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ABSTRACT: We present two methods for barrierless equilibrium sampling of
molecular systems based on the recently proposed Kirkwood method (J. Chem.
Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations
among internal coordinates of a molecule for random (or non-Markovian) sampling
of the high dimensional conformational space. This is a geometrical sampling
method independent of the potential energy surface. The first method is a variant of
biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte
Carlo moves. Using this method, equilibrium distributions corresponding to
different temperatures and potential energy functions can be generated from a given
set of low-order correlations. Since Kirkwood samples are generated independently,
this method is ideally suited for massively parallel distributed computing. The
second approach is a variant of reservoir replica exchange, where Kirkwood
sampling is used to construct a reservoir of conformations, which exchanges
conformations with the replicas performing equilibrium sampling corresponding to
different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the
conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target
equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide.

1. INTRODUCTION

Equilibrium simulation of molecular systems entails sampling of
conformations from the appropriate distribution corresponding
to a thermodynamic ensemble, such as the Boltzmann
distribution for the isothermal canonical ensemble. Given a
potential energy function that describes the interatomic
interactions, equilibrium sampling is required to compute the
thermodynamic observables, such as internal energy and heat
capacity. Development of efficient sampling methods is an
important and highly active field of research in biomolecular
simulation and molecular science in general.1−4

Most thermodynamic sampling methods are based on either
the molecular dynamics (MD) or Monte Carlo (MC)
approaches. MD simulations are prone to trapping in local
minima of the potential energy surface (PES) if there exist
barriers that are larger than the available thermal energy.
Consequently, long simulations may be required for equilibra-
tion on the high dimensional energy landscapes corresponding
to biomolecules of practical interest. MC simulation involves
random perturbations, or moves, in the conformational space,
designed to preserve the canonical distribution. Due to the
random perturbations, the system may directly jump between
local minima of the PES. However, due to the bonded topology
and compact structures of biomolecules, large jumps in the
conformational space typically require cooperative motion of

multiple atoms. Designing such cooperative moves, which
satisfy detailed balance and are computationally efficient, is the
primary difficulty in the MC simulation of biomolecules.5,6

We recently developed a method,7 namely, Kirkwood
sampling, for surveying the N = 3M − 6 dimensional
conformational space of a molecule containing M atoms. The
key challenge in random conformational sampling of compact
biomolecules is to avoid steric clashes. Kirkwood sampling
addresses this problem by incorporating correlations among
internal coordinates, as captured by the joint probability
distribution between them. The joint distributions may be
obtained from relatively short high temperature MD or MC
simulation trajectories, or even using an informatics approach
by exploiting statistics from structural databases such as the
Protein Data Bank8 or the Cambridge Structural Database.9

Results for small molecules7 and small peptides10 suggest that
incorporating low order (pairwise and/or 3-fold) correlations
may be sufficient to greatly reduce the occurrence of steric
clashes in comparison with sampling that ignores all
correlations. This is fortuitous, since, in practice, sufficient
data is likely to be available for populating only the low order
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pdf’s. Furthermore, neglect of the higher order correlations
leads to greater coverage of the conformational space compared
to the data used to populate the joint distribution functions.
Kirkwood sampling is a geometrical conformational sampling

method, independent of the potential energy surface. In the
present contribution, we describe two new algorithms, which
combine Kirkwood sampling with existing Monte Carlo and
replica exchange based approaches. The idea in each case is to
improve convergence by taking advantage of the greater
conformational space coverage and random (or non-Marko-
vian) sampling properties of the Kirkwood procedure. This
paper is organized as follows. Section 2 describes the various
aspects of the underlying theory, including the Kirkwood
sampling algorithm, application of Kirkwood sampling for
conformational sampling of molecules, and the description of
the new equilibrium sampling algorithms introduced in this
work. Section 3 defines a model nine-atom molecule with an
unbranched chain topology, characterizes its energy landscape,
and presents a detailed analysis of the convergence of the new
algorithms. Section 3 concludes with results for alanine
dipeptide, a popular molecule11,12 for benchmarking simulation
approaches. Section 4 summarizes this work and discusses
directions for further study.

2. THEORY
2.1. Kirkwood Sampling Algorithm. Let X1, ..., XN be N

discrete random variables such that the ith variable takes Di

discrete values, Xi ∈ {vi,1, ..., vi,Di
}. We denote the kth order

probability distribution function (pdf) of a set of k such
variables (corresponding to coordinates in the present work)
{X1, ..., Xk} as pk(X1, ..., Xk). Using lower case letters for specific
values for a random variable, pk(x1, ..., xk), denotes pk(X1 = x1,
..., Xk = xk). The pdf’s are assumed to be normalized.
Kirkwood sampling refers to a family of algorithms for

sampling points in the full N-dimensional space consistent with
select joint distributions among different subsets of the
variables, as described previously.7 The doublet level Kirkwood
sampling employs only the 1-D, or singlet, p1(Xi), and 2-D, or
doublet, p2(Xi,Xj), pdf’s. In this work, we employ the doublet
level sampling algorithm, but extensions using different sets of
pdf’s are feasible.13 Algorithm 1 (main text) presents the
pseudo code for generating a point, x ⃗ = (x1, ..., xN), in the N-
dimensional space using the doublet level sampling algorithm.

The variables are sampled sequentially from their corre-
sponding one-dimensional conditional pdf, p1

(2)(Xk|x1, .., xk−1).
The normalization factor, nk, of the conditional pdf in
Algorithm 1 is obtained numerically by summing the
probability for all possible values of Xk, the variable to be
sampled. The various Kirkwood sampling algorithms differ in
the expression for the conditional probability distribution. The
doublet level algorithm samples points from the N-dimensional
probability distribution

∏̃ ⃗ = |
≤ ≤

−p x p x x p x x x x( ) ( , ) ( , ,.., )N
k N

k k
(2)

2 1 2
3

1
(2)

1 2 1
(1)

Following previous notation,7 the superscript “(2)” in the above
equations denotes doublet level and will henceforth be
dropped. The sampling probability, p ̃N(2), can be readily
computed for any given point. The computational cost is
proportional to the number of pdf’s used. The computational
complexity for doublet level Kirkwood sampling (Algorithm 1)
is O(N2), since there are N(N − 1)/2 doublet pdf’s. The
Kirkwood sampling distributions are normalized by construc-
tion via normalization of the conditional probability distribu-
tion of each variable.
In general, the Kirkwood sampling distribution involves the

product of all pdf’s employed. As a result, if certain cells in the
pdf’s have zero probability, then the corresponding combina-
tions of coordinates will never be generated. Thus, if the input
pdf’s contain such zero probability cells, or “holes”, then, strictly
speaking, Kirkwood sampling will not be ergodic, since it
eliminates certain regions of the conformational space. In
principle, this problem can be remedied by filling the holes with
a small but finite probability. However, if the pdf’s employed
are representative of the true distributions, then the conforma-
tional regions eliminated by the holes are likely to correspond
to high potential energy due to unfavorable interactions such as
steric clashes. For example, the unpopulated regions of the
Ramachandran plots for the backbone ϕ and ψ torsion angles
of a protein correspond to conformations with steric clashes.
Hence, one can think of the input pdf’s as constraints on the
conformational space, and the accessible conformational space
shrinks as more pdf’s are included.
One approach for obtaining the input pdf’s is to populate

them using conformations generated through an alternative
sampling approach. In the present work, the input pdf’s among
the coordinates were populated using a representative set of
conformations of the molecule obtained by molecular dynamics
simulations. In practice, since the order of the input pdf’s is
likely to be much smaller than the dimensionality of the system,
the conformational space accessible to Kirkwood sampling will
invariably be much larger than that represented by the
conformations used to populate the pdf’s.13 This effect is
illustrated for a three-dimensional system in the Supporting
Information. Note that the representative set of conformations
need not be exhaustive, just large enough to ensure the absence
of spurious holes. In practice, even for high dimensional
systems, sufficient data is likely to be available for avoiding
spurious holes in the low order (1- and 2-D) pdf’s.

2.2. Conformational Sampling. In the present context of
molecular conformational sampling, the random variables, Xi,
denote discretized internal coordinates of a molecule.
Following previous work, we employ the bond-angle-torsion
(BAT) internal coordinate system.14 The singlet and doublet
pdf’s are obtained as histograms of the internal coordinate
values observed using MD. Individual binning of each
coordinate provides the N singlet (or 1-D) pdf’s, and joint
binning of all pairs of coordinates provides the N(N − 1)/2
doublet pdf’s. Each coordinate is discretized into B equally
spaced bins between the minimum and maximum values
observed in MD. The random variables Xi now denote a bin
number and can take values in the discrete set {1, ..., B}, that is,
for all variables Di = B and vi,j = j. The bin width for discretizing
the ith coordinate is set to δi = Δi/B, where Δi is the range of
values observed in the simulation. To visualize a conformation
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and for computing energies, the bin numbers for the discrete
BAT coordinates need to be mapped into real values, and
subsequently to Cartesian coordinates. A discrete BAT
coordinate, xi ∈ {1, ..., B}, is mapped to the continuous
space value, χi ∈ , by picking a random point in the
corresponding bin

χ χ δ δ= + − +x r( 1/2)i i i i i,min (2)

where χi,min is the minimum value for the ith coordinate and r ∈
 is a uniformly distributed random number in [0, 1]. The left
edge of the bin is given by the first two terms of eq 2.
2.3. Canonical Distribution. The conformational distri-

bution for a molecule in contact with a heat bath is given by the
Boltzmann distribution. Assuming translational and rotational
invariance of the potential energy, the Boltzmann distribution
in terms of internal coordinates is given by

χ β χ⃗ ∝ ⃗β χ− ⃗p J( ; ) e ( )N
Eb ( )

(3)

where β−1 = kBT is the inverse temperature and kB is the
Boltzmann constant. In eq 3, E(χ ⃗) is the potential energy and
J(χ ⃗) is the Jacobian for the transformation from internal to
Cartesian coordinates. To present the equations in the
following sections using a more familiar notation, we define

χ β χ
β

χ⃗ ≡ ⃗ − ⃗U E J( ; ) ( )
1

ln ( )
(4)

so that the Boltzmann distribution can be written as

χ β⃗ ∝ β χ β− ⃗p ( ; ) eN
Ub ( ; )

(5)

2.4. Monte Carlo Sampling. Monte Carlo (MC) sampling
is a general method for generating points from a multidimen-
sional probability distribution function. MC sampling involves
generation of trial points or moves, which are then subjected to
an acceptance criterion designed to impose detailed balance
with respect to the distribution of interest, here the Boltzmann
distribution. The two MC algorithms used in this work are
described below.
The first MC algorithm, referred to here as perturbation MC

(pMC), is a standard implementation of MC for molecular
systems, where a trial conformation, χt⃗, is generated by random
perturbation of each coordinate of the current conformation, χc⃗,

χ χ⃗ ← ⃗ + ⃗rst c (6)

with r being a uniform random number in [−0.5, 0.5] and s ⃗ a
vector of step sizes for the N coordinates. The trial
conformation is accepted or rejected using the Metropolis
acceptance function

=
β χ β

β χ β

− ⃗

− ⃗

⎛
⎝⎜⎜

⎞
⎠⎟⎟f min 1,

e
e

U

UpMC

( ; )

( ; )

t

c (7)

The trial conformation is accepted and added to the Markov
chain if f pMC is greater than or equal to a random number
uniformly generated in [0, 1]; otherwise, the move is rejected
and the current conformation is added to the chain. During
equilibration, components of the step size vector s ⃗ can be
adjusted to achieve a specified acceptance ratio. After an
optimal s ⃗ has been found, it must be fixed for production runs
to guarantee detailed balance.15 Algorithm 2 gives the pseudo
code for perturbation MC.
The second MC algorithm is a variant of standard biased

MC1 (bMC) where the trial conformations are drawn from a

probability distribution, termed the biasing distribution, bN(χ ⃗),
which is defined over the full conformational space

χ χ⃗ ∼ ⃗b ( )Nt (8)

In contrast to pMC, which is sequential, the moves in biased
MC are independent of the current conformation. Figure 1

schematically compares how the conformational space is
explored by the two schemes. For biased MC, the acceptance
function of pMC is modified to reweight the current and the
trial conformation according to the Boltzmann distribution

χ

χ
=

⃗

⃗

β χ β

β χ β

− ⃗

− ⃗

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f

b

b
min 1,

e / ( )

e / ( )

U
N

U
N

bMC

( ; )
t

( ; )
c

t

c
(9)

Algorithm 3 provides the pseudo code for biased MC. Given a
temperature, the acceptance ratio in a biased MC simulation is

completely determined by the biasing distribution. MC moves
are more likely to be accepted if the overlap between the
biasing and the Boltzmann distribution is high. Indeed, all
moves will be accepted if the biasing distribution matches the
Boltzmann distribution. Biased move MC can be trivially
parallelized, since the trial conformations are generated
independent of the current conformation in the Markov

Figure 1. Schematics for the exploration of conformational space by
(a) perturbation Monte Carlo (Algorithm 2) and (b) the biased
Monte Carlo algorithm (Algorithm 3). The square box represents the
conformational space, arrows represent perturbation moves, and filled
circles represent conformations. In the case of biased MC,
conformations are sampled independently from a biasing distribution.
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chain. As a result, unlike perturbation MC, no equilibration is
required for a biased MC simulation. Here, we apply the biased
MC algorithm with the trial moves generated by Kirkwood
sampling. The key objective of this work is to obtain a
Boltzmann distributed set of conformations corresponding to a
given potential energy function and temperature, using
conformations generated by Kirkwood sampling.
2.5. Replica Exchange Using a Kirkwood Reservoir.

Replica exchange (REX) is an enhanced sampling method
designed to overcome the trapping problem in canonical
simulations.1,16−21 In REX, multiple canonical simulations, or
replicas, are run in parallel and occasionally exchanges between
one or more pairs of replicas are attempted. In temperature
replica exchange (T-REX), all replicas are run using the same
potential energy function but at different temperatures. The
lowest replica temperature is usually the temperature of interest
where the trapping problem is most severe. Exchanges with the
high temperature replicas help the low temperature replicas to
escape traps, thereby enhancing sampling in the low temper-
ature replicas. In the present work, MC simulation is used for
canonical sampling for each replica so that the exchanges
depend only on the potential energy, and not the kinetic
energy.
Let β1, χ1⃗ and β2, χ2⃗ be the inverse temperatures and

instantaneous conformations of two replicas between which an
exchange is being attempted. The exchange probability function
in T-REX is given by

= χ β χ β β β
‐

⃗ − ⃗ −f min(1, e )U U
T REX

[ ( ; ) ( ; )]( )1 1 2 2 1 2 (10)

The conformations are exchanged if f T‑REX is greater than or
equal to a uniform random number in [0, 1]. Usually,
exchanges are attempted between replicas that are adjacent in
the temperature ladder, though other schemes have also been
suggested.21−23 Algorithm 4 provides the pseudo code for the
present implementation of T-REX.

In T-REX, each replica may be considered as a reservoir of
Boltzmann distributed conformations for other replicas, albeit
at different temperatures. Exchanges may also be performed
with a reservoir of non-Boltzmann distributed conformations,
as long as the probability distribution of the reservoir is known.
Kirkwood sampling satisfies this condition, as the probability of
sampling a given conformation can be computed (here, using
eq 2). A temperature replica exchange where one (or more)
temperature replica(s) are coupled to a Kirkwood sampling
scheme will be referred to as Kirkwood reservoir replica
exchange (KR-REX). The probability for exchanges between a

temperature replica at inverse temperature β and a reservoir
with distribution bN(χ ⃗) is given by

χ

χ
=

⃗

⃗
β β χ β χ β

‐
⃗ − ⃗β

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f

b

b
min 1,

( )

( )
e

N

N

U U
KR REX

R

( ( ; ) ( ; ))R

(11)

where χβ⃗ is the conformation from the temperature replica and
χ ⃗R is a conformation drawn from the reservoir, that is, χR⃗ ∼
bN(χ ⃗). Note that the acceptance function involves the reservoir
probability of the conformation from the temperature replica,
bN(χβ⃗), as well as the potential energy of the reservoir
conformation, U(χR⃗;β). The likelihood of acceptance from
the reservoir depends on the conformational overlap between
the reservoir and the actual Boltzmann distributions.
The acceptance ratio for biased MC simulation at a given

temperature gives the probability of exchange with a replica at
the same temperature. Therefore, given an acceptance ratio for
exchanges with the reservoir, short biased MC simulations are
performed at multiple temperatures to determine the lowest
temperature to which the Kirkwood reservoir can be coupled.
Schematics of the exchange protocols and exchange probability
function for T-REX and KR-REX are shown in Figure 2.
Exchanges with the reservoir are attempted at every alternate
exchange cycle, as detailed in Algorithm 5.

2.6. Consistency Check on Equilibrium Sampling of
Replica Exchange Simulations. The Kirkwood replica
exchange strategy can efficiently sample thermodynamic states
by coupling a set of temperature replicas to a reservoir of
Kirkwood-generated structures. Although the trial configura-
tions are sampled from the Kirkwood distribution, which is
different from the underlying Boltzmann distribution, the
acceptance criterion, eq 11 above, guarantees that the move
satisfies detailed balance, ensuring that each of the temperature
replicas samples its correct equilibrium distribution.

Figure 2. Schematic representation of (a) temperature (T-REX,
Algorithm 4) and (b) Kirkwood reservoir (KR-REX, Algorithm 5)
replica exchange. The horizontal lines represent different replicas with
the lower lines corresponding to lower temperatures. The horizontal
line segments represent Np steps of perturbation MC. Blue arrows
represent attempts for exchanging conformations between two
replicas. The green dotted box in part b represents the Kirkwood
reservoir, filled green circles represent conformations sampled from
the reservoir distribution, and green arrows indicate exchange attempts
between the reservoir and the highest temperature replica. Note that
conformations in the reservoir are not updated with conformations
from the temperature replicas.
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We employ the overlapping distribution method1 to verify
that the Kirkwood exchange moves do not disturb the
underlying equilibrium ensembles in the temperature replicas.
This approach was originally introduced by Bennett24 for free
energy calculations but can also be used as a consistency check
on equilibrium sampling25,26 for replica exchange simulations.27

Below, we detail how it was applied in the present work.
We wish to verify that each of our temperature replicas

samples its corresponding equilibrium distribution. Let us
consider a pair of temperature replicas, A and B, at inverse
temperatures βA and βB, respectively. In the canonical
ensemble, a particular replica, A, for example, samples energy
E with distribution

β = Ω β− −p E E( ; ) ( )e E fA
A

( )A
A

(12)

where Ω(E) is the energy density of states and fA = −βA−1 ln ZA

is the Helmholtz free energy of the system. (We emphasize that
the relevant quantity to analyze with this method is the energy
E, not the quantity U which contains the Jacobian factors.) We
have a similar expression for pB corresponding to replica B.
Although pA and pB are generally unknown (due to the
unknown density of states), they are related to each other in a
simple way as

= βΔ −Δp E
p E

( )
( )

e E f
A

B
(13)

Here, Δβ = βB − βA and Δf = βB f
B − βA f

A is the reduced free
energy difference between the two replicas. Hence, these two
energy distributions are connected via the unknown constant
Δf. This relation can be seen as a manifestation of Crooks’
fluctuation theorem,28 and is in general true only when both
distributions sample their respective equilibrium states, eq 12
above. Hence, a verification of eq 13 for the temperature
replicas in a Kirkwood reservoir replica exchange simulation
provides a consistency check on the sampling.
To proceed with this consistency check, we follow Bennett24

and define two functions:

β= − ΔL E p E E( ) ln ( ) /2A
A

(14a)

β= + ΔL E p E E( ) ln ( ) /2B
B

(14b)

Although LA and LB are functions of E, from eq 13, we see that

Δ ≡ − = ΔL E L E L E f( ) ( ) ( )B A (15)

is a constant, whose value corresponds to the reduced free
energy difference. This relationship can be verified from
simulation data by binning the sampled energies from our
various replicas, constructing the functions LA and LB, and
plotting their difference in each bin. A plot of ΔL as a function
of E should, within statistical errors, provide a horizontal line
with a slope of zero. In section 3.1.4, we apply this test to our
replica exchange simulations in order to verify equilibrium
sampling.

3. RESULTS
The equilibrium sampling algorithms, described in section 2,
were implemented in Matlab29 and Octave.30 We first applied
the methods on a model nine-atom chain molecule (Figure 3)

with a simplified force field. The model system was constructed
for computational efficiency and for ease of implementing
internal coordinate Monte Carlo moves. Kirkwood based
biased MC and reservoir replica exchange are applied to the
model system, and results are compared with conventional
alternative approaches. The simulations were designed with the
objective of validating the new sampling algorithms and
describe the considerations for setting up the simulations.
The last section presents biased MC results for alanine
dipeptide illustrating the applicability to small biomolecules.

3.1. Model System. This section describes the force field
and coordinate system for the model system, characterizes its
energy landscape, and generates benchmark results using an
independent well-converged MD replica exchange simulation.
We then present results for perturbation and biased MC
simulations applied to our system at progressively lower
temperatures. We will see that both of these methods fail to
converge below a certain temperature. Finally, we present
results from T-REX and KR-REX replica exchange simulations,
which enhance convergence at the lower temperatures. The
number of MC steps is 5 × 106 for all MC and replica exchange
simulations described in this section.

Figure 3. (a) Bond-angle-torsion (BAT) coordinate system for an M
atom chain molecule and (b) electrostatic charge and Lennard-Jones
well-depth of the test system studied in this work. Atoms without
charge and Lennard-Jones interaction are represented by unfilled
dashed circles.
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3.1.1. Energy Landscape and Coordinate System. The
conformation of the model system is specified by 21 BAT
coordinates, which include eight bond lengths (bi), seven bond
angles (ai), and six torsion angles (ti). Figure 3 gives the atom
labeling and the definition of the BAT coordinates. The
functional form of the potential energy of the molecule employs
a molecular mechanics-type force field, which includes bonded
and nonbonded terms

∑ ∑ ∑

∑ ∑

χ ⃗ = + +

+ +

=

−

=

−

=

−

=

−

= +

E E b E a E t

E r E r

( ) ( ) ( ) ( )

[ ( ) ( )]

i

M

i
i

M

i
i

M

i

i

M

j i

M

i j i j

1

1

b
1

2

a
1

3

t

1

1

1
LJ , E ,

(16)

whereM = 9 is the number of atoms. The terms associated with
the bonded, angular, and torsional degrees of freedom are Eb,
Ea, and Et, respectively. A harmonic functional form was used
for the bonded and angular contributions, while the Ryaekart−
Bellman functional form was used for the torsional term. In eq
16, ELJ and EE denote the nonbonded Lennard-Jones (LJ) and
electrostatic interactions, respectively, and ri,j denotes the
distance between atoms i and j. To compute distances between
atoms, the BAT coordinates were transformed to anchored
Cartesian coordinates.
In the present study, the potential energy of the test system

included all bonded terms but only selected nonbonded
contributions (see Figure 3 and the Supporting Information).
LJ interactions were considered only for atom pairs (1,7) and
(3,7), while electrostatic interactions were included only for

atom pairs (1,7), (3,7), (1,9), and (3,9). Atoms 1, 3, and 9
carried positive charges of +0.1, +0.1, and +0.2, respectively.
Atom 7 carried a negative charge of −0.4, and the remaining
atoms were neutral. Fewer nonbonded interactions were
included to reduce the cost of the energy evaluation and
obtain accurately converged results for the benchmarking more
efficiently. The full energy function and its parameters and the
input files for GROMACS31 and AMBER32 are provided as
Supporting Information.
Although the potential that we have defined is relatively

simple, the corresponding landscape can still provide a useful
benchmark to compare different sampling schemes. In order to
gain some idea of this complexity, we sampled local minima
using basin-hopping global optimization,33−35 and then
computed pathways connecting the global minimum with all
other minima using the doubly nudged36,37 elastic band38−40

method with accurate refinement of transition states by hybrid
eigenvector-following.41 The resulting database of minima and
transition states was used to plot the disconnectivity graph42,43

shown in Figure 4, which suggests a largely funnelled potential
energy surface. Figure 4 shows conformations of representative
low and high energy minima. The low energy minima adopt a
more compact conformation with similar geometry of the
oppositely charged atoms. The energy of the global minimum
was −22.6 kJ/mol, and there are three prominent funnels at
energies below −16 kJ/mol, with barriers between funnels of
roughly 4.14 kJ/mol, corresponding to a temperature of 500 K.
Thus, at temperatures significantly lower than 500 K, the
system is likely to be trapped in one of the low energy funnels.

Figure 4. Disconnectivity graph constructed from a database of 236 minima and 1454 transition states. Branches leading to select minima (a−e) are
colored red. Conformations of these labeled minima are shown with the positively charged atoms in blue and the negatively charged atom in red (see
Figure 3b for atom numbering and the Supporting Information for potential energy definition). Distances between atom pairs (1,7) and (3,7) are
also shown. Note that the low energy minima (b−e) are more compact than the high energy minimum (a) and have a similar arrangement of atoms
1, 3, and 7. The energy of the global minimum (d) is −22.6 kJ/mol, and that of minimum (a) is −9.9 kJ/mol. Typical barriers between minima
belonging to the three low energy funnels are around 4.8 kJ/mol, corresponding to a temperature of roughly 1000 K.
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In this section, we investigate convergence of thermodynamic
quantities for temperatures ranging from 20 to 500 K.
3.1.2. Reference Equilibrium Sampling. Reference canonical

potential energy distributions were generated at different
temperatures using MD replica exchange. Twelve replica
temperatures were used: 10, 20, 30, 50, 75, 100, 130, 165,
200, 300, 400, and 500 K. The MD REX simulations were
performed with GROMACS 4.6.5,31 using Langevin dynamics
with a time step of 1 fs and a friction coefficient of 5 ps−1. The
first 50 ns of the simulation was discarded for system
equilibration. Production data was collected in the subsequent
run of 500 ns. Replica exchanges were attempted every 500
time steps. Conformations and energies were saved every 0.5 ps
(500 time steps), giving 106 data points per replica.
Figure 5 shows the potential energy distribution observed

during the production run, and Table 1 displays the average

energy and heat capacity computed for the simulation
temperatures using the potential energy values observed in

each replica. The heat capacity for the replica at temperature T
was computed using

= ⟨ ⟩ − ⟨ ⟩C T
k T

E E( )
1

( )
B

2
2 2

(17)

The average energy and heat capacity were interpolated
between each replica exchange simulation temperature by
applying the multihistogram method44−48 to the MD REX
potential energy distributions, using an energy bin width of 0.1
kJ/mol. The peak heat capacity from the multihistogram heat
capacity curve is 26.6 kB/2 at 104.5 K. Figure 6 shows the two

quantities computed at 50 equally spaced temperatures
between 10 and 500 K. At the simulation temperatures, the
interpolated values are in good agreement with the values
directly computed from the simulation data (see Table 1).
BAT coordinates were extracted from all 12 trajectories,

giving 12 × 106 data points for each coordinate, with 30 equally
spaced bins between the minimum and maximum observed
values in each case. The discretized coordinates were used to
populate the 1-D (singlet) probability distribution for each
coordinate and 2-D (doublet) probability distribution for all
pairs of coordinates. In all, 21 singlet and 210 doublet
distributions were populated and used to sample conformations
using the doublet level Kirkwood algorithm (Algorithm 1).
Note that, since data from all replicas were pooled together, the
conformations used to populate the pdf’s are not Boltzmann
distributed for a single temperature. Nevertheless, since more
conformational space is covered at higher temperatures, the
configurations will be more representative of the highest
temperature replica at 500 K. We refer to this set of pdf’s as
refpdfsT500. Another set of pdf’s, referred to as refpdfsT200,
was generated using 2 × 106 conformations from a separate 200
ns MD simulation at a lower temperature of 200 K.
Kirkwood sampling was performed to generate 106

conformations for each pdf set. The Figure 5 inset shows the
distribution of potential energies of the Kirkwood samples
overlaid on the canonical potential energy distributions at
different temperatures. The energy distribution of Kirkwood
samples generated from refpdfsT500 (curve marked by boxes)
has significant overlap with the canonical distribution at 500 K,
and the distribution corresponding to refpdfsT200 (curve
marked by open circles) has significant overlap with the
canonical distribution at 200 K. These results are consistent

Figure 5. Potential energy distributions obtained from reference MD
replica exchange simulation described in section 3.1.2. The
distributions correspond to temperatures 10, 20, 30, 50, 75, 100,
130, 165, 200, 300, 400, and 500 K, from left to right. The inset shows
the energy distribution of doublet level Kirkwood samples from
refpdfsT500 (line marked by boxes) and refpdfsT200 (solid line by
circles) overlaid on select canonical energy distributions (unmarked
lines). Kirkwood samples generated using refpdfsT200 and
refpdfsT500 have significant overlap with the canonical distribution
at 200 and 500 K, respectively.

Table 1. Average Energy (kJ/mol), ⟨E⟩, and Heat Capacity
(kB/2), C, Computed Using Energy Values from the
Reference MD Replica Exchange Simulation Described in
Section 3.1.2

T (K) ⟨E⟩ ⟨E2⟩ C

10 −21.70 471.05 22.72
20 −20.75 430.91 23.96
30 −19.75 390.95 24.88
50 −17.66 314.32 25.69
75 −14.98 229.75 26.45
100 −12.24 159.10 26.80
130 −8.93 95.36 26.49
165 −5.18 50.82 25.49
200 −1.57 35.82 24.14
300 7.62 122.37 20.68
400 15.70 349.62 18.64
500 23.11 685.02 17.45

Figure 6. Average energy and configurational heat capacity computed
using the MD REX potential energy distributions shown in Figure 5.
Circles represent values computed directly from the observed energy
values in each replica.
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with earlier work,7,10 where the energy distribution of the
Kirkwood samples was found to overlap strongly with the
original Boltzmann distribution from which the conformations
used to populate the reference pdf’s were generated. Indeed,
Kirkwood sampling was originally developed for approximating
the Boltzmann distribution at a given temperature. Note that
the energy distributions of the Kirkwood samples are shifted to
higher values relative to the original canonical distribution, due
to the greater coverage of the conformational space, and the
fact that there are more conformations at higher energies.
3.1.3. Perturbation and Biased Monte Carlo. Perturbation

MC (Algorithm 2) and biased MC (Algorithm 3) simulations
were performed for successively lower temperatures starting
from 500 K. Both simulations were performed at temperatures
of 200, 300, 400, and 500 K; perturbation MC was also
conducted at the lower temperatures of 100, 50, and 20 K. The
number of MC steps for all simulations was 5 × 106. For the
biased MC simulations, Kirkwood samples were generated from
refpdfsT500. Table 2 gives the average energy and heat capacity
computed from the potential energies from different simu-
lations and their difference with respect to the reference values
in Table 1.
Considering the biased MC results first, Figure 7 shows the

distribution of potential energies for each simulation overlaid
on the reference distributions from Figure 5. The potential
energy distribution of Kirkwood samples is also shown. The
biased MC and reference distributions are in good agreement

for temperatures ≥300 K, consistent with the average energy
and heat capacity results in Table 2. These results show that
Kirkwood sampling with a fixed set of input pdf’s can be used
to obtain Boltzmann distributed conformations at different
temperatures. This is the key finding of the present work. The
biased MC algorithm may be viewed as a resampling
approach49,50 wherein a set of Kirkwood distributed con-
formations are resampled to generate a Boltzmann distributed
set. In Figure 7, resampling effectively shifts the right-most
distribution (line marked by boxes) to match with the different
Boltzmann distributions. Note that Boltzmann distributions can
be generated for temperatures lower than that of the MD
simulation used to populate the input pdf’s. Biased MC
simulations in Figure 7 used input pdf’s effectively populated
with 500 K MD simulation data but were able to generate
Boltzmann distributions at 300 K.
Acceptance ratios for the biased MC simulations were 0.29,

0.25, 0.07, and 0.009 for T = 500, 400, 300, and 200 K,
respectively. The acceptance ratio falls as the temperature is
reduced, consistent with the decreasing overlap between the
Kirkwood potential energy distribution and the canonical
energy distributions (see Figure 5). Note that the conforma-
tions obtained by Kirkwood sampling are completely
determined by the input pdf’s. As a result, in contrast to
perturbation MC, the acceptance ratio cannot be adjusted for a
given temperature. In other words, a given acceptance ratio
would impose a lower limit on the temperatures for which
biased MC simulations can be run. Note that the overlap of the
Kirkwood distribution with a target canonical distribution can
be determined even in the absence of the target distribution.
The acceptance ratio of a biased MC simulation is a direct
measure of the overlap. Moreover, since no equilibration is
required for biased MC simulations, a relatively short run can
provide an estimate of the acceptance ratio.
We now characterize the perturbation MC simulations,

which are used in the next section for canonical sampling in the
replica exchange simulations. In each pMC simulation, a 10 000
step preliminary run was performed to adjust the step size for
an acceptance ratio between 0.2 and 0.3. Figure 8 shows the
comparison of the pMC potential energy distributions with the
reference distributions (see Figure 5). Table 2 and Figure 8
show that the pMC simulations are in good agreement with the
reference values for T ≥ 100 K, with higher temperatures
producing better agreement. The deviations at low temper-
atures are due to the trapping of the Markov chain in local
potential energy wells.
The successful convergence for pMC at the low (relative to

typical barriers of the PES) temperature of 100 K is likely due
to the efficiency of the internal coordinate BAT moves. For

Table 2. Average Energy (kJ/mol), ⟨E⟩, and Heat Capacity (kB/2), C, Computed Using Energy Values for Perturbation and
Biased Move MC Using refpdfsT500a

reference perturbation MC biased MC

T (K) ⟨E⟩ C ⟨E⟩ C ⟨E⟩ C Acc ratio

50 −17.66 25.69 −17.48 (0.18) 23.42 (−2.27)
100 −12.24 26.8 −12.25 (−0.01) 25.59 (−1.21)
200 −1.57 24.14 −1.63 (−0.06) 23.88 (−0.26) −0.73 (0.84) 21.52 (−2.62) 0.009
300 7.62 20.68 7.54 (−0.08) 20.52 (−0.16) 7.76 (0.14) 20.73 (0.05) 0.07
400 15.7 18.64 15.87 (0.17) 18.58 (−0.06) 15.79 (0.09) 18.57 (−0.07) 0.25
500 23.11 17.45 23.18 (0.07) 17.36 (−0.09) 23.16 (0.05) 17.28 (−0.17) 0.29

aThe acceptance ratio observed in the biased MC simulations and reference values from Table 1 are also given. The numbers in parentheses are
differences with respect to the reference.

Figure 7. Potential energy distributions (in black) from biased move
MC simulations (section 3.1.3) at T = 200, 300, 400, and 500 K using
Kirkwood moves with refpdfsT500. The reference distributions from
Figure 5 are in blue. The potential energy distribution of the original
Kirkwood samples is also shown marked by boxes.
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comparison, we performed a 100 K pMC simulation using
random Cartesian moves, which was 10 times longer than the
above BAT move pMC simulation. The Cartesian move MC
was performed using the GMIN program.51 Figure 9 shows that

the energy distribution from the Cartesian move simulation is
in much poorer agreement with the reference distribution. We
note that, even though the coordinates are perturbed
independently, BAT coordinate moves are particularly effective
here because of the unbranched chain topology of the molecule.
Absence of side chains greatly reduces the chances of steric
clashes, even if a torsion angle in the middle of the chain is
perturbed substantially.
3.1.4. Temperature and Kirkwood Reservoir Replica

Exchange. We now compare temperature replica exchange
(Algorithm 4) and reservoir replica exchange (Algorithm 5),
focusing on the low temperatures (≤100 K) for which the MC
simulations of the previous section failed to converge. Replica
exchange simulations were performed for two sets of
temperatures, namely, a high temperature set, 20, 50, 100,
and 200 K, and a low temperature set, 20, 30, 50, and 100 K.
The high temperature set was chosen to inspect the
convergence of the heat capacity peak at 104.5 K, and the
low temperature set was used to inspect the impact of the
reservoir on the convergence. In the case of reservoir replica

exchange simulations, for both sets, the Kirkwood reservoir was
coupled to the highest temperature replica. The Kirkwood
reservoir for the high temperature set was based on
refpdfsT500, and that for the low temperature set was based
on refpdfsT200.
Perturbation MC was used for canonical simulation in the

temperature replicas, and for each temperature, the step size
was adjusted during equilibration to achieve an acceptance ratio
between 0.2 and 0.3. The length of the production run was 5 ×
106 steps, and exchanges were attempted every 20 steps using
the exchange protocols described in Algorithm 4 and Algorithm
5. Energy values were saved at every MC step generating 5 ×
106 energy values per replica.

High Temperature pdf Set. We first discuss the REX
simulations using the high temperature pdf set. For all REX
simulations, we performed the overlap test (section 2.6) to
validate the implementation of the algorithms and, in the case
of KR-REX simulations, also verify that coupling to the
reservoir did not disturb the Boltzmann distribution in the
temperature replicas. Figure 10 shows the analysis for replicas 2
and 3, corresponding to 50 and 100 K, respectively, for the KR-
REX simulation. The inset in the lower panel of Figure 10 also
shows the plot of ΔL for the corresponding replicas in the T-
REX simulation. We see that the function ΔL is flat within
statistical errors, indicating that the fluctuation theorem, eq 13,

Figure 8. Potential energy distributions (in black) from the
perturbation MC simulations (section 3.1.3) overlaid on the reference
distributions (in blue).

Figure 9. Potential energy distributions from perturbation MC
simulations at 100 K using bond-angle-torsion (BAT) and Cartesian
coordinate moves. The Cartesian move simulation was run for 5 × 107

steps, while the BAT move simulation was 10-fold shorter at 5 × 106

steps. The distributions show that BAT coordinate moves are move
efficient than Cartesian coordinate moves.

Figure 10. Consistency check for equilibrium sampling. The overlap
test is performed on replicas 2 and 3, at temperatures 50 and 100 K,
respectively, taken from the KR-REX simulations described in section
3.1.4 using the high temperature pdf set. Upper panel: Energy
distributions for replicas 2 and 3. Lower panel: The overlap functions
L2, L3, and ΔL (eqs 14 and 15). The function ΔL is flat within
statistical error, indicating that the replicas are sampling their correct
equilibrium distributions (see section 2.6). Inset: The function ΔL
expanded (red crosses), compared to ΔL as calculated from the same
temperatures in the T-REX simulation (blue circles).
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is satisfied, and hence both replicas are sampling their
respective canonical distributions correctly. Other replica
pairs displayed similar results (data not shown).
We next analyze and compare the convergence of the T-REX

and KR-REX simulations using the high temperature set. For
both simulations, the exchange acceptance ratios were 0.02,
0.08, and 0.08 for replica pairs (20,50), (50,100), and
(100,200), respectively. The lowest exchange acceptance ratio
of 0.02 corresponds to 5000 successful exchanges. For KR-REX
simulation, the number of successful exchanges with the
reservoir was roughly 1100, consistent with the expected
acceptance ratio of 0.009 based on the biased MC simulation at
200 K. The convergence of a replica exchange simulation is
limited by the time needed for a trajectory to diffuse between
its lowest temperature, where it is trapped in a metastable state,
to a high temperature one, where it can overcome its energetic
barriers via enhanced thermal fluctuations or the Kirkwood
reservoir. To analyze this convergence, we investigate the
diffusion of replica trajectories among the ladder of temper-
atures. Figure 11 shows the trajectory that began in the lowest

temperature replica in the KR-REX simulation. It shows
significant diffusion between the different replicas. On average,
30 round trips were observed per million MC steps. The profile
was similar for the T-REX simulation.
We now investigate the convergence of the energy

distributions and thermodynamic quantities. Figure 12
compares the energy distributions of the T-REX and KR-
REX simulations with the reference distribution from MD REX.
The three distributions are essentially identical for all
temperatures, including 20 and 50 K, which failed to converge
in the case of single temperature perturbation MC simulations
(see Figure 8). The T-REX and KR-REX simulations were also
compared in terms of convergence of the average energy and
heat capacity as a function of temperature, which is a more
stringent test of convergence than comparison of energy
distributions. The average energy and heat capacity were
obtained by applying the multihistogram method to the
potential energy distributions computed using successively
larger fractions of the simulation data. Figure 13 shows the
convergence of the average energy and heat capacity overlaid
on the reference curves, and Figure 14 shows the difference

between each curve and the reference. For both T-REX and
KR-REX, the average energy converges to within 0.5 kJ/mol
over the full temperature range of 20 and 200 K using only 10%
(500 000 steps) of the production data. The convergence of the
heat capacity is, as expected, slower than that for the average
energy. Nevertheless, both the T-REX and KR-REX curves
converge to within 0.25 kB of the reference with 50% of the
production data. These results show that the T-REX and KR-
REX simulations were consistent with each other. However,
from these simulations, it is difficult to gauge the impact of the
reservoir on the convergence.

Low Temperature pdf Set. The effect of the reservoir in the
high temperature set REX simulations was not discernible
probably because the highest temperature of 200 K was
sufficiently high to avoid trapping, so that additional jumps in
the conformation space through exchanges with the reservoir

Figure 11. Trajectory of the 20 K replica from the KR-REX simulation
described in section 3.1.4 using the high temperature pdf set.
Successful exchanges with the reservoir are indicated by open circles.
Exchanges were attempted after every 20 MC steps. The trajectory for
the first 5 × 104 exchange attempts is depicted here.

Figure 12. Potential energy distributions for T-REX (blue) and KR-
REX (red) simulations using the high temperature set described in
section 3.1.4. Distributions are shown for T = 20 (left-most), 50, 100,
and 200 K (right-most). The reference distributions are in black. The
three distributions are nearly overlapping for all temperatures, with T
= 50 K (inset) showing the largest deviations.

Figure 13. Convergence of average energy (left panels) and heat
capacity (right panels) for T-REX (top) and KR-REX (bottom)
simulations using the high temperature pdf set (section 3.1.4). The
legend indicates the fraction of data used from the 5 × 106 step
production run. The reference curves (from Figure 6) are in black.
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did not improve convergence. To investigate the effect of the
reservoir, we attempted to reduce the highest temperature in
the REX simulations. However, for temperatures below 200 K,
refpdfsT500 could not be used to set up the reservoir because
of a low acceptance ratio. We therefore created the refpdfsT200
set of pdf’s (see section 3.1.2) using data from a 200 K MD
simulation. Recall that the potential energy distribution of the
Kirkwood samples from this set has high overlap with the
canonical distribution at temperatures around 100 K (see
Figure 5, inset). The acceptance ratio for a preliminary 105 step
biased MC simulation at 100 K using refpdfsT200 was found to
be 0.05. Pdf set refpdfsT200 could, therefore, be used to set up
the reservoir for KR-REX simulation using the lower temper-
ature set where the highest replica temperature is 100 K.
Figure 15 shows the energy distributions obtained from the

T-REX and KR-REX simulations for the low temperature set.
The distributions from the KR-REX simulation (lines marked
by circles in the bottom panel of Figure 15) are substantially
closer to the reference distribution than those from the T-REX
(top panel of Figure 15) simulation. Table 3 gives the average
energy and heat capacity at the simulation temperatures
computed from the raw simulation data, without multihisto-
gram analysis. For the lowest temperature replica at 20 K, the
average energy from the T-REX simulation deviates from the
reference by 0.62 kJ/mol, while the deviation of average energy
from KR-REX is much smaller at 0.09 kJ/mol. The heat
capacity values did not converge for either run. The number of
successful exchanges with the reservoir was over 23 000,
consistent with the biased MC acceptance ratio of 0.05. The
results show that coupling with the reservoir enhances sampling
in the low temperature replicas. In other words, the reservoir
can mimic a higher temperature replica.
3.2. Alanine Dipeptide. In this section, we apply biased

Monte Carlo (Algorithm 3) to alanine dipeptide. Similar to the
model system, the BAT internal coordinate system was used for
Kirkwood sampling as described elsewhere.10 The conforma-
tion of the 22-atom molecule was defined using 21 bond
lengths, 20 bond angles, and 19 bond torsions. The torsions

included the backbone ϕ and ψ angles for the alanine residue.
Each coordinate was discretized into 72 equally spaced bins.
The range for angular coordinates was [0,2π] radians, while
that for bond coordinates was [0.6,2] Å. MD data for
populating the pdf’s was generated by a 1000 ns replica
exchange simulation with replica temperatures of 300, 400, and
500 K. In each replica, coordinates were saved at regular
intervals to generate 106 conformations for each temperature.
The all-atom AMBER99SB52 force field was used, and the
simulations were performed with GROMACS 4.6.5.31 Kirk-
wood sampling was performed in Matlab29 and Octave,30 and
force field energy was computed using OpenMM 6.2.53 In
terms of computational cost, most (>90%) of the time was
spent in generating the Kirkwood samples. The MATLAB
implementation generated approximately 10 conformations per
second.
MD data were used to populate the 60 singlet pdf’s and 1770

doublet pdf’s corresponding to all pairwise combinations of the
coordinates. Two separate sets of pdf’s, namely, refpdfsT400
and refpdfsT500, were constructed using data from the 400 and
500 K replicas of the MD simulation, respectively. Each pdf set
was used to generate 5 million conformations using doublet
level Kirkwood sampling. Figure 16 shows the distribution of
the potential energy of the Kirkwood samples overlaid on the
distribution from the MD replica exchange simulation.
Kirkwood samples from the two sets of pdf’s have good
overlap with the reference distributions for the corresponding
temperatures, suggesting overlap between the MD and
Kirkwood sampled conformational spaces. The energy
distribution for Kirkwood samples follows the reference
distribution such that the distribution for refpdfsT400 (red
dashed line) is shifted to lower energies as compared to the
distribution using refpdfsT500 (blue dashed line), consistent
with the observations for the model system.
We performed biased MC simulations to obtain a canonical

distribution for temperatures lower than that of the original
MD simulation used to populate the reference pdf’s. Doublet
level Kirkwood sampling is employed to set up the biasing
distribution, and 5 × 106 MC steps are taken for all simulations

Figure 14. Differences between the average energy and heat capacities
in Figure 13 and the reference values from Figure 6. The horizontal
dotted lines in the left panels indicate energy differences of ±0.2 kJ/
mol, and those in the right panel indicate heat capacity differences of
±kB/4.

Figure 15. Potential energy distributions (lines marked by circles)
from the 5 × 106 steps (a) T-REX and (b) KR-REX simulations
described in section 3.1.4 using the low temperature pdf set with
replica temperatures of 20 K (black), 30 K (red), 50 K (blue), and 100
K (green). The distributions from the KR-REX simulation are much
closer to the reference than those from the T-REX simulation,
indicating that coupling to the reservoir enhanced convergence.
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in this section. We first present results for 300 and 400 K biased
MC simulations with refpdfsT500 used for Kirkwood sampling.
Figure 16 shows the energy distribution obtained from the MC
simulations overlaid on the reference MD potential energy
distributions. The 400 K distribution (blue circles) is in good
agreement with the target distribution, unlike the 300 K
distribution (blue squares) which is shifted to higher energies.
The acceptance ratio for the 400 K simulation was 0.023. In
comparison, the acceptance ratio at 300 K was lower (0.007),
consistent with the poorer agreement of the 300 K energy
distribution.
It is instructive to compare the Ramachandran plots of the

alanine residue for ensembles generated by the different
sampling methods. In Figure 17, each two-dimensional plot
shows normalized joint distribution of ϕ and ψ angles
computed using 105 conformations. The left-most plot
represents the 500 K replica of the 1000 ns MD REX
simulation which was used to populate the refpdfsT500 pdf’s.
The next plot corresponds to Kirkwood sampling using
refpdfsT500. The plot for Kirkwood generated conformations
is in good agreement with the 500 K MD plot, though the
Kirkwood plot has a slightly smaller coverage. Recall that the
Kirkwood sampling was performed while accounting for the
pairwise correlations of the ϕ and ψ angles with all remaining
59 BAT coordinates. By relaxing some correlations, for
example, ones with side chain coordinates, a greater conforma-
tional space is likely to become accessible by Kirkwood
sampling. Note that the number of conformations (105) for the

Kirkwood Ramachandran plