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Abstract: This paper applies probabilistic risk assessment in quantifying risks from 

cumulative and aggregate risk pathways for selected goitrogens in water and food. Results 

show that the percentages of individuals with a Hazard Index (HI) value above 1 ranges 

between 30% and 50% both with and without serum half-life correction when a traditional 

regulatory assessment approach based on establishment of a No Observed Effects Level 

(NOEL) is used. When an exposure-response curve is instead used and a threshold of  

50% inhibition is assumed, 1.1% or less of the population exceeds an HI value of 1 with no 

serum half-life correction, rising to as high as 11% when serum half-life correction is applied.  

If 0% to 5% threshold for iodide uptake inhibition is assumed for production of adverse 

effects, the percentage of the population with an HI above 1 is 46.2% or less with no serum 

half-life correction, and 47.2% or less when serum half-life correction is applied.  

The probabilistic analysis shows that while there are exposed groups for whom perchlorate 

exposures are the primary cause of individuals having HI values above 1, these constitute 

significantly less than 1% of the population. Instead, the potential risk from exposure to 

goitrogens is dominated by nitrates without serum half-life correction and thiocyanates with 

serum half-life correction, suggesting public health protection is better accomplished by a 

focus on these and other goitrogens expect in highly limited cases where waterborne 

perchlorate is at unusually high concentrations. 
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1. Introduction 

There is increasing attention in the US and EU on perchlorate as a potential public health risk in both 

food and water [1]. That attention began with a focus on waterborne exposures, although there are 

equally significant exposure routes through food. Therefore, the issue of perchlorate exposure is at least 

one of aggregate risk assessment [2], with attention directed towards all routes of exposure to perchlorate 

when considering protection of the public health. Additionally, perchlorate’s mode of action is primarily 

through inhibition of uptake of iodide into the thyroid, largely through the sodium-iodide symporter 

mechanism. In this regard, perchlorate shares a mode of action with a broad class of goitrogens,  

or compounds that suppress the function of the thyroid gland through interfering with iodide uptake. 

Hence perchlorate exposures should be seen in a framework of cumulative risk assessment, where it is 

one of a number of goitrogens that act collectively in reducing thyroid function and producing adverse 

health impacts on metabolism and development. 

To place perchlorate into this aggregate and cumulative risk framework, a previous paper [3] explored 

the implications of alternative approaches to the development of a Reference Dose (RfD as used in the 

US; the equivalent in the EU is the TDI or Tolerable Daily Intake, and the equivalent in the World Health 

Organization (WHO) is the PMTDI or Provisional Maximal Tolerable Daily Intake) and subsequent 

regulatory limit on exposure to perchlorate when simultaneous exposure to other goitrogens such as 

thiocyanates and nitrates was present. That paper used the traditional risk-based approaches to 

establishing public health exposure limits based on No Observed Adverse Effects Levels (NOAELs), 

Lowest Observed Adverse Effects Levels (LOAELs) and margins of safety embodied in uncertainty 

factors to account in part for inter-subject variability in exposure. In each of the approaches, the starting 

point was a study by Greer et al. [4] of the effects of perchlorate on iodide uptake inhibition in the 

thyroid, which has been used to establish a NOAEL and LOAEL for regulation in the U.S..  

The paper [3] identified four potential approaches to establishing a limit on exposures to perchlorate 

in protection of public health, consistent with this traditional methodology, described there as: 

• Approach 1: Use the Greer et al. [4] study in the procedure typically followed in regulatory risk 

assessment in establishing exposure limits by a single pathway to a single contaminant,  

where the NOAEL or LOAEL for exposure to perchlorate alone, and solely in water, is used to 

establish the relevant exposure limit on perchlorate in water without reference to other goitrogens 

with the same mode of action. 

• Approach 2: Use the Greer et al. [4] study to produce an exposure-response relationship for 

iodide uptake inhibition, coupled to the current best scientific estimate of the percentage 

inhibition necessary to produce a down-stream adverse effect. Again, this approach assumes 

exposure to perchlorate only within the class of goitrogens, or at least assumes the measured 

effect in the Greer et al. [4] study is the incremental effect resulting from the intakes of 

perchlorate alone.  
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• Approach 3: Use the Greer et al. [4] NOEL (0.007 mg/kg-day), but incorporate the contribution of 

the other goitrogens to the total goitrogen intake in that study. This includes consideration that the 

NOEL from that study is not a NOEL associated solely with administered perchlorate during the 

study, but a NOEL reflecting the combined effect of all goitrogens present in the diets of the subjects. 

• Approach 4: Use the Greer et al. [4] study to produce an exposure-response relationship for iodide 

uptake inhibition, coupled to an estimate of the percentage iodide uptake inhibition necessary to 

produce a down-stream adverse health effect. The approach includes consideration of total 

background goitrogen exposure in the study population. Hence, it combines approaches 2 and 3. 

