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Identifying the germline genes involved in immunoglobulin rearrangements is

an essential first step in the analysis of antibody repertoires. Based on our prior

work in analysing diverse recombinant viruses, we present IgSCUEAL

(Immunoglobulin Subtype Classification Using Evolutionary ALgorithms),

a phylogenetic approach to assign V and J regions of immunoglobulin

sequences to their corresponding germline alleles, with D regions assigned

using a simple pairwise alignment algorithm. We also develop an interactive

web application for viewing the results, allowing the user to explore the

frequency distribution of sequence assignments and CDR3 region length stat-

istics, which is useful for summarizing repertoires, as well as a detailed viewer

of rearrangements and region alignments for individual query sequences. We

demonstrate the accuracy and utility of our method compared with sequence

similarity-based approaches and other non-phylogenetic model-based

approaches, using both simulated data and a set of evaluation datasets of

human immunoglobulin heavy chain sequences. IgSCUEAL demonstrates

the highest accuracy of V and J assignment amongst existing approaches,

even when the reassorted sequence is highly mutated, and can successfully

cluster sequences on the basis of shared V/J germline alleles.
1. Introduction
Vertebrates have evolved sophisticated mechanisms of immunity in response to

pathogens, which as a consequence of their typically shorter generation time,

place significant selection pressure on their hosts to respond on a commensurate

time scale. Antibodies, which can block infection through binding [1], are gen-

erated through rearrangement of germline genes, with subsequent somatic

mutations that result in a potentially diverse repertoire of antibodies that can

combat pathogens that themselves may exist as a diverse swarm, or ‘quasi-

species’. Indeed, the immune system is capable of producing such a diversity

of somatically generated antibody gene sequences that it can exceed by many

orders of magnitude the total number of lymphocytes present in the host.

With the advent of high-throughput sequencing platforms, insights can be

gained into the microevolutionary events that shape antibody repertoires,

and into the underlying mechanisms [2]. This information can be used to aid

vaccinology studies through a mechanistic understanding of how exposure to

an antigen may lead to immunity, and can yield insights into the pathogenesis

of disorders such as acute lymphoblastic leukaemia, chronic lymphocytic

leukaemia and systemic lupus erythematosus.

Diversity in the immunoglobulin heavy chain (IGH) repertoire is generated

by four processes: combinatorial choice of V, D and J regions; deletions in the V,

D and J regions; addition of palindromic (‘P’-) and non-templated (‘N’-) nucleo-

tides at the junctions; and somatic hypermutation [3]. As a result, repertoires are
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Figure 1. A maximum-likelihood phylogeny of unique functional (F and ORF) germline V genes. Individual family clades have been collapsed to represent the tree
more compactly, while showing the diversity encompassed by the clade. The counts of unique family members (*01 alleles) and total allelic variants are shown as
the first and second numbers following family names, respectively. The clade for the V5 family is shown in the enlarged inset, and demonstrates some conventions
used for assigning labels to internal nodes in the tree. For example, the internal node V5-51*01 inherits its label from a child node with a branch length of zero. In
the context of phylogenetic likelihood, this implies that the sequence at the internal node is identical to that of the descendant node, justifying label propagation.
The parent of the V5-51*01 internal node is labelled V5, because it is the most fully resolved label shared by all of its descendants (V5-51*xx and V5-10*xx alleles),
and none of its children have branch lengths of zero. The main body of this figure, as well as of figures 2 and 4, were generated using an interactive web application
used to view IgSCUEAL results.
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composed of clonotypes with different germline origins.

Characterization of these clonotypes allows us to assess how

much diversity in the repertoire is due to germline variation

within V, D and J genes at the population level, as well as

to determine the extent of somatic hypermutation. The import-

ance of dividing a repertoire into clonotypic ‘building blocks’

depends on the application. In B-cell lymphoma, assessment

of the mutational status of V regions is relevant in determining

whether tumour cells originate from virgin B cells or from

germinal centre and postfollicular B cells. Identification of

biases in gene usage is also relevant in the study of autoimmune

diseases. Some microbial pathogens produce super-antigens

which target relatively conserved motifs in a large swath of

the repertoire, tracing their origins to a subset of the V genes;

in these applications the assignment of individual IGH

sequences to V(D)J rearrangements is of primary interest [4].

To start to fully define a clonotype, regions of immunoglobu-

lins that originate from V, D and J genes must be identified and

assigned to their respective germline genes. Methods for V(D)J

assignment fall into two classes: alignment-based methods

(JOINSOLVER [5], IMGT/V-Quest [6,7], Ab-origin [8] and

IgBLAST [9]), and model-based methods (e.g. iHMMuneAlign

[10], SoDA [11], and SoDA2 [12] which are based on Hidden

Markov Models, and others [13,14]). However, none of these

approaches take the phylogenetic relationship between germline

genes into account, which is particularly prominent for V genes

(figure 1); in fact, V gene families form distinct phylogenetic

clades which recapitulate the original delineation based on
amino acid sequence similarity. A phylogenetic approach to

V(D)J assignment may be useful in a number of ways: firstly,

as probabilistic models of evolution can be used, it is possible

to quantify the uncertainty with which a query sequence is

assigned to a particular germline; secondly, this approach per-

mits a query sequence to cluster with an ancestral sequence.

This may occur when sequences are highly mutated, such that

the identity of the germline alleles is obscured by saturation of

mutations, or when the reference set of germline sequences is

incomplete. While the human and mouse genomes have been

mapped extensively, there is increasing interest in analysing

immunoglobulin repertoires for other species for which the

genomes have not been fully annotated. For example, while

only 23 IGHV annotated genes exist in the IMGT database

for the rhesus macaque Macaca mulatta [15], 63 IGHV-like

sequences have been identified in the macaque genome using

a bioinformatics approach [16].

