaptive responses. 

4.1 Potential mechanisms: leptin 
Leptin is most commonly thought of as an adipokine responsible for activating 
hypothalamic pathways that lower food intake and increase energy expenditure. 
However, during the early post-natal period in rodents high circulating levels of 
leptin do not cause a decrease in food intake, an observation that led to the 
identification of a separate role for leptin in hypothalamic maturation.  
 
The majority of leptin activated neurons in the mouse hypothalamus are generated 
on E12 (68). Despite this, leptin deficient ob/ob mice do not display a metabolic 
phenotype as neonates, suggesting a different role for leptin during the early post-
natal period (113). Additionally, the expression of leptin receptors within the brain 



changes during early development, suggesting a change in the role of leptin in the 
CNS. At P4, leptin receptor (LepR) expression is restricted to cells lining the third 
ventricle, but an acute leptin challenge activates intracellular signaling in this region 
at P4 but not P14- revealing a developmental change in the site of leptin action 
(114). Further studies have revealed transient expression of the LepR during early 
neonatal life in areas not associated with energy expenditure, including the cortex, 
hippocampus and laterodorsal nucleus of thalamus (115).  
 
A series of classical experiments in the ob/ob mice by Bouret have elegantly revealed 
a neurotrophic role for leptin in the hypothalamus during early post-natal 
development, as ob/ob mice display a permanent reduction in neural projections 
from the ARC (116). Importantly, this phenotype can be rescued by exogenous leptin 
treatment on P12 but not during adulthood, demonstrating that the neurotrophic 
actions of leptin are limited to a tight developmental window. More recently Bouyer 
et al have further defined hypothalamic development in the environment of leptin 

deficiency, demonstrating that ob/ob mice display decreased AgRP and -MSH 
projections specifically to neuroendocrine PVH cells, and decreased AgRP projections 
to pre-autonomic PVH cells (117)(Figure 2). Interestingly, α-MSH projections to pre-
autonomic cells appear to be leptin independent. Furthermore, AgRP projections to 
pre-autonomic but not neuroendocrine PVH cells can be rescued by exogenous 
leptin administration from P4-P14.  Further research by Bouret et al suggests that 
leptin can only activate individual hypothalamic nuclei after they have been 
innervated by ARC fibers, thus the neurotrophic role of leptin is responsible for the 
ability of leptin to then activate other hypothalamic areas (72). Signalling through 
the LepR is necessary for leptin's role in neurite outgrowth from the ARC, and 
distinct signaling pathways downstream of the LepR have differing roles in the 
formation of energy balance circuitry (118).  
 
In rodents, during the second post-natal week a surge in leptin levels occurs 
independent of fat mass (119), and is not associated with changes in body weight, 
glucose or insulin levels. The observation by Bouret et al that defective hypothalamic 
projections in the ob/ob mice can be rescued by exogenous leptin at a time 
correlating with the endogenous leptin peak fuelled speculation that the leptin surge 
is involved in the maturation of neuroendocrine pathways, and that disruption of the 
leptin surge would have consequences for hypothalamic development. Subsequent 
research in rodent models has shown this to be true. Sub-cutaneous administration 
of leptin from P2 (to mimic an early leptin surge) results in a long-term decrease in 
food intake and decreased ghrelin levels, but no change in body weight. Conversely, 
ablation of the leptin peak using a leptin antagonist has no effect on food intake but 
causes decreased adult body weight and sexually dimorphic changes in hypothalamic 
gene expression (120, 121).  
 