As shown by Crawford-Brown [3], these four approaches lead to differences in the resulting 

regulatory limit on exposure to perchlorate in drinking water. In addition, two approaches were identified 

to establishing a Perchlorate Equivalent Concentration (PEC) to reflect the combined actions of mixtures 

of goitrogens considered. For those PEC values, the summary of results by Tonacchera et al. [5] were 

first used, with the effectiveness of inhibition per unit serum concentration suggesting ratios of 1:8.8:150 

for perchlorate, thiocyanates and nitrates, respectively, on the basis of equivalent serum concentration. 

The second approach corrected for circulation half-lives in serum and produced ratios of 1:0.5:240 on 

the basis of ingested (mass) quantity. These two sets of ratios are used in the present study as upper and 

lower bounding estimates for the modelling that follows.  

In addition to these four approaches rooted in traditional risk-based policies for exposure to 

environmental risk agents, probabilistic risk assessment has emerged as a more scientifically defensible 

and robust process for establishing both cumulative/aggregate risk and for establishing risk management 

strategies [6]. That probabilistic approach, employing Monte Carlo analyses of exposures and risks, has 

been applied in the past in regulatory risk assessments of risk agents in water [7]. It also is applied 

routinely in risk assessment and management for exposures to airborne toxicants within the USEPA,  

developed in part (but with other influences as well) to address issues of environmental justice as 

population segments exist that are at consistently higher risks due to overlapping exposures to multiple 

risk agents and exposure routes.  

The current study expands on the analysis of the first paper [3] to assess public health risks from 

perchlorate within the context of aggregate and cumulative risk assessment, placing that assessment into 

a framework of probabilistic risk assessment using Monte Carlo analysis. The central research 

question—which is also the basis for potential risk-based exposure limits and risk management 

strategies—is: When inter-subject variability in perchlorate and goitrogen levels in food and water are 

modelled, what is the inter-subject variability distribution of risks, and what percentage of the population 

is protected adequately against these risks by any specified exposure pathway and goitrogen?  

The application of probabilistic risk assessment is based on recognition that reduction in a regulatory 

limit on exposure can be seen through any of three perspectives: 

• It reduces the mean (average) risk in a population; 

• It reduces the percentage of the population or subpopulation exposed to risks above some level 

of acceptable risk (or increases the percentage below this level of acceptable risk); 

• It increases the confidence that the mean risk in a population is below this level of acceptable risk. 

For the current paper, attention is focused on the second perspective. The argument is that a regulatory 

limit and/or risk reduction strategy on perchlorate and goitrogens ought to be protective  
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(against unacceptable levels of risk) for at least some specified percentage of the exposed population,  

cognizant that there will always be some subpopulations whose sensitivity and/or susceptibility places 

them at extremes requiring risk management strategies beyond those afforded by traditional controls on 

general ambient concentrations. In traditional policy approaches, the issue of inter-subject variability of 

risk is dealt with through application of an uncertainty factor specifically tied to the magnitude of  

inter-subject variability, with a default uncertainty factor of 10 if the data are not already reflective of 

the more sensitive and susceptible subpopulations. That approach, however, does not allow calculation 

of the percentage of the population protected by the resulting regulatory limit, although there have been 

studies to provide probabilistic interpretations of such an assignment [8]. It is not possible under that 

default non-probabilistic approach to determine whether the percentage protected is reasonable, 

excessive or insufficient, or whether the percentage protected is consistent across different regulations 

for different risk agents. 

This weakness of the traditional approach—of not being able to specify the percentage of the 

population at excessive levels of risk—is resolved through use of formal probabilistic risk assessment 

methods. The current paper explores the issue of regulatory limits to perchlorate and two other 

goitrogens through the perspective of such a probabilistic approach and providing a more scientifically 

robust approach to risk assessment and management in which inter-subject variability of risk is 

quantified and used to determine the percentage of the population whose risk is unacceptably large.  

This analysis further allows risk managers to determine where limited regulatory and risk mitigation 

resources should be applied most effectively in protection of public health.  

A significant advantage of the probabilistic approach in public health protection is its ability to 

incorporate the concept of a “risk cup”.This concept arose initially out of concerns for environmental 

justice [9] where some highly exposed groups are exposed to multiple pollutants (such as multiple 

goitrogens) by multiple pathways (such as water and food), each of which is at an accepted regulatory 

limit but whose combined effect is a risk exceeding that which would normally be allowed if the 

combined effect of the pollutants were quantified. The risk cup is the total risk experienced by an 

individual when one considers both aggregate and cumulative exposures. The current study explores a 

sub-set of the total risk cup, namely exposures to three goitrogens. 

Rather than applying regulatory limits on exposure individually to each contaminant through each 

route in risk management decisions, probabilistic risk assessment allows the regulatory community to 

identify the fraction of people exposed to unacceptably large risks in a specific, real, population;  

to identify why they are at such high levels of risk (what agents and routes are contributing most 

significantly); and to target risk reduction resources most effectively at reducing this risk in the affected 

subpopulations. Note that the focus here is not on a hypothetical individual exposed to all contaminants 

and all routes at the maximally allowed limits for each separate contaminant and route, but rather on the 

actual exposures of real individuals in the population so limited regulatory resources can have the 

greatest effect on reducing the risks in the vulnerable populations. 

The current study considers the risk cup for goitrogens only, and their action through iodide uptake 

inhibition by the thyroid. It is therefore a limited application of the concept of the risk cup. However,  

it examines the risk cup in the context of the three goitrogens most often discussed in regard to risk 

management decisions rooted in concern for iodide uptake inhibition by the thyroid. 
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2. Methodology 

Risk of adverse effect is modelled here through calculation of the inter-subject variability distribution 

of the Average Daily Rate of Intake (ADRI) of a risk agent. Note that this is the same set of units as the 

daily intake associated with safe levels of consumption (RfD, or the units of TDI or PMTDI can be used 

when placed onto a per-unit-body-mass basis) that underlies the traditional approaches to regulatory risk 

assessment. To be more specific, the units of ADRI are μg (of the risk agent) per kg (of body mass of 

the exposed individual) per day, expressed as μg/kg-day.  

The focus here is on direct application of exposure-response relationships for the goitrogens 

considered, rather than development of a Benchmark Dose (BMD) followed by application of 

uncertainty factors. The analysis is therefore restricted to approaches 3 and 4 mentioned previously.  

For a single risk agent and environmental medium or exposure route, the calculation of the ADRI is: 

ADRI = C × EF (1) 

where C is the concentration in the environmental medium (µg /L for waterborne exposures; µg /kg food 

product for food exposures) and EF is the Exposure Factor (L of water per kg body mass per day for 

waterborne exposures; μg of food product per kg body mass per day for food exposures). The choice to 

link intake rate of an environmental medium (e.g., L of water consumed per day) and body mass into a 

single Exposure Factor is due to these two components being at least partially statistically correlated 

(people of high body mass also have higher rates of intake of water and foodstuffs). 

Both C and EF exhibit significant inter-subject variability due to age and diet. The variability in C is 

due to two main factors: 

• Concentrations in a given environmental medium fluctuate in time; 

• Time-averaged concentrations in a given environmental medium vary in space and hence. 

between exposed populations. 

The present study is concerned only with the second cause of inter-subject variability because the 

underlying Greer et al. study [4] considers medium-term exposure over several weeks, where short-term 

fluctuations in concentration will be averaged. 

Regarding the first cause, an important caveat on the results developed here relates to the treatment 

of random sampling with the variability distribution for concentrations. For water, an individual might 

be exposed to the same source of water consistently during the exposure period of interest (unless they 

are travelling). Therefore, the individual would have approximately the same value of C throughout the 

biologically relevant period over which the concentration is to be averaged. The length of time over 

which averaging is to take place depends on the assumption made about the period of exposure required 

to initiate adverse effects. In the US, focus has been on acute intakes where averaging is less important, 

whereas in the EU focus has been on chronic intakes where averaging is more significant. The focus in 

the present study is on intakes that take place over several weeks, again due to this being the exposure 

period of the Greer et al. [4] study. 

For food exposures, however, it is not the case that concentration will remain constant throughout the 

exposure period. The individual will instead consume different foods and from different geographic 

sources during the exposure period. This will have the effect of “averaging out” variations in 
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concentration for an individual for food exposures. Unfortunately, there is insufficient data available to 

reflect this averaging over the biologically relevant exposure period, as it would require temporal 

correlations between concentrations at the level of individual diets, and so the assumption here is one of 

uncorrelated sampling from the variability distribution of food concentration as was the case for water. 

This assumption will produce an over-dispersed inter-subject variability distribution, increasing the 

fraction of individuals in the “tails” of the distribution and hence the fraction of people at largely elevated 

levels of risk. It is justified here as being health protective.  

The Exposure Factor (EF) characterises the rate at which individuals take in the various 

environmental media through their diets. The choice to focus on rates of intake per unit body mass in 

the current study is both because the ADRI uses that unit (as described above) and because the dose of 

a risk agent to cells depends on the degree of dilution of the agent within the body, which in turn depends 

on body mass.  

Both C and EF show inter-subject variability, and hence ADRI will show variability as well.  

Both quantities tend to be lognormally distributed, as is the case for many environmental and biological 

parameters [10]. A lognormal distribution is described in this study by a median value in the population 

(the value of C or EF for which 50% of the population is above and below this value) and by a geometric 

standard deviation (GSD), which is the equivalent of a standard deviation in a normal or Gaussian 

distribution. For a lognormally distributed quantity, 68% of the values (of C or EF) are in the interval 

between the median divided by and multiplied by the GSD. 

Lognormal distributions of biological and environmental properties also tend to show truncation of 

the distributions at between two and three geometric standard deviations away from the median value. 

Truncation in this case means that numerical values of the quantity of interest (such as EF value) are not 

found in the sample data—or in nature—beyond two or three GSDs from the median value. This same 

truncation is applied in the current study with a GSD of 3 for all of the distributions sampled. 

Consider a case in which there are two compounds (Compounds 1 and 2) present in exposures of an 

individual. Their individual ADRI values are shown as ADRI1 and ARDI2. Note that these are the actual 

values of the ADRI for the individuals in an exposed population, not a hypothetical value if the 

individuals were exposed at the regulatory limit of each exposure pathway. Hence they are a scientific 

and not a policy characterisation of exposures. 

Their respective RfD values (one for each of the two risk agents) will be RfD1 and RfD2; again,  

the same methodology can be applied using the TDI or PMTDI and would yield the same quantitative 

results, but only an RfD-based analysis is performed here. Their HQ (Hazard Quotient, or ratio of ADRI 

over RfD) values are then HQ1 = ADRI1 / RfD1 and HQ2 = ADRI2 / RfD2. The HI value (Hazard Index, 

or sum of HQ values for risk agents with a common mode and mechanism of action) is then: 

HI = HQ1 + HQ2 = ADRIa,1/RfD1 + ADRIa,2/RfD2 (2) 

Assuming the two compounds act by the same mode or mechanism of action (the assumption adopted 

in this paper since perchlorate and other goitrogens act by the sodium-iodide symporter mechanism to 

produce iodide uptake inhibition into the thyroid; see [11]), Equation 2 reduces to: 

HI = (ADRI1 + ADRI2)/RfD (3) 
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where there is now no subscript on RfD since the value is the same for all goitrogens acting through 

this shared mode of action, assuming ADRI has been calculated for each compound using a Toxicity 

Equivalency Factor or TEF to allow comparisons across different goitrogens (as is the case in this study). 

In perchlorate risk assessment, the TEF is called the Perchlorate Equivalent Concentration or PEC,  

but the principle is the same as in TEF.  

The probabilistic methodology used here proceeds in the following steps: 

1. The primary environmental media through which exposures occur are established; here they are 

water plus each food category. 

2. The risk agents for which exposure data exist are established (perchlorate, nitrates and thiocyanates; 

other goitrogens with same mode and mechanism of action exist such as bromide and chlorate,  

but adequate exposure data do not yet exist, although data are being collected currently). 

3. Inter-subject variability in the values of C for each of the three risk agents in water and different 

food categories is established as a lognormal probability density function (PDF) with median, 

GSD and level of truncation; these values of C use the PEC concept mentioned previously. 

4. Inter-subject variability in the values of EF for each environmental medium is established as a 

lognormal probability density function (PDF) with median, GSD and level of truncation. 

5. A random value is drawn from each of the two distributions (C and EF) for each of the three risk 

agents (perchlorate, nitrates and thiocyanates) and multiplied to obtain the three values of the 

ADRI in Equation 1. Here it is important to bear in mind the earlier caveat on averaging likely 

to be present for food consumption. 

6. These three ADRI values are summed to obtain the total (PEC) value of the ADRI across all 

routes of exposure and goitrogens. 

7. The process is repeated over 50,000 samples. The sampling size was determined by sequentially 

increasing the number of runs until stability at the upper 95% estimate of the inter-subject 

variability distribution was obtained (i.e., the estimate of the 95th percentile value changed by 

less than 1%). 

8. The resulting 50,000 values are summarised as a new probability density function for the ADRIs 

(converted into PEC) in the exposed population, which will also be lognormal since the product 

of lognormally distributed quantities is also lognormal.  

9. An RfD is selected as the potential basis for a regulatory limit on total goitrogen intake,  

and the (PEC) ADRI values are converted first to Hazard Quotient (HQ) values by dividing the 

ADRI by the RfD for that route of exposure and then summing these across routes of exposure 

and gotirogens to produce an estimate of the Hazard Index (HI) values. The inter-subject 

variability distribution of these HI values is then used to calculate the percentage of the 

population with an HI value above 1 (a value of 1 or greater being considered in regulatory 

decisions as requiring consideration of mitigation). 

These steps are repeated for each of several representative ages to characterise the age dependence of the 

risk results. The ages selected correspond to those available in the EPA Exposure Factors Handbook [12]: 

1–3 months; 2–3 years; 6–11 years; 18–21 years; >21 years (full adult). In addition, a separate category 

of Pregnant Woman is included since this represents a potentially sensitive subpopulation. 
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The calculations of the percentage of the population with HI values exceeding 1 are performed using 

two different estimates of the relevant RfD, taken from Approaches 3 and 4 of the Introduction 

(Approaches 1 and 2 do not lend themselves to cumulative and aggregate risk assessment), as well as 

the two approaches to dealing with serum half-life. For these two approaches, the relevant ADRI 

threshold values (and hence RfDs) are: 

• Approach 3: 13.5 µg/kg-day (without serum half-life correction) or 22.9 µg/kg-day (with serum 

half-life correction) 

• Approach 4: 29.5 µg/kg-day (without serum half-life correction) or 38.9 µg/kg-day (with serum 

half-life correction)  

In the previous paper [3] a 50% iodide uptake inhibition was identified as the critical level of inhibition 

above which adverse effects occur. This level of required inhibition is not fully established scientifically, 

however as being protective of public health in sensitive subpopulations. If instead one considers ANY level 

of inhibition to be significant (i.e., restricts exposures to those that produce 0% increase in iodide uptake 

inhibition, or 5% as selected by California’s OEHHA [13],the values of Approach 4 would be [3]: 

• Approach 4b: 14.5 µg/kg-day (without serum half-life correction) or 23.9 µg/kg-day  

(with serum half-life correction)  

Finally, the analysis includes a Contribution to Variance (CV) calculation, which provides an estimate 

of the fraction of the total variation in the risk metric (here, HI) between sampled individuals that is 

caused by any given factor used in the calculation. The CV is used here to identify the major contributing 

factors to the calculated percentage of individuals with an HI above 1. The reasoning behind the 

calculation is that if the variance of HI in the exposed population is caused primarily by variance in 

environmental concentration, in contrast to exposure factors, then the appropriate risk management 

strategy is to focus resources onto the task of identifying and mitigating the most significant sources of 

the elevated concentrations in this most highly exposed segment of the population rather than through 

national exposure limits for water and food and for each goitrogen separately. 

For the product of two lognormally distributed quantities, the median of the distribution of the products 

is equal to the product of the medians of the separate distributions. There is also a simple relationship between 

the GSDs of the two distributions and the GSD of the distribution of the products [14]. 

However, the current study considers also the summation of the distributions for the different 

exposure pathways (water and food) and risk agents (perchlorate, nitrates and thiocyanates). For each 

sampled individual in the exposed population, this produces six values that are each lognormally 

distributed (water-perchlorate; water-nitrate; water-thiocyanates; food-perchlorate; food-nitrate;  

food-thiocyanates). In each case, a statistical test for lognormality was conducted using the Anderson-Darling 

test [15], and lognormality confirmed (including in the tails of the distribution out to three GSDs).  

The distribution of the sums of products of lognormally distributed quantities is not as straightforward 

computationally. As a result, the probabilistic risk assessment and the CV calculations here are 

performed within the CrystalBall software (a Microsoft Excel add-in by Oracle corporation),  

and the median, GSD and percentiles of the composite distribution of HI values obtained from the output 

of the software rather than calculated analytically for each separate age category.  
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3. Data Used 

The exposure factors are taken from the most recent Exposure Factors Handbook [12]. The distributional 

data contained in the Handbook were fit with lognormal distribution functions (median and GSD), and then 

lognormality into the tails assumed based on the tests of lognormality. This allows the distributions to be 

estimated out to three GSDs into the ‘tails’ for the population, after which the distributions are truncated as 

mentioned previously. These tails are where values of ADRI will be highest on average and hence contribute 

most to the calculation of the percentage of people with HI values above 1. 

Two individuals can have not only a different total intake rate of a food category (fruits, vegetables, 

meats, seafood), but different intake rates across the different food products within a category  

(for example, apples versus pears within the category of fruit). The exposure factors data available do 

not allow the latter form of differentiation. Therefore, the analysis proceeds using a typical “foodbasket” 

that is representative of the mix of food product intakes in the U.S. population modelled. Each individual 

has the same relative values of these intakes of food categories, but the total mass varies between 

individuals in accordance with the exposure factors data. This simplification is necessary due to the 

nature of the exposure factors data in which correlations between food categories are not available.  

For the mean concentrations of perchlorate, nitrates and thiocyanates in water and food  

(sampling reports contain means rather than medians), the values are taken from the U.S. tables  

of the first paper [3]. The data for nitrates and thiocyanates in food are from the USDA Continuing  

Survey of Food Intakes by Individuals (CSFII), updated in 2010 (Data in the form of CSV files were 

obtained through http://www.ers.usda.gov/data-products/commodity-consumption-by-population-

characteristics/documentation.aspx). The statistical test cited previously show the data are approximated 

well by a lognormal distribution across samples for each food category. For water, the distributional data are 

taken from the 2005–2006 U.S. Food and Drug Administration’s Total Dietary Study [16], normalised to the 

mean values of data reported by Blount et al. [17] for perchlorate and De Groef et al. [11] for nitrates  

(they base their U.S. dietary intakes on the report of Bruce et al. [18]). Again, the data are approximated as 

lognormal, in this case with a GSD of 1.5 as that is the measured GSD for the other goitrogen distributions. 

Endogenous nitrate production based on exogenous intake in food and water is taken from the NRC [19]. 

Since inter-subject distributional data are not available, the same mean endogenous production per unit 

exogenous intake is applied to each individual. 

In addition to the three compounds considered here, there are several other goitrogens with the same 

mode of action present in water and food. For example, chlorate is also present in measurable quantities, 

as are bromides. The data on these are insufficient to include in the present analysis. However,  

if these other compounds were included in the present analysis, they would need to be included in both 

the re-interpretation of the results from the Greer et al. [4] study and in the Monte Carlo analysis to 

calculate HI values. Inclusion of these compounds in the re-analysis would further increase the calculated 

PEC required to produce the adverse effects in the Greer et al. population, with the same (increased) intakes 

then being carried through to the Monte Carlo analysis. This would produce compensatory effects on the 

analysis, although the degree of compensation cannot be determined at present.  
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4. Results 

As described previously, a random sample of 50,000 runs was collected under the Monte Carlo 

methodology. Table 1 shows the percentile values for ADRI (PEC) for the age groups in the population. 

All ADRI values are in units of µg/kg-day (PEC values). Again the reader should bear in mind the earlier 

caveat that the assumption of uncorrelated intakes of the goitrogens in food day-to-day for an individual 

means the percentage of individuals in the “tails” of Table 1 will be over-stated, although the degree of 

over-statement cannot be estimated at present given existing data. This will have the effect of producing 

an (unquantified) margin of safety or level of precaution into the analysis. Results are presented below 

in table rather than graphical form to allow for ease in obtaining accurate numerical values that might 

form the basis of regulatory and risk management decisions; only a single significant digit is provided 

to avoid over-interpretation of the results.  

Table 1. Average Daily Rate of Intake (ADRI) values associated with the indicated percentiles 

of the inter-subject probability density functions (PDFs) as shown in the top row. All values are 

in units of µg/kg-day Perchlorate Equivalent Concentration (PEC). Separate values are provided 

by age groups. The upper table contains the results without serum half-life correction,  

and the lower table presents the same results with serum half-life correction. 

Age Group Percentiles of ADRI 

 1 5 10 30 50 70 90 95 99 

1–3 months 3.2 3.5 4.7 8.2 11.2 15.2 19.9 23.4 25.7 

2–3 years 3.8 4.2 5.6 9.8 13.5 18.3 23.9 28.1 30.9 

6–11 years 3.8 4.2 5.6 9.8 13.5 18.3 23.9 28.1 30.9 

18–21 years 2.9 3.2 4.2 7.4 10.1 13.7 17.9 21.1 23.2 

>21 years 2.9 3.2 4.2 7.4 10.1 13.7 17.9 21.1 23.2 

Pregnant women 3.5 3.9 5.1 9.0 12.4 16.7 21.9 25.7 28.3 

Age Group Percentiles of ADRI 

 1 5 10 30 50 70 90 95 99 

1–3 months 5.4 6.0 8.0 13.9 19.1 25.8 33.8 39.8 43.7 

2–3 years 6.5 7.2 9.5 16.7 22.9 31.0 40.6 47.7 52.5 

6–11 years 6.5 7.2 9.5 16.7 22.9 31.0 40.6 47.7 52.5 

18–21 years 4.9 5.4 7.2 12.5 17.2 23.3 30.4 35.8 39.4 

>21 years 4.9 5.4 7.2 12.5 17.2 23.3 30.4 35.8 39.4 

Pregnant women 6.0 6.6 8.7 15.3 21.0 28.4 37.2 43.7 48.1 

The PDFs associated with this table were then used to calculate the percentage of the population, in 

each age group, with HI values exceeding 1. Separate values are provided for Approaches 3, 4 and  

4b as defined previously (bear in mind that they represent different RfDs associated with adverse 

effects). These percentages are shown in Table 2. 
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Table 2. Percentages of the population in each age group that exceeds a Hazard Index (HI) 

of 1 under existing concentrations of perchlorate + nitrates + thiocyanates in water and food. 

Reference Dose (RfD) values used are as reported in Section 2. The upper table contains the 

results without half-life correction, and the lower table presents the same results with  

half-life correction. 

Age Group Percentage of Population with HI > 1 

 Approach 3 Approach 4 Approach 4b 

1–3 months 31.6   0.5   30.1   

2–3 years 50.0   1.1   46.2   

6–11 years 50.0   1.1   46.2   

18–21 years 30.4   0.3   28.2   

>21 years 30.4   0.3   28.2   

Pregnant 
women 

40.8   0.5   37.4   

Age Group Percentage of Population with HI > 1 

 Approach 3 Approach 4 Approach 4b 

1–3 months 32.0   5.1   30.6   

2–3 years 50.0   11.0   47.2   

6–11 years 50.0   11.0   47.2   

18–21 years 30.2   1.1   28.1   

>21 years 30.2   1.1   28.1   

Pregnant 
women 

40.1   5.4   36.1   

Note that for Approach 3 all entries in Table 2 are close to 50%. This is a consequence of the 

background exposures in the Greer et al. [4] study being the mean for the adult population in Table 2. 

The values associated with Approach 4 are all 1.1% or less without serum half-life correction and 11% 

or less with serum half-life correction; for Approach 4b, the values are all 46.2% or less without serum 

half-life correction and 47.2% or less with serum half-life correction. 

A Contribution to Variance calculation was conducted to determine the relative contributions of the 

following factors to the dispersion or variance of the inter-subject variability distributions.  

This is equivalent to the calculation of the contribution of each factor to the percentage of population 

with an HI value exceeding 1. The factors considered are: 

• Perchlorate concentration in water; 

• Perchlorate concentration in food; 

• Nitrates concentration in water; 

• Nitrates concentration in food; 

• Thiocyanates concentration in water (negligible in the current study); 

• Thiocyanates concentration in food; 

• Water exposure factor; 

• Food exposure factor. 

Results are shown in Table 3 below, with and without serum half-life correction. 
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Two important results emerge from Table 3. First, the contribution to variance is dominated by 

nitrates concentration in food without serum half-life correction, but by both nitrates and thiocyanates 

in food with serum half-life correction. Second, the contribution to variance by the exposure factors is 

only 10–15% of the total variance. The former result indicates that regulatory focus is most appropriately 

on nitrates in food (without serum half-life correction) or both nitrates and thiocyanates in food  

(with serum half-life correction) with risk reduction focused firstly on reducing these concentrations as 

a priority in protection of public health.  

Finally, the Monte Carlo analysis was repeated with a slight change in the question addressed. In this 

instance, the percentage of the population for which the HI value is above 1 is assessed for each 

individual goitrogen; i.e. the percentage for whom exposure to this goitrogen alone would produce a 

value of HI above 1. Results are provided in Table 4 below. 

Table 4 can also be sub-divided into the contributions from water and food pathways. To obtain the 

percentages associated with perchlorate in water, multiply the total perchlorate contribution under any 

of the three approaches (with or without serum half-life correction) by 4%. For nitrates in water,  

multiply the total nitrates contribution under any of the three approaches (with or without serum  

half-life correction) by 6%. For thiocyanates, the contribution is solely from food in this study. 

5. Conclusions 

This study uses iodide uptake inhibition as a marker for adverse effect, the regulatory aim being to 

prevent such adverse effects. While uptake inhibition is not strictly an adverse effect in and of itself,  

it is at the least one mechanism that will cascade upwards to adverse effects if the perturbation to thyroid 

function is sufficient. Hence the use of the precursor (uptake inhibition) rather than data on explicitly 

adverse effects, provides a degree of conservatism or precaution into the analysis. 

For Approach 3, the percentages of individuals with an HI above 1 ranges between 30.2% and  

50% both with and without serum half-life correction. This is because any increase in background 

goitrogen exposures assumed for the Greer et al. study [4] produces simultaneously a higher LOEL 

(PEC) and higher ADRIs for Table 1. As a result, the mean of the ADRI values equals the mean of the 

background exposures assigned in interpreting the Greer et al. [4] study.  

The same is not true for Approach 4 due to the use of the exposure-response function instead of a 

LOEL. In this case, for a 50% required inhibition, the percentage of the population with an HI above  

1 is 1.1% or less with no serum half-life correction, rising to as high as 11% for some age groups when 

serum half-life correction is applied.  

For Approach 4b, which uses a threshold of 0% inhibition, the percentage of the population with an 

HI above 1 is 46.2% or less with no serum half-life correction, rising to as high as 47.2% for some age 

groups when serum half-life correction is applied  
 



Int. J. Environ. Res. Public Health 2015, 12 10386 

 

Table 3. Contribution to Variance results, showing the percentage of the inter-subject variation in ADRI associated with each of the indicated 

factors (columns) associated with each age group. The upper table contains the results without half-life correction,  

and the lower table presents the same results with half-life correction. 

Age Group 

Contribution to Variance  

Perchlorate 
in Water 

Perchlorate 
in Food 

Nitrate in 
Water 

Nitrate in 
Food 

Thiocyanate 
in Water 

Thiocyanate 
in Food  

Water 
Exposure 

Factor 

Food 
Exposure 

Factor 
SUM 

1–3 months 2 3 17 49 0 14 4 11 100 

2–3 years 3 5 13 52 0 15 4 8 100 

6–11 years 3 5 14 55 0 13 3 7 100 

18–21 years 3 4 15 56 0 12 3 7 100 

>21 years 2 4 15 57 0 12 3 7 100 

Pregnant women 2 4 15 58 0 11 3 7 100 

Contribution to variance  

Age Group 
Perchlorate 

in Water 
Perchlorate 

in Food 
Nitrate in 

Water 
Nitrate in 

Food 
Thiocyanate 

in Water 
Thiocyanate 

in Food  

Water 
Exposure 

Factor 

Food 
Exposure 

Factor 
SUM 

1–3 months 2 3 8 19 0 53 4 11 100 

2–3 years 3 5 7 18 0 55 4 8 100 

6–11 years 3 5 7 22 0 53 3 7 100 

18–21 years 3 4 6 20 0 57 3 7 100 

>21 years 2 4 6 20 0 58 3 7 100 

Pregnant women 2 4 9 23 0 52 3 7 100 
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Table 4. Summary of results for the percentage of the total population with an HI value above 1, solely from the intakes of the individual 

goitrogens examined. The sums of these percentages are the values in Table 2, as Table 2 does not sub-divide results by goitrogen. The upper 

table contains the results without half-life correction, and the lower table presents the same results with half-life correction. 

Age Group   Percentage of Population with HI > 1 Due to the Single Goitrogen Indicated 
     Approach 3       Approach 4      Approach 4b   
    Perchlorate   Nitrates   Thiocyanates  Perchlorate  Nitrates   Thiocyanates  Perchlorate  Nitrates  Thiocyanates 
                                 
1–3 months 0.25   28.20   3.10  0.00  0.42   0.08  0.22  26.78  3.10 
2–3 years   0.40   46.50   3.13  0.01  0.81   0.25  0.38  43.60  2.22 
6–11 years 0.35   47.30   2.30  0.01  0.89   0.20  0.31  43.67  2.22 
18–21 years 0.21   29.10   1.07  0.00  0.24   0.06  0.18  26.90  1.12 
>21 years   0.24   28.90   1.26  0.00  0.20   0.05  0.18  26.90  1.12 
Pregnant women 0.29   38.40   2.10  0.00  0.39   0.11  0.24  35.10  2.06 
Age Group   Percentage of Population with HI > 1 Due to the Single Goitrogen Indicated 
     Approach 3      Approach 4      Approach 4b   
    Perchlorate   Nitrates   Thiocyanates  Perchlorate  Nitrates   Thiocyanates  Perchlorate  Nitrates  Thiocyanates 
                                 
1–3 months 0.25   9.70   22.00  0.00  1.50   3.60  0.22  9.30  21.08 
2–3 years   0.40   9.60   40.00  0.01  3.19   7.80  0.38  9.60  37.22 
6–11 years 0.35   11.50   38.10  0.01  3.19   7.80  0.31  10.10  36.79 
18–21 years 0.21   9.20   20.80  0.00  0.28   0.82  0.18  8.85  19.07 
>21 years   0.24   9.20   20.80  0.00  0.32   0.78  0.18  8.85  19.07 
Pregnant women 0.29   9.40   30.40  0.00  1.80   3.60  0.24  8.20  27.66 
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Several other conclusions emerge from this probabilistic approach to risk assessment for cumulative 

and aggregate risks from the goitrogens considered here: 

• While there are exposed groups and/or sensitive subpopulations where perchlorate exposures 

are the primary cause of individuals having HI values above 1, these pockets constitute 

significantly less than 1% of the population (see Table 4).  

• For individuals with an HI value above 1, the potential risk from exposure to goitrogens is 

dominated by nitrates when there is no serum half-life correction and thiocyanates with serum 

half-life correction applied (again, see Table 4). 

• If perchlorate is to be regulated in water and /or food, effective allocation of risk management 

resources for goitrogen-induced effects is best focused on identifying the pockets of the 

exposed population and/or sensitive subpopulations in which perchlorate intakes through water 

and/or food are the cause of individuals having HI values exceeding 1 (see Table 4).  

The analysis suggests this will be the case in less than 0.4% of the population for water and 

food together in the US population examined here.  

Finally, it should be noted that the Monte Carlo analysis employed here contains the implicit 

assumption that a sampled individual is exposed at the same concentration to a given goitrogen in water 

or a food category each day. For example, if they are selected (from the probability distributions) to 

consume water at a perchlorate concentration of X, they will have this same concentration in each day. 

This in turn assumes perfect correlation between the daily concentrations to which an individual is 

exposed over any multi-day period of time, for a given exposure pathway and water/food category.  

This assumption may be valid for water intakes, since individuals tend to receive water from a single 

source throughout an exposure period (again, unless they are travelling). However for food, an individual 

will consume different mixtures of food products as well food obtained from different sources for the 

same food product over a period of time. When considering acute disease, this issue is not significant, 

since one is interested in individual daily exposures within the risk assessment. However, for short term 

effects such as the 14 day study characteristic of the Greer et al. [4] study or chronic exposures,  

the assumption of perfect correlation between daily concentrations will produce a wider (higher 

variance) distribution of exposures between individuals than would be the case if there was no correlation 

at all, since the sample of different sources of the food categories would tend to average out exposures 

to a given individual over the exposure period, moving all individuals closer to the median for the 

population.  

The consequence of this is that the methodology used here will tend to overstate the percentage of the 

population with an HI value above 1 when short term or chronic exposures are of interest. Hence the 

current results produce an overstatement of the risk resulting from this assumption of complete 

correlation between daily concentrations. Unfortunately, the available data do not allow for calculation 

of this temporal correlation, or of its effect on results such as those in Tables 1, 2 or 4. The justification 

for continuing with the assumption used here is that it tends to be health protective, overstating rather 

than understating the percentage of the population with an HI value above 1. 
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