Application of these tools to data from mass sequencing

platforms yields a glut of information that is difficult to

digest. Binning of millions of reads into unique V(D)J rearrange-

ments is important both as a sensible approach to data

reduction (clustering similar reads), and as a means to pull

out a subset of the repertoire that is of specific interest, e.g. all

those sequences that match a pre-defined rearrangement, for

instance as is now common in HIV-1 vaccine research [17].

Interactive tools that allow the user to explore the composition

of immunoglobulin repertoires can help to interpret repertoire

sequencing (‘Rep-Seq’) data in a more manageable way. Even

http://rstb.royalsocietypublishing.org/


D1-
1

D1-
14

D1-
20

D1-
26
D1-

7

D1/O
R15

-1
a

D2-
15

D2-
2

D2-
21
D2-

8

D2/O
R15

-2
a

D3-
10

D3-
16
D3-

22
D3-

3
D3-

9

D3/O
R15

-3
a

D4-
11

D4-
17
D4-

23

D4/O
R15

-4
a

D5-
12

D5-
18

D5-
24

D5/O
R15

-5
a

D6-
13

D6-
19

D6-
25
D6-

6

D7-
27

J6
*0

2

100V3-23*01,J6*02 (49.90%)

D gene

J 
al

le
le

V3-
23

*0
1

V3-
23

*0
2

V3-
23

*0
3

V3-
23

*0
4

V3-
23

*0
5

J6
*0

2

1000

V3-23,J6*02 (60.91%)

V allele

J 
al

le
le

V3-
23

V3-
30

-3

V3-
NL1

J6
*0

1

J6
*0

2

J6
*0

3

J6
*0

4

1000
V3,J6 (61.15%)

V gene

J 
al

le
le

all rearrangements

V family

J 
ge

ne

V3

J1

J2

J3

J4

J5

J6

J?

1000

Figure 2. A visualization of the rearrangements inferred by IgSCUEAL for the
6329 immunoglobulin sequences from Ohm-Laursen et al. [13]. The four plots
show the proportions of sequences inferred for (bottom to top): all rearrange-
ments, rearrangements assigned to the IGHV3 family and IGHJ6 gene (61.15%
of total), rearrangements assigned to the IGHV3-23 gene and IGHJ6*02 allele
(60.19%) and those assigned to the IGHV3-23*01 and IGHJ6*02 alleles (49.90%).
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how an assignment is reached for an individual sequence may

be of interest, especially for heavily mutated sequences that

have diverged substantially from the germline.
Our aims are twofold: firstly, we present a phylogenetic

approach to identifying recombination breakpoints and assign-

ing germline genes from rearranged immunoglobulin genes.

By using a model of substitution, we can generate a quantitative

comparison of different V(D)J assignments, while the use of a

phylogeny allows for the possibility that the true germline alleles

are absent from the reference data. Secondly, we demonstrate

interactive visualizations of rearrangements in antibody reper-

toire data, as well as a detailed viewer of rearrangements for

an individual sequence. We apply our approach to simulated

data, to data from genotyped individuals and to clonal data.
2. Material and methods
(a) Obtaining reference sequence data
Sequences of human IGHV, IGHD and IGHJ were downloaded

from IMGT (http://www.imgt.org/vquest/refseqh.html), using

reference directory release 201443-5 (24 October 2014), and periods

in these datasets, introduced in order to achieve a consistent

numbering scheme for immunoglobulins, were removed. Pro-

tein displays of IGHV were also downloaded (http://www.

imgt.org/IMGTrepertoire/Proteins/index.php), which gives the

boundaries for the framework and complementarity determining

regions (FR1–3, CDR1–3) for each of the primary (*01) alleles.

We restricted our analysis to functional genes and open reading

frames (ORFs), resulting in 290 V genes, 44 D genes and 13 J genes.

(b) Generating a reference alignment for IgSCUEAL
As IgSCUEAL uses a phylogenetic approach to assign V and J

regions, the algorithm requires a multiple sequence alignment

(MSA); specifically, we employ a codon-based MSA, which

allows us to employ more biologically realistic codon-based

substitution models when reconstructing ancestral sequences,

subsequently used by IgSCUEAL for query homology matching

and alignment (see §2c,d). V genes were aligned using a codon-

based algorithm implemented in MACSE v. 1.01b [18], and J

genes were aligned in nucleotide space using MUSCLE v. 3.8.31

[19], with further manual refinements; codon alignment was

found to be necessary for V gene sequences, despite the increased

computational expense and manual alignment tuning, which we

found necessary when using MACSE. Duplicate sequences (after

excluding gaps) were filtered from the alignment, resulting in a

reduction in the V genes for the human reference dataset to 282

functional genes plus ORFs. Phylogenetic trees were reconstructed

separately for the V and J alignments using CodonPhyML [20], and

rooted in a way that separates individual families (e.g. V1, V2, etc.)

into complete clades that are descendant from the root, and does

not make single sequences direct descendants of the root. V and

J alignments were merged into a ‘block-matrix’ format. The

merged alignment was augmented with computationally derived

most recent common ancestors (MRCAs) for V and J alleles. Each

terminal branch in the trees for V and J regions was annotated

with the corresponding germline allele (e.g. V5-51*01), and each

internal branch was assigned a parsimony-derived classification

based on the labelling of its descendant branches (figure 1).

D allele sequences were included separately as a dictionary in a

HyPhy batch language file, for matching via an alignment

approach. We considered both forward and inverted D sequences,

although the latter may play only a minor role in shaping IGH

diversity [13].

(c) Mapping sequence regions
The query immunoglobulin sequence is codon-aligned to the set

of user-designated references, which always includes the MRCA

http://www.imgt.org/vquest/refseqh.html
http://www.imgt.org/vquest/refseqh.html
http://www.imgt.org/IMGTrepertoire/Proteins/index.php
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Figure 3. Phylogenetic trees of clonally related IGH sequences, reconstructed by maximum likelihood, and rooted on the centre of the tree (see Material and
methods §2g(iii)). These illustrate the high level of genetic diversity in these datasets (13.4%, 11.7% and 12.0% for (a), (b) and (c), respectively), as well as
the variable divergence from the root sequence, despite all sequences in a dataset being sampled at the same time. These trees do not illustrate the level of
divergence of these sequences from their germline genes (figure 4).
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of V and J segments (i.e. no D) reconstructed using joint max-

imum likelihood under the MG94 � GTR model of evolution

fitted to the topology generated by CodonPhyML; this sequence

is inferred once during reference construction, and is the same for

all queries. For the F þORF reference set used here, we further

aligned the query to all combinations of *01 alleles of IGHV and

IGHJ, and selected the mapping yielding the best homology

score. Because the reference alignment encodes FR and CDR, we

segment the query sequence into corresponding regions based on

how it maps to the reference alignment. A productive rearrange-

ment (i.e. one without premature stop codons) is inferred if an

in-frame junction region can be extracted. The junction region

is defined as spanning the sequence from the 30 cysteine in the

germline FW3 region, to either the beginning of the J-region as

defined by the ‘[FW]G.G’ regular-expression motif in the J region,

or—should the motif be absent—to the position preceding the

conserved tryptophan in the MSA of the J region.
(d) Rearrangement classification
Our algorithm is an adaptation of the previously published

SCUEAL (Subtype Classification Using Evolutionary ALgorithms)

method [21], originally developed to classify HIV-1 isolates

into pure and mosaic (recombinant) subtypes. An early imple-

mentation of IgSCUEAL has been used to classify Vk L chain

transcripts in mice exposed to a B-cell superantigen [22]; we have

refined the approach significantly, and in this study, we focus on

reassortments involving the human IGH locus, although the

approach is more widely applicable to a range of species and

loci. The algorithm proceeds in the following stages (see figure 2

for an example). Firstly, the CHC genetic algorithm [23] based

on elitist selection, rapid mixing through free recombination, and

small population size (needed for computational tractability), is

used to search for the best fitting model that encodes the placement

of the query V segment in the V reference tree, the placement of the

query J segment in the J reference tree, and the location of the

breakpoint separating the sequence into the V and J segments.

The fitness of each model is determined by the small-sample

AIC (AICc) score based upon the fit of the GTR nucleotide
substitution model to the sequence alignment. Although in prin-

ciple, we could use the MG94 � GTR codon substitution model

used to fit the reference alignment and generate ancestral

sequences, this would slow down IgSCUEAL by two orders of

magnitude, and is unlikely to give dramatically different results.

Owing to the time reversibility of the model, the problem of opti-

mizing the phylogenetic likelihood when one sequence is attached

to a fixed reference tree at a given branch, is computationally

equivalent to optimizing branch lengths in three-taxon trees, and

can, therefore, be run largely independently of the size of the refer-

ence tree. Secondly, upon convergence, each model considered by

the CHC algorithm is assigned an Akaike weight: exp[20.5(AICc 2

min AICc)], scaled so that all model weights add to unity, which is

then interpreted as evidence in support of this model. The V–J com-

bination with the highest total model weight is reported as the

inferred rearrangement, and all other rearrangements with at

least 0.01 Akaike weight are reported as alternatives. Thirdly, the

D allele which has the highest nucleotide alignment score (com-

puted using the standard Smith–Waterman algorithm with affine

gap penalties) with the junction region of the query is reported as

the inferred allele; in the case where multiple D alleles yield the

same alignment score, they are all reported as equally likely.
(e) Clustering rearrangements
Inferred rearrangements are often used to help operationally to

define a clonotype [24,25]. For putatively clonal sequences, we

constructed a network where nodes represent each sequence

and edges between nodes represent whether there are rearrange-

ments in common between each sequence’s credible set. The

distribution of strongly connected components of this network

was used to summarize the extent to which assignments cluster

together clonally derived sequences.
( f ) Comparison with other software
We compared IgSCUEAL with several other tools, including

IMGT/HighV-QUEST v. 1.3.1 [26], IgBLAST v. 1.4.0 [9] and iHM-

Mune-Align (1-06-2007) [10]. A binary version of SoDA (Somatic

http://rstb.royalsocietypublishing.org/
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Diversification Analysis, v. 1.1) was extracted from Automation

[27], and Python scripts were used to run SoDA for each query

sequence and to parse the output. We also used vdjalign (http://

github.com/cmccoy/ighutil), a simple Smith–Waterman align-

ment-based program previously used in an evolutionary analysis

of immunoglobulin repertoires [28], vdj (http://github.com/

laserson/vdj), as used in [25] and Cloanalyst (v. 2015/1), a

model-based approach using algorithms described in [14]. With

the exception of vdj and vdjalign, which used a larger reference

dataset, all programs employed the same F þORF reference data-

set. Uncertainty in IgBLAST was accommodated by considering

the top three hits, while the IMGT/HighV-QUEST reports a list

of assignments of variable length.

(g) Datasets
(i) Simulated data
We developed a simulation program to generate rearranged

immunoglobulin sequences from the human germline IGHV

(n ¼ 282), IGHD (n ¼ 44) and IGHJ (n ¼ 13) sequences, consider-

ing only unique alleles present in the IgSCUEAL reference

alignment. We first considered simple rearrangements in which

all possible combinations of IGHV, IGHD and IGHJ *01 alleles

were considered, obtained by concatenating the germline

sequences (n ¼ 12 060). We also simulated a set of 10 000

sequences under a more realistic model that included random

deletions and addition of N-nucleotides. Alleles were sampled

at random, using the number of alleles per gene as inverse

weights, in order to avoid oversampling genes with many alleles.

The lengths of deletions in the 30 end of the V region, the 50 end

of the J region, and both ends of the D region as well as the

lengths of the N1 and N2 regions were drawn independently

from the distributions inferred by Jackson et al. [29]. The base

composition of the simulated N1 and N2 regions was sampled

from an empirical distribution obtained from a concatenation of

the inferred N1 and N2 regions. Simulated regions were retained

if the rearranged gene was (i) free of stop codons, (ii) contained a

CDR3 region recognizable by the regular expression proposed

by D’Angelo et al. [30] and (iii) had an in-frame J region, with

the conserved ‘[FW]G.G’ and ‘TVSS’ motifs. Mutations were also

added using the S5F model proposed by Yaari et al. [31]. Simulated

unmutated sequences were split into 5-mers, and mutability for

each 5-mer calculated; the mutability of the first two and last

two positions was set to zero. The position of the mutation was

randomly chosen using mutability values as weights. Given a

mutation at a position, the base was randomly chosen based on

the probabilities, given the 5-mer, according to the S5F model.

Two datasets were generated with either 40 or 80 mutations per

sequence, using the 10 000 unmutated sequence dataset as ‘seed’

sequences. We also generated 100 clonal datasets by randomly

selecting 100 unmutated rearranged sequences (including inser-

tions and deletions), ‘cloning’ each sequence 100 times and

adding either 40 or 80 mutations per sequence.

(ii) Datasets from genotyped individuals
The Stanford S22 dataset has been used previously to benchmark

human antibody gene alignment utilities [32]. This dataset

was derived from an individual who had been fully genotyped;

the performance of a utility is determined by the proportion of

sequences that are assigned a germline gene that is absent from

the individual. A FASTA-formatted dataset containing 13 153

sequences was obtained from http://www.emi.unsw.edu.au/�
ihmmune/IGHUtilityEval; this website was also used to

download results from other software packages (e.g. SoDA2)

that were not available at the time of writing, and to evaluate

assignments from IgSCUEAL. Following [13] and [8], we ana-

lysed a set of 6329 clonally unrelated IGHV3-23-IGHD-IGHJ

rearrangements, obtained from individuals homozygous for
IGHV3-23*01 and IGHJ6*02, and amplified using primers

intended to be specific for IGHV3-23; the original study also

amplified a number of IGHV3-h pseudogenes, which were

excluded from the analysis.

(iii) Clonally related datasets
Clonally related datasets provide a means to assess both germ-

line accuracy and identification of junctions. While the exact

V(D)J regions are unknown, all sequences should share the

same assignment, as well as junction locations. We used two

datasets derived from IgDþ IgM-CD38þ B cells, one of 57

sequences (GenBank accessions AF262145–AF262201, extracted

from PopSet 8810007 [33]) and one of 106 sequences (GenBank

accessions EF544883–EF544988 [34]). We also analysed 11

sequences from an HIV-infected individual, donor N152, the

source of the broadly neutralizing antibody 10E8 [35], which rep-

resents a highly mutated (ca 20% divergence from germline)

clonal dataset [36] (GenBank accessions KC754704–KC754714).

In order to reduce the effect of somatic hypermutations, we

also generated ancestral reconstructions of the sequences using

a centre-of-tree (COT) approach, as implemented in the

DIVEIN server [37]; COT sequences were derived from MSAs

of the clonal datasets obtained using MACSE v. 1.01b [18].

Given a nucleotide alignment, DIVEIN uses PhyML (v. 3.0.1

[38]) to obtain a maximum-likelihood tree, assuming a GTR

model with rate heterogeneity modelled as a discretized

gamma distribution with four categories plus a proportion of

invariant sites.

(h) Implementation
IgSCUEAL is implemented as a HyPhy [39] batch file, with

additional processing via Python 3 scripts, included in the

IgSCUEAL distribution. Sequences can be screened in parallel

using a message passing interface (MPI) implementation, achiev-

ing throughput amenable to NGS datasets. We have developed

several standalone web applications so that IgSCUEAL output

can be more readily explored and interpreted. Our applications

run in any modern web browser and consume JSON files gener-

ated by various modules of IgSCUEAL. They are based on

popular open-source libraries, including jQuery, d3 and Bootstrap,

and are implemented in HTML5 and JavaScript. Figures 1, 2 and 4

supply examples of outputs generated by these tools. The simu-

lation programs were written in Python. The versions used in

this manuscript, along with the evaluation datasets, are included

in the electronic supplementary material, and an up-to-date ver-

sion of the software and public server instance hosting web

visualization applications are linked from http://antibodyo.me.
3. Results
The reliable assignment of rearranged immunoglobulin genes

to their respective germline alleles is an important first step

in the analysis of antibody repertoires, to determine germline

gene usage, as well as to help characterize clonotypes within

the repertoire. Like other methods, our approach, IgSCUEAL,

employs reference datasets of germline alleles, but unlike

other approaches, we assume that immunoglobulin gene

families for a given region are related to one another. In

addition, we employ a statistical model of sequence evolution,

which allows us to generate a weighted set of assignments,

rather than a single ‘best hit’, which we use as the basis of a

simple algorithm to identify sequences that may be clonally

related (or strictly speaking, to separate sets of sequences that

are not clonally related). In most biological datasets, the true

germline alleles are not known, so in order to evaluate our

http://github.com/cmccoy/ighutil
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Figure 4. IgSCUEAL classification results for AF262201 from the PW57 dataset. Based on �20 000 phylogenetic attachment models examined by IgSCUEAL, the
best-supported rearrangement is V4-34*04 (D3-10*01) J3*02. Alternative rearrangements, all involving V4-34 and J3 alleles are shown in panel (a). The inferred
model-averaged support for attaching the J and V regions of AF262201 to various branches in the reference trees (most of the V tree has been collapsed for clarity)
are shown as branch colours in panels (b) and (c), respectively.
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method, we make use of both simulated data and some more

unusual biological datasets that can provide insights into the

performance of V(D)J assignment algorithms.
(a) Simulated data
We first explored the accuracy of our method using a suite of

simulated datasets where the correct rearrangements are

known. In addition to rearranged sequences, IgSCUEAL can

also classify V genes. IgSCUEAL correctly identified all V

alleles (allowing for genetically identical alleles to be mapped

to their single representative in the reference alignment),

although the support, in terms of Akaike weights, varied by

allele. This reflects differences in the ability to discriminate

between alleles that arise because of the phylogenetic structure

of the V gene reference alignment.

For V(D)J rearrangements, we considered three scenarios:

firstly, simple rearrangements were generated by concatenat-

ing V, D and J germline genes (*01 alleles only), resulting

in 12 060 possible combinations. Similarity-based methods

such as IgBLAST [9] are expected to work well in this

scenario, as an exact match to the germline is possible if the

alignment to the regions is correct. IgSCUEAL exhibited
similar accuracy to IgBLAST in this setting for V and J regions

(the few misclassifications for V and J are because of the sto-

chastic nature of the GA where it failed to converge to the

correct solution).

Secondly, we considered rearrangements with insertions

and deletions: we deleted the 30 region of the V gene, the

50 region of the J gene, and both the 50 and 30 ends of the D

gene, and N-nucleotides were added between the V and

D regions, and between the D and J regions. As described in

Material and methods §2g(i), the lengths of the insertions and

deletions, as well as the base composition of the N-nucleotides,

were taken from biological data [29]. Ten thousand simulated

sequences were generated using all functional and ORF germline

sequences. IgSCUEAL makes only four mistakes in classify-

ing the V allele, and always misclassifies the gene only once

(table 1). In a small proportion of cases (1.46%), the correct

allele is not the one given the strongest phylogenetic support,

but the correct one is included in the list of alternative assign-

ments. The J allele is classified correctly in 99.7% of cases. Indel

variation dilutes the already weak signal for the D region

(especially for the shorter alleles), causing IgSCUEAL to misclas-

sify the D allele in 29% of cases. For V and J alleles, however, the

performance of IgSCUEAL is similar to IgBLAST.

http://rstb.royalsocietypublishing.org/


Table 1. Comparative method performance on simulated data. The correct column reports the proportion of sequences where the correct germline allele
received the highest model-averaged support (IgSCUEAL) or was the single result reported by other tools, or where correct allele received greater than 1%
model-averaged support in IgSCUEAL, but a different allele was inferred to have the highest support (for other methods, this is taken to include the cases
when multiple assigned alleles included the correct one). The latter proportion is indicated in parentheses. The proportion of cases for which one of the three
regions was not assigned a germline are tabulated in the no assignment column. The wrong column reports the proportion of miscalled sequences (either allele,
gene), with the proportion of sequences assigned to the wrong gene indicated in parentheses.

method

correct (alternative), % wrong (gene), % no assignment, %

V D J V D J V D J

simple rearrangements

IgSCUEAL 99.93 (7.60) 97.12 (0.00) 99.99 (0.32) 0.07 (0.07) 2.88 (2.78) 0.01 (0.00) 0.00 0.00 0.00

IgBLAST 100.00 (3.68) 100.00 (23.33) 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 0.00

iHMMune 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 0.00

SoDA 98.96 (0.00) 100.00 (0.00) 100.00 (0.00) 1.04 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 0.00

V-Questa 100.00 (10.91) 100.00 (0.00) 100.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 0.00

Clonanalysta 99.92 (0.00) 100.00 (0.00) 100.00 (0.00) 0.08 (0.05) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 0.00

vdja 95.89 (0.00) 100.00 (0.00) 100.00 (0.00) 4.11 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 0.00

vdjaligna 99.90 (0.00) 100.00 (0.00) 100.00 (0.00) 0.10 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 0.00 0.00

rearrangements with insertions and deletions

IgSCUEAL 99.94 (4.95) 70.01 (3.96) 99.69 (3.41) 0.06 (0.01) 29.99 (28.51) 0.31 (0.28) 0.00 0.00 0.00

IgBLAST 99.66 (2.85) 83.23 (27.98) 99.85 (0.86) 0.34 (0.01) 16.77 (16.50) 0.15 (0.11) 0.00 0.00 0.00

iHMMune 98.86 (0.00) 74.51 (0.00) 98.28 (0.00) 0.40 (0.00) 11.41 (9.07) 0.98 (0.74) 0.74 14.08 0.74

SoDA 98.57 (0.00) 77.56 (0.00) 94.52 (0.00) 1.43 (0.54) 22.44 (20.07) 5.48 (1.26) 0.00 0.00 0.00

V-Questa 100.00 (5.16) 74.17 (0.00) 97.85 (2.61) 0.00 (0.00) 23.71 (20.80) 2.12 (2.00) 0.00 2.12 0.03

Clonanalysta 84.02 (0.00) 75.55 (0.00) 99.46 (0.00) 15.95 (12.90) 24.42 (21.37) 0.50 (0.22) 0.03 0.03 0.03

vdja 80.51 (0.00) 75.03 (0.00) 96.48 (0.00) 19.49 (4.87) 24.97 (22.51) 3.52 (2.14) 0.00 0.00 0.00

vdjaligna 89.21 (0.00) 76.24 (0.00) 99.15 (0.00) 10.79 (4.87) 23.76 (21.41) 0.85 (0.49) 0.00 0.00 0.00

mutated sequences (40)

IgSCUEAL 99.57 (12.48) 46.95 (6.83) 98.73 (15.50) 0.43 (0.18) 53.05 (50.72) 1.27 (0.77) 0.00 0.00 0.00

IgBLAST 96.05 (9.27) 55.64 (26.32) 94.47 (8.36) 3.95 (0.69) 41.96 (41.50) 5.53 (3.09) 0.00 2.40 0.00

iHMMune 90.90 (0.00) 57.70 (0.00) 92.51 (0.00) 8.47 (0.71) 19.04 (16.26) 6.86 (2.28) 0.63 23.26 0.63

SoDA 91.33 (0.00) 54.95 (0.00) 82.82 (0.00) 8.67 (1.18) 45.05 (41.67) 17.18 (6.00) 0.00 0.00 0.00

V-Questa 96.30 (13.14) 53.87 (0.00) 93.38 (7.16) 3.70 (0.69) 44.52 (40.26) 6.61 (3.85) 0.00 1.61 0.01

Clonanalysta 77.13 (0.00) 58.34 (0.00) 89.20 (0.00) 22.49 (12.77) 41.28 (37.39) 10.43 (1.70) 0.38 0.38 0.38

vdja 75.96 (0.00) 57.35 (0.00) 89.39 (0.00) 24.04 (5.29) 42.65 (39.41) 10.61 (4.20) 0.00 0.00 0.00

vdjaligna 83.01 (0.00) 61.48 (0.00) 92.64 (0.00) 16.99 (5.30) 38.52 (35.38) 7.36 (1.87) 0.00 0.00 0.00

mutated sequences (80)

IgSCUEAL 98.91 (20.80) 26.63 (5.68) 96.62 (25.15) 1.09 (0.61) 73.17 (70.84) 3.18 (2.35) 0.00 0.00 0.00

IgBLAST 91.35 (14.52) 28.84 (18.28) 78.64 (16.99) 8.65 (2.48) 69.64 (69.25) 20.30 (16.40) 0.00 1.52 1.06

iHMMune 74.89 (0.00) 44.91 (0.00) 84.12 (0.00) 20.86 (6.37) 20.21 (17.94) 11.63 (5.84) 4.25 34.88 4.25

SoDA 80.49 (0.00) 26.38 (0.00) 64.13 (0.00) 19.51 (3.36) 73.62 (70.46) 35.87 (22.11) 0.00 0.00 0.00

V-Questa 91.59 (19.41) 33.60 (0.00) 85.70 (10.12) 8.41 (2.37) 63.48 (59.03) 13.96 (8.40) 0.00 2.92 0.34

Clonanalysta 64.24 (0.00) 31.10 (0.00) 72.16 (0.00) 27.59 (12.66) 60.72 (56.93) 19.67 (6.83) 8.17 8.17 8.17

vdja 70.53 (0.00) 31.73 (0.00) 78.02 (0.00) 29.47 (6.67) 68.27 (65.10) 21.98 (11.32) 0.00 0.00 0.00

vdjaligna 76.73 (0.00) 38.94 (0.00) 83.30 (0.00) 23.27 (6.49) 61.06 (57.83) 16.70 (6.84) 0.00 0.00 0.00
aLimited to the sequences composed of the subset of genes included in the reference set for the method.
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Finally, mutations (40 or 80 per sequence, representing

roughly 10% and 20% nucleotide divergence from baseline,

respectively) were introduced into the rearranged sequences

with insertions, deletions and N-nucleotides, using the S5F
model proposed by Yaari et al. [31]. This is a model that

considers the importance of sequence context (two bases

either side of a position of interest) in both the rate and

the type of mutation. While the simulations consider

http://rstb.royalsocietypublishing.org/


Table 2. Comparative model performance for the Stanford S22 dataset [32], based on the number of reads assigned to a germline allele (higher is better), and
the percentage errors at either the gene level or the allele level (lower is better).

method

reads assigned an allele, % incorrect gene, % incorrect allele, %

error, %V D J V D J V D J

IgSCUEAL 100 99.3 100 0.08 2.44 0 2.81 2.59 0.47 8.21

IgBLAST 97.7 97.3 97.3 0.35 2.16 0 3.11 1.80 0.86 8.06

iHMMune 93.5 92.0 93.5 0.21 0.94 0 3.35 1.27 1.95 7.50

IMGT/V-QUEST 100 99.7 99.9 0.25 2.37 0 5.82 2.4 1.57 11.69

SoDA 93.2 93.2 93.2 0.29 6.57 0 2.77 1.62 1.74 12.24

Cloanalyst 99.9 99.9 99.9 0.51 3.37 0 6.82 1.63 1.18 12.82

vdjalign 100 100 100 0.34 1.82 0 9.01 2.33 0.92 13.63

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20140240

8

 on August 28, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
context-dependence, the substitution model used by

IgSCUEAL does not; nevertheless, for mutated sequences,

IgSCUEAL outperforms IgBLAST in assigning V and J

regions. While performance generally drops with increasing

divergence from germline, this effect is not as extreme with

IgSCUEAL, such that its advantage over other methods

grows with more mutations (table 1). IgSCUEAL maintains

excellent performance in the V and J regions, returning the

correct allele in the set of credible assignments in 99.7%

and 98.8%, respectively, for the 40 mutation dataset, and

98.9% and 98.8% for the 80 mutation dataset. In most cases

(90% for V and 83% for J), the correct allele is also the most

probable one. When an error is made in V allele classification,

in four of five cases the algorithm still finds the correct gene;

for J alleles this proportion is about one in three. Sequences

simulated with insertions and mutations make homology-

based D-region recovery difficult, with only 48.2% of credible

assignment sets including the allele used for simulation. The

performance of IgSCUEAL matches or is superior to

IgBLAST in this setting.

The performance of other methods is shown in table 1. As

V-Quest uses the homology searches based on BLAST, its per-

formance tracks that of IgBLAST, albeit a direct comparison is

not easily possible, because the implementation of V-Quest

does not allow custom reference sets. Somewhat surprisingly,

hidden Markov model (HMM) tools (iHMMune, SoDA)

achieve uniformly inferior performance in classifying V and

J alleles on mutated sequences when compared with hom-

ology-based tools, while D region classification results are

better for HMM tools in these situations.

We initially hypothesized that higher levels of mutation

may result in query sequences clustering with ancestral

sequences; however, this was not the case for our simulated

data where higher levels of mutation result in larger credible

sets comprising alleles from the reference alignments. For the

simulations with insertions and deletions, the credible set (i.e.

those assignments with Akaike weights �0.01) of V regions

comprised four alleles (interquartile range, IQR, 3–6), increas-

ing to 6 (IQR 4–9) alleles for the 40 mutation simulations and

to 8 (IQR 5–12) alleles for the 80 mutation simulations.

(b) Sequences from genotyped individuals
The ‘Stanford S22’ dataset comprises 13 153 sequences from

an individual who was fully genotyped. The performance

of an algorithm is assessed by the proportion of sequences
that are assigned to a germline gene that is absent from

the individual [32]. IgSCUEAL achieves the lowest rates of

V and J misclassification among all methods compared,

which are the targets of phylogenetic screening, but performs

relatively poorly on D classification, highlighting the short-

comings of naive alignment-based assignment of short D

alleles (table 2).

We developed an interactive viewer of assignments and

statistics such as the distribution of CDR3 length aggregated

across sequences; this can be applied to data on immuno-

globulin repertoires, as well as on sequences obtained from

different individuals, to understand the composition at the

population level. To illustrate the latter (figure 2), we ana-

lysed a dataset previously studied by Ohm-Laursen et al.
[13], comprising 6329 immunoglobulin sequences which,

although clonally unrelated, were obtained from individuals

who had been selected on the basis of being homozygous for

IGHV3-23*01 and were sequenced using IGHV3-23 specific

primers. In addition, these individuals were homozygous

for IGHJ6*02; hence, the proportion of sequences assigned

to IGHV3-23*01 and the proportion of IGHJ6 sequences

assigned to IGHJ6*02 indicate the accuracy of the algorithm.

This is a challenging task, as IGHV3-23*01 and IGHJ6*02

alleles are difficult to classify, as they are similar to other

alleles. In the benchmarking assignment of germline genes,

IgSCUEAL maps IGHV3-23*01 to the correct allele with

only ca 50% support, allocating ca 25% support each to

IGHV3-23*02 and to IGHV3-23*05. Similarly, after excluding

a deletion at the 30 end, the human IGHJ6*02 allele only dif-

fers by a single nucleotide from IGHJ6*01. IgSCUEAL

inferred IGHV23*01/J6*02 rearrangement as the most prob-

able one for 49.9% of all the sequences in the file, assigned

99.82% of reads to the IGHV3-23 gene, 77.9% of all reads to

IGHV3-23*01, and 99.7% of sequences that mapped to

IGHJ6 were assigned to the *02 allele.

(c) Clonally related datasets
We analysed clonal datasets in order to assess the consistency

of assignment for a given clone. Ideally, the different sequences

within a clone should share the same V(D)J assignment.

As IgSCUEAL generates Akaike weights for a given assign-

ment, assignments for a clone can be combined over the

sequences. In addition, we clustered sequences together on

the basis of shared V and J alleles in their credible set. Although

the true rearrangement is not known with certainty, we also

http://rstb.royalsocietypublishing.org/
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generated a predicted rearrangement for an ancestral recon-

struction of the sequences (rooted at the centre of the tree).

Figure 3 illustrates that these clonal datasets exhibit significant

diversity (ca 12% mean pairwise distance, as calculated from

the branch lengths of the phylogeny). Hence, using an ancestral

reconstruction may help to reduce noise by removing at least

some of the somatic hypermutations.

We first analysed a dataset comprising 57 sequences, which

was derived from tonsillar B cells that are clonally related. For

the ancestral reconstruction, the predicted V/J rearrangement

was V3-34*04/J3*02 (52.5% support); there were 10 other

rearrangements with support greater than 1%, although all had

less than 10% support overall. Individual assignments for each

of the 57 sequences were broadly consistent with the assignment

of the ancestral sequence; V3-34*04/J3*02 was the commonest

‘best’ assignment (22/57), and also received the highest model-

averaged support (26.2%). Although not always the best assign-

ment, by clustering sequences together on the basis of shared V/J

assignments, IgSCUEAL clustered 56/57 sequences together

(one was too short to return any J assignment), while IgBLAST

clustered fewer (54/57) sequences together.

For the 106-sequence dataset, also derived from tonsillar

B cells, the difference in support for the ancestral reconstruc-

tion between the best rearrangement and the others was

lower; the predicted rearrangement was V4-34*01/J6*02

(19.2% support) with 11 other rearrangements with model-

averaged support of 1% or more, with the second most sup-

ported rearrangement having a support of 10%. V4-34*01/

J6*02 was also the best assignment for 63/106 sequences, and

had the highest model-averaged support (16.8%). By clustering

sequences together on the basis of shared V/J assignments,

IgSCUEAL clustered all 106 sequences together, while

IgBLAST clustered 104/106.

We also analysed 11 clonal sequences from donor N152,

an HIV-infected individual who was the source of the

broadly neutralizing antibody 10E8. This antibody is heavily

mutated—approximately 20% divergent from germline—to

the extent that SoDA was unable to generate assignments for

5/11 sequences. Using IMGT, Huang et al. [36] originally iden-

tified the heavy chain of 10 �108 as a V3-15*05/D3-3*01/J1*01

reassortment; for the ancestral reconstruction, IgSCUEAL also

supported a V3-15*05/J1*01 reassortment (65% support),

although there were five other supported assignments involv-

ing other V3-15 alleles, with V3-15*01 having the second

highest support (13%). V3-15*05/J1*01 was also the common-

est best assignment (5/11), although averaged over the

sequences, V3-15*07/J1*01 had the highest model-averaged

support (41.5% versus 32.6%). Both V3-15*05 and V3-15*07

were in the set of rearrangements for all sequences, and

all rearrangements included J1*01, and hence all sequences

clustered together on the basis of shared V/J rearrangements.

We also considered simulated clonal sequences, generated

by randomly sampling a ‘seed’ sequence from unmutated

rearrangements, and generating multiple sequences with

different sets of mutations. For 100 clones, each comprising

100 sequences with 40 mutations (ca 10% divergence) from

germline, IgSCUEAL clustered all 100 sequences together

on the basis of shared V/J assignments for 96 clones, with

a cluster size of at least 96 for the four clones where sequences

did not all cluster together. This result was robust to the

number of mutations (80 versus 40).

The above clonal datasets illustrate the variable level of

ambiguity when assigning reassorted immunoglobulin
genes to germline genes, as this is a function both of the

level of divergence of the reassorted gene, as well as on the

underlying phylogenetic structure of the reference germline

sequences. We used the 57 sequence clonal dataset to illus-

trate how detailed information on the assignment of an

individual sequence can be visualized (figure 4). In addition

to the inferred phylogenetic placement for V and J regions,

the interactive visualization (see the electronic supplemen-

tary material) also presents a summary of the inferred

rearrangements and their support, as well as amino acid

alignments of the FR and CDR in the V region, and the

J region of the query sequence and a set of inferred

germline alleles.
4. Discussion
Through the use of multiple simulated datasets and several

biological datasets, we have demonstrated that inclusion of

phylogenetic information can result in more accurate assign-

ment of reassorted immunoglobulin heavy (IGH) chains to

germline V and J alleles, particularly for mutated rearrange-

ments. The impact of mutations is mostly to increase the

uncertainty in assignment, which manifests as either compar-

able support across multiple alleles, or support for clustering

with an ancestral sequence. Further improvements to

IgSCUEAL may be possible through the use of more realistic

evolutionary models of somatic mutations, e.g. those that

consider context-dependent substitution. Like other phylo-

genetic placement approaches [40], IgSCUEAL comes at an

increased computational cost compared with highly tuned

similarity-based approaches such as IgBLAST; indeed, of

all the approaches, both similarity- and model-based,

IgSCUEAL is the most computationally intensive, despite

various optimizations in our implementation. Nevertheless,

we have employed IgSCUEAL in our own analyses on

datasets comprising hundreds of thousands of sequences. If

computational resources are limiting, IgSCUEAL may be

better placed for confirmatory rather than exploratory ana-

lyses. Given that IgBLAST works well for unmutated

sequences and is much faster than IgSCUEAL, screening

sequences using IgBLAST and determining the extent of

mutations may be a useful preliminary analysis prior to

using IgSCUEAL.

Although we consider the phylogeny of V and J germline

genes, we treat each query sequence independently; this is

not the case when studying immunoglobulin repertoires,

where there is shared ancestry within a clonotype. Phylo-

genetic approaches can be used to confirm clonality, through

the comparison of the phylogenies for the V, D and J regions,

as well as to obtain ancestral reconstructions of the rearranged

immunoglobulin, which may help to reduce noise in the V(D)J

assignments resulting from somatic hypermutation. The latter

approach may be particularly useful if there are repeated

samples of a repertoire from multiple timepoints; it may be

possible to trace the ancestry of a highly mutated sequence,

which is difficult to assign to germline genes, back to a less

mutated sequence.

The focus of our approach has been to characterize the V

and J regions of reassorted immunoglobulin genes, as these

regions can be aligned with a reasonable amount of

confidence at the germline level, and are sufficiently long to

be able to generate a reference-based phylogeny. For
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convenience, we provide a simple alignment-based approach

to identify the closest matching D allele, but like many other

approaches, the accuracy of D region assignment is poor. D

regions are short and highly variable at the germline level,

and may be obscured by deletions, somatic hypermutation

and convergent evolution [41] at the level of the reassorted

immunoglobulin gene, such that all traces of the original

germline may be obliterated. While it may be infeasible to

assume an underlying phylogeny for D germline alleles, a

probabilistic model of D region evolution—taking into

account, for example, the mutational load in the V and J

regions—may help to estimate a credible set of D germline

alleles. Other approaches which may result in further

improvement to D gene assignment include refinement of

scoring schemes based on evaluation datasets, an approach

taken by Ab-Origin [8] to improve assignments based on

BLAST, or pre-processing of the rearranged immunoglobulin

to identify regions using models such as conditional random

fields, an approach used by Malhotra et al. [42], prior to using

a different approach to assign regions to germline alleles.

As a query immunoglobulin sequence can cluster with an

ancestral sequence, IgSCUEAL may also be more robust to

missing alleles. However, if a gene is represented by only a

single allele in the reference set, and there are undescribed

alleles, then IgSCUEAL may assign a high support to an

incorrect allele, as there will be no ancestral sequence at the

allele level. The Akaike weights provided by IgSCUEAL as

a measure of support for a given rearrangement are con-

ditional on the reference alignment, and should be

interpreted cautiously for species where the immunoglobulin

gene diversity has not been fully explored. As the run time of

IgSCUEAL is largely independent of the size of the reference

dataset used, inclusion of putative germline immunoglobulin

sequences, for example V gene like sequences identified in

the genomes of mammals [43], can easily be included without

resulting in greatly increased computational cost.

With few exceptions (e.g. [28,35]), most studies of im-

munoglobulin genes have not attempted to use phylogenetic

approaches; in part, this stems from misconceptions regarding

phylogenetic analysis and model fitting. For example, Chen

et al. [24] stated:
Standard phylogeny inference methods are not suitable for explor-
ing clonal relationships within an immunoglobulin gene sequence
dataset as antibodies diversify through processes that differ
substantially from those of long time scale evolutionary events.
However, phylogenetic approaches have been gainfully

employed in the study of the evolution of HIV (and other

RNA viruses) within an infected individual [44], which is

characterized by high rates of mutation, recombination, and

selection—hardly less complex than that of immunoglobulin

genes. There is also the misconception that phylogenetic

approaches do not permit sampled sequences to be the

direct ancestors of others [45], or that they cannot be applied

when no mutations occur along an internal branch of the tree.

Under the maximum likelihood paradigm, these scenarios

can be accommodated by incorporating a branch of zero

length; this is the approach we take when comparing re-

assorted immunoglobulin genes to the reference germline

genes. Under the Bayesian paradigm, priors have been pro-

posed that allow polytomies [46] and sampled ancestors

[47]. While methods have to be adapted to take into account

the specifics of the underlying mechanisms, such as evolution

of a clone from a state largely determined by the germline, we

anticipate further growth of the application of phylogenetic

methods in the dynamics of immunoglobulin repertoires.
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