In light of these observations that experimentally altering the leptin surge causes 
long-term phenotypes, leptin and the leptin surge have attracted a lot of interest as 
candidates linking defective development to permanent programming of offspring 
energy homeostasis. Kirk et al have demonstrated that the offspring of obese dams 
display an amplified and prolonged leptin surge, which is accompanied by decreased 



AgRP positive neuronal innervation of the PVH and associated with hyperphagia in 
adulthood (102). Both Delahaye and Coupe have reported that IUGR results in a 
reduced post-natal leptin surge in rats, which is associated with decreased 
hypothalamic POMC projections from the ARC to the PVH in adult animals (85, 86). 
The observation that both a lack of leptin surge (in ob/ob mice and in IUGR) and an 
increased or prolonged leptin surge (with maternal obesity) perturb hypothalamic 
development suggests there is a U-shaped curve in relation to leptin signaling and 
offspring metabolic disease risk.  
 
It is worth noting that the importance, or indeed presence, of a leptin surge similar 
to the phenomena noted in rodents in humans and NHP is yet to be confirmed. A 
post-natal leptin surge has been observed in sheep, although it occurs sooner after 
birth than in rodents (122). It has been reported that in sheep, maternal obesity 
abolishes the leptin surge possibly via increased cortisol levels in the post-natal 
period. This is associated with hyperphagia and increased body weight in offspring in 
adulthood (122).  
 
In humans, maternal leptin levels increase throughout the first and second 
trimesters, reaching a peak during the third trimester and returning to pre-
pregnancy levels almost immediately at parturition (123).The placenta is a major 
source of leptin during pregnancy, however fetal adipose tissue is capable of 
producing leptin as early as 6-10 weeks of gestation (124). Fetal leptin levels are 
directly correlated with fetal adipose levels (125), suggesting any contribution from 
maternal and placental leptin is slim. Further supporting this, research suggests that 
the vast majority of the placental- produced leptin is transported into the maternal 
circulation (126), suggesting that the main source of fetal leptin is fetal organs (127). 
However the amount of maternal leptin produced from maternal adipose tissue that 
is transported to the fetus is unknown.  
 
The common adverse effects of disruption of the leptin surge seem to suggest that 
the correct regulation of leptin in the post-natal period is critical for development. 
However it has also been demonstrated that an adverse environment during early 
life can program offspring metabolism independent of leptin signalling (128). 
Additionally, Vickers et al found that whilst neonatal leptin treatment rescued the 
metabolic phenotype in female and male IUGR offspring, the treatment 
programmed a metabolic phenotype in control male offspring (129, 130). Clearly a 
better understanding is needed before we can begin to develop effective and 
translatable intervention strategies based on manipulation of leptin levels in the 
CNS.  

4.2 Potential mechanisms: insulin 
It is difficult to study the effects of insulin on hypothalamic development in vivo, as it 
is often not possible to examine the effects of insulin administration per se 
independent of hypoglycemia. This has meant that insulin has received less attention 
as a potential programming factor than leptin. However, early studies suggested that 
insulin has a neurotrophic function and can promote neurite outgrowth in cultured 
neuronal cells (131-133). Indeed, insulin signaling is essential for axon guidance in 



drosophila (134). It has also been reported that insulin deficiency, rather than 
hyperglycemia, is responsible for the impaired neurotrophic response to injury 
observed with T1DM (135). Current knowledge on the molecular mechanisms 
through which insulin signaling promotes neurite outgrowth is limited, but some 
groups have suggested a role for insulin signaling in stabilizing microtubule 
machinery (136, 137). 
 
Maternal hyperinsulinemia and insulin resistance are commonly observed among 
both obese and gestational diabetic mothers. It has been demonstrated in a rodent 
model that maternal insulin injections between days 15-20 of gestation cause 
delayed onset obesity in offspring and increases in both hypothalamic noradrenaline 
levels and noradrenergic neuron innervation of the PVH (138, 139). However, as only 
limited amounts of insulin can cross the placenta, it is unlikely that the programming 
of offspring in this case is due to fetal hyperinsulinemia, and may in fact be a fetal 
response to maternal hypoglycemia induced by the insulin injections.   
 
Plagemann et al have experimentally modeled neonatal hyperinsulinemia by 
inserting hypothalamic insulin implants in rat neonates at P2 and P8. This results in 
increased body weight, hyperinsulinemia and impaired glucose tolerance in 
adulthood, as well as morphological alterations to hypothalamic nuclei including the 
ARC and VMH (140, 141). This phenotype is not exclusive to acute hypothalamic 
administration of insulin, as daily sub-cutaneous insulin injections from P8-P11 also 
result in increased body weight, hyperinsulinemia and impaired glucose tolerance, as 
well as a reduced volume of the VMH in adulthood (142). However it should be 
noted that this latter model fails to control for the effects of insulin on glucose levels 
separately from the other hormonal actions of insulin. The use of genetically 
modified mice with defective insulin signaling allows researchers to examine the 
effects of insulin signaling independent of glucose levels. A recent study by Vogt et al 
utilized mice lacking the insulin receptor specifically on POMC neurons to 
demonstrate that insulin signaling in POMC neurons is responsible for the disruption 
of these projections to pre-autonomic neurons of the PVH in offspring exposed to 
maternal over-nutrition during the post-natal period (83)(Figure 2).  

4.3 Potential mechanisms: epigenetic regulation of the genome 
The molecular mechanisms by which changes in the perinatal environment are 
transmitted to the fetus, and the process by which phenotypes are induced are not 
yet fully understood. However the stable nature of these phenotypes throughout the 
lifetime of the exposed offspring, and the recently reported inter-generational 
transmission of programming effects suggests permanent changes in gene 
expression. In utero regulation of epigenetic machinery has recently received a lot of 
interest as a potential mechanism for causing permanent, heritable changes to gene 
expression.  
 
Maternal environment-mediated alterations to epigenetic markers are a likely 
source of the transcriptional changes commonly observed in offspring. In a recent 
study of siblings born before and after maternal gastric bypass surgery, significant 
differences in the methylation of glucoregulatory genes were observed in blood 



samples (20). It has previously been reported in a NHP model that maternal diet 
modulates SIRT1 histone de-acetylase activity independently of maternal obesity 
(143), thus dietary programming of epigenetic processes in offspring is certainly 
possible. It has also been reported that DNA methyl transferase activity is regulated 
by glucose levels, resulting in changes to global DNA methylation levels, although 
conflicting reports exist as to whether there is a positive or negative correlation 
between glucose and methylation state (144, 145). Li et al have recently 
demonstrated that the major epigenetic modifications distinguishing astrocytes and 
neurons within the hypothalamus occur post-natally and are nuclei specific, thus 
changes to offspring nutrient status affecting epigenetic machinery during the early 
post-natal period could have widespread consequences on cell fate decisions (146).  
 
Tissue specific expression of the insulin gene in pancreatic beta cells in both humans 
and rodents is associated with hypomethylation of specific CpG sites in the insulin 
promoter (147), and methylation of the leptin promoter has also been shown to be 
responsible for tissue specific expression of this locus (148). Thus these genes may 
be particularly susceptible to epigenetic dysregulation in utero, and changes to the 
promoter methylation pattern of these genes could cause altered expression and 
subsequent changes in offspring physiology. Indeed, in humans it has been reported 
that the methylation state of the leptin promoter on the fetal side of the placenta is 
positively correlated with circulating maternal glucose levels (149). Thus maternal 
hyperglycemia results in decreased leptin expression in the placenta, and could 
therefore affect offspring development. Furthermore, in rodents it has been 
demonstrated that late gestational HFD exposure causes hypermethylation of the 
leptin receptor promoter in offspring adipose tissue, which is associated with 
decreased gene expression (150).   
 
There is emerging evidence that an adverse in utero environment can also cause 
epigenetic dysregulation in hypothalamic energy homeostasis pathways. Neonatal 
over-nutrition causes hypermethylation of the POMC promoter in the hypothalamus 
specifically at CpG dinucleotides within the Specificity Protein 1 (Sp1) binding site, 
resulting in a lack of POMC mRNA regulation in response to leptin or insulin (151). 
Similarly, offspring exposed to maternal obesity in utero display hypermethylation of 
a region 500bp upstream of the ATG site in the POMC gene, which corresponds with 
decreased pomc expression and increased body weight (152).  
 
Conversely, it has been reported that sheep offspring exposed to IUGR display 
increased H3K9Ac and decreased H3K27Me3 modifications associated with the 
POMC promoter, and decreased methylation at a POMC proximal promoter region. 
These changes are observed specifically in the hypothalamus, although they are not 
associated with a corresponding change in mRNA or circulating POMC levels (153, 
154). Interestingly the latter study also reported reduced DNMT activity in the 
hypothalamus, suggesting that changes to epigenetic regulation as a result of IUGR 
may be widespread.  
 



5 Important considerations 

5.1 Critical periods of development: gestation vs. the early post-natal period 
It is now widely accepted that sub-optimal nutrition during either gestation or the 
early post-natal period has adverse effects on offspring metabolic outcome, and that 
the consequences of exposure during these developmental periods can differ. 
Indeed, the findings from the Dutch Hunger Winter cohort revealed that exposure to 
famine even during specific periods of gestation had hugely varying outcomes on 
offspring phenotype (10). In order to develop effective intervention strategies, it is 
important to understand the programming effects of maternal nutrition during 
gestation and the post-natal period both separately and combined. Although this is 
an important issue that needs to be further understood, few studies in rodents have 
attempted to differentiate the effects of maternal nutrition during gestation and 
lactation.  
 
Several rodent studies have suggested that post-natal exposure to maternal obesity 
is as- if not more- important than in utero exposure in programming offspring 
metabolic phenotype.  Obesity- prone rat pups fostered to lean dams at birth remain 
obese but develop a gradual improvement in insulin sensitivity; whereas lean pups 
fostered to an obese dam develop increased adiposity and insulin resistance, as well 
as changes in the expression of hypothalamic neuropeptides (155). Furthermore 
recent research has demonstrated that exposure to maternal obesity exclusively 
during the post-natal period is sufficient to disrupt hypothalamic development (83). 
The mechanism underlying offspring hypothalamic programming during the post-
natal period is unknown, but it is likely to involve changes to maternal milk 
composition that result in neonatal over-nutrition and hormonal changes. 
 
In contrast to development of the rodent brain, the vast majority of human and NHP 
neuronal development occurs in utero. So how does the post-natal programming 
observed in rodent models translate to human development? Although the majority 
of NHP hypothalamic circuit formation occurs in utero, there is some further 
development of these connections during early neonatal life (71). Furthermore, the 
increased metabolic disease risk associated with infant formula feeding shows that 
although the time windows of specifics of development may be different between 
rodents and humans, nutrition that promotes accelerated growth during this period 
in both species increases obesity risk. Whether any of these post-natal programming 
effects are mediated through changes to hypothalamic structure and function after 
birth in humans and NHP remains to be discovered.   

5.2 Maternal diet composition and maternal obesity versus high fat feeding 
It is becoming increasingly clear that offspring are extremely sensitive to the exact 
composition of maternal diet, and differences in the choice of maternal diet are 
likely to be the cause of conflicting results between studies (see Table 1). This is an 
issue in the field of maternal programming in general that needs to be resolved in 
order to make any meaningful comparisons from the research that has been 
undertaken in rodent models. 
 



It appears that female offspring are particularly vulnerable to programming caused 
by exposure to a high- sugar environment during gestation. This may explain why 
many studies using simply high fat, rather than high fat and high sucrose, diets do 
not report a strong phenotype in female offspring. Interestingly, female 
susceptibility to high sucrose levels has also been noted in human dietary studies. A 
study in Finland has found that the consumption of sugar enriched drinks as an 
adolescent is directly linked to adult BMI in women but not men (156).  
 
In order to develop effective intervention strategies and health guidelines, it is also 
imperative that the impact of maternal diet vs. maternal obesity per se on offspring 
phenotype is assessed. In human studies it is hard to examine separately the 
confounding factors of maternal obesity and maternal diet, as attempts to monitor 
maternal diet are inherently flawed by the inaccuracy of food intake surveys. Animal 
models have proved more successful in separating metabolic parameters associated 
with maternal obesity in order to ascertain which factors have the greatest effect on 
offspring health. Important observations have been made in a NHP model examining 
the effects of maternal HFD consumption but not maternal obesity per se by using 
diet-resistant females who remain lean despite consuming a HFD. These studies 
have suggested that exposure to maternal HFD alone (without maternal obesity) 
causes changes in offspring liver function (33, 157). Furthermore, switching the diet 
of NHP obese females immediately prior to pregnancy reverses the alterations 
observed in offspring hypothalamic feeding pathways- despite the mothers 
remaining obese- suggesting that this phenotype is mediated by the maternal diet 
(33, 157).  
 
Conversely, in a reversed version of this experiment in mice it has been shown that 
the offspring of both ‘lifetime’ HFD‐fed dams and dams fed an HFD only during 
gestation and lactation display the same phenotype of adult obesity, suggesting that 
maternal nutrition during gestation and lactation is as important as maternal 
nutrition and metabolic state pre‐conception (158). Other groups have more 
recently utilized rodent models in which the dam consumes a calorie rich diet but is 
not overweight to show conclusively that maternal diet alone can program strong 
metabolic phenotypes in offspring (83, 92, 159, 160). These studies carry an 
important message for the development of human health guidelines, and suggest 
that lifestyle intervention alone (i.e. the mother switching to a healthy diet pre-
pregnancy) may be sufficient to ameliorate metabolic phenotypes in offspring 
(Figure 3). 
 

5.3 Sexual dimorphism in hypothalamic programming 
Gender differences in developmental programming have so far been largely ignored, 
with most studies including only male offspring. However, recent studies in which 
both sexes were included suggest that offspring responses to the early metabolic 
environment are highly sexually dimorphic (46, 92, 121, 161). This may be due to 
inherent gender differences in hypothalamic development, or gender specificity of 
the adaptive response to environmental challenges. Sexual dimorphism in offspring 



phenotype has important implications for the development of health guidelines and 
therapeutic interventions.  
 
The hypothalamic melanocortin system is sexually dimorphic; male mice have less 
POMC neurons than female mice, which is thought to underlie the hyperphagia 
observed in male compared to female mice (162). Treatment of neonatal female 
mice with testosterone decreases POMC neuron number in the ARC and increases 
food intake (162). It has also been reported that male and female rats differ in their 
sensitivity to ICV leptin and insulin administration (163). Strikingly, although male 
rats display a 24-hour reduction in food intake after ICV insulin injection, this 
response is completely absent in female mice. Given the role of insulin and leptin in 
hypothalamic development, these inherent differences in sensitivity may confer 
different risk on offspring exposed to an adverse perinatal environment. Indeed, 
sexually dimorphic hypothalamic responses to leptin antagonism during the early 
post-natal period suggest sex differences in the sensitivity to leptin during the 
perinatal period (121) can ultimately affect hypothalamic development differently in 
males and females. Whether increased insulin sensitivity would put male offspring at 
an advantage or disadvantage when exposed to altered hormone levels during the 
perinatal period remains to be determined, but certainly warrants further 
investigation.  
 
A recent study by Sun et al revealed that male offspring exposure to a HFD during 
either gestation or lactation resulted in decreased leptin sensitivity in the medio-
basal hypothalamus at P10, whereas in female offspring decreased leptin sensitivity 
was caused only by in utero exposure to HFD, revealing a sexual dimorphism in 
programming of leptin sensitivity that may be linked to sex differences in 
development (159). Furthermore, it has also been shown that male and female 
offspring have different periods of susceptibility to programming by maternal over-
nutrition (92). Studies such as these highlight the importance of including both sexes 
in programming studies, as programming during the perinatal period clearly 
differentially affects offspring of each sex.  

6 Future work- defining intervention strategies 

Maternal programming creates a vicious cycle by which maternal diet, weight or 
glycemic status can increase offspring susceptibility to metabolic disease. These 
offspring during their pregnancies have their own children whom are also exposed to 
an adverse in utero environment and this continues through subsequent generations 
(Figure 3). Drastic weight loss interventions such as bariatric surgery, whilst effective, 
are expensive and invasive and thus not practical to control this sequence of events 
on a large scale. Furthermore, some studies suggest that women are more likely to 
have SGA births after bariatric surgery, due to nutrient deficiency if the pregnancy 
occurs too soon after surgery (164, 165). Therefore identification and 
implementation of more tractable therapies such as lifestyle interventions, 
potentially during pregnancy, is essential to break the cycle. We are still far from 
identifying the mechanisms that underlie developmental programming in response 
to an adverse in utero or early postnatal environment, but this is crucial in order to 



develop therapeutic interventions and appropriate guidelines for pregnant women. 
Furthermore, critical developmental periods need to be defined in order to 
appropriately time intervention.  
 
Maternal dietary supplementation is an attractive option for therapies targeting fetal 
development, as indicated by the success of folic acid supplementation in reducing 
the incidence of neural tube defects. Recent reports from rodent models suggest 
that maternal diet supplementation with methyl donors blocks some of the adverse 
effects of maternal obesity on offspring physiology (168), suggesting that changes to 
global methylation levels contribute to offspring phenotype.  
 
Numerous studies have implicated maternal insulin sensitivity and glucose 
homeostasis as an underlying cause mediating offspring phenotypes in response to 
maternal weight. If maternal glucose homeostasis is indeed a key factor, then 
normalizing maternal glucose tolerance independent of body weight should be an 
effective intervention. Exercise is an effective way to improve insulin sensitivity and 
thus glucose homeostasis in obese subjects (169). Small lifestyle changes before 
and/ or during pregnancy are more likely to be successfully adopted by patients than 
severe changes and heavy therapeutic regimes. Additionally, pregnancy itself is an 
ideal opportunity to promote lifestyle changes as women have increased motivation 
to improve their own health for the benefit of their unborn child. A study promoting 
lifestyle changes such as moderate exercise and improved dietary choices in 
overweight pregnant women is currently being carried out in the UK (170). Follow up 
of both the mother and offspring from this study will be an important indicator of 
whether lifestyle interventions are sufficient to improve the maternal metabolic 
milieu and offspring metabolic disease risk, and provide important public healthcare 
messages.  Such information will be critical if we are to break the cycle of obesity 
transmission from parent to child and halt the increasing prevalence of metabolic 
disorders. 
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Study Diet Timing of exposure Maternal body 

weight increase 
Species/ 
strain 

Sex Offspring phenotype 

Kirk 2009 (102)  45% fat, Special dietary services 
(45% fat + sucrose) 

Pre- and during 
gestation/ lactation 

30 % increase Rat Male Increased leptin surge, decreased ARC- PVH 
projections 

Samuelsson 2008 
(45) 

45% fat, Special dietary services 
(45% fat + sucrose) 

Pre- and during 
gestation/ lactation 

25 % increase C57bl6J M + F Hyperphagia, hypertension, disrupted glucose 
homeostasis 

Samuelsson 2013 
(46) 

High sucrose Pre- and during 
gestation/ lactation 

20 % increase C57bl6J M + F Male + female: hypertension 
Female only: disrupted glucose homeostasis 

Vogt 2014 (83) C1057, Altromin  
(55% fat) 

Lactation No change C57bl6J Male Male: disrupted glucose homeostasis, decreased 
ARC- PVH projections 

Sun 2012 (159) D12492, Research diets  
(60% fat) 

Gestation and/or 
lactation 

No change Rat M + F Disrupted glucose homeostasis, ARC leptin 
resistance  

Khalyfa 2012 
(160) 

D12492, Research diets  
(60% fat) 

G12 - lactation No maternal body 
weight data reported 

C57bl6J Male Hyperphagia, altered methylation leptin and 
LepR genes 

Page 2009 (90) D12451, Research diets  
(45% fat) 

Pre- and during 
gestation/ lactation 

10 % increase 
 

Rat Male Altered hypothalamic gene expression 
 

Sanders 2014 (87) D12451, Research diets  
(45% fat) 

Pre- and during 
gestation/ lactation 

25 % increase C57bl6J Male Decreased ARC- PVH projections, altered Netrin 
signalling 

Dearden 2014 
(92) 

D12331 Research diets  
(58% fat + sucrose) 

Gestation and 
lactation 

No change CD1 M + F Male: altered PVH gene expression  
Female only: disrupted glucose homeostasis 

Chen 2008, 
2009a, 2009b (93, 
103, 166) 

Cafeteria diet  
(34% fat) 

Pre- and during 
gestation/ lactation 

25 % increase Rat Male Hyperphagia, altered hypothalamic gene 
expression and regulation in response fasting 

Chen 2012 & 
2014 (94, 167) 

SF03-020 Specialty Feeds 
(43% fat) 

Pre- and during 
gestation/ lactation 

20 % increase Rat Male Altered hypothalamic gene expression and 
regulation in response glucose changes 

 
Table 1: Comparison of maternal diets used in studies that report hypothalamic programming in offspring 
The choice and timing exposure of maternal diet has significant effects on offspring phenotypes, which are often sex specific. In particular, 
female offspring glucose homeostasis appears to be more susceptible to programming by exposure to a maternal diet including high 
sucrose. It is also interesting to note the various degrees of increase in maternal body weight caused by different diet options, as even 
studies with little or even no weight gain in dams that are consuming a calorie- rich diet still result in strong offspring phenotypes





 
Figure 1: Comparison between human and rodent neuronal development 
During human brain development both neurogenesis and the formation of functional 
connectivity occur during gestation. However, in rodents full synapse connectivity is not 
established until the early post-natal period. Of particular interest for hypothalamic 
development, murine hypothalamic neurons involved in regulation of energy balance appear 
between embryonic days 12-16 and functional connectivity between different nuclei of the 
hypothalamus is established during the first four weeks of post-natal life. 

 

 
Figure 2: Role of metabolic hormones in development of hypothalamic circuitry 
Recent papers have shown that the metabolic hormones leptin, ghrelin and insulin are 
required for the correct formation of projections from the ARC to the PVH. The involvement 
of metabolic hormones in normal hypothalamic development leaves the hypothalamus 
vulnerable to disruption in instances where these hormone levels are altered due to the 
maternal nutritional state. Intra-hypothalamic connections shown in solid lines have been 
shown to be vulnerable to disruption upon exposure to maternal obesity, GDM or under-
nutrition. It is not fully understood whether adverse perinatal nutritional environments 
impact on the development of the hypothalamic circuitry highlighted in dotted lines, nor 
whether metabolic hormones are involved in the correct formation of these circuits. 

 



 
Figure 3: Maternal programming of offspring metabolic disease risk: opportunities for 
intervention 
In utero exposure to maternal obesity, diabetes or under-nutrition increases offspring 
susceptibility to metabolic disease. This creates a vicious cycle by which the next generation 
is also exposed to adverse nutritional conditions in utero. Recent research from animal 
models suggests the cycle could be broken in the pre-pregnancy period by non-invasive 
lifestyle interventions such as a change to the maternal diet, as well as more serious surgical 
weight loss interventions in the mother. During pregnancy, both lifestyle and therapeutic 
interventions are being trialed currently in human cohorts. Recent research from animal 
models highlights the importance of some therapeutic interventions being sex specific.   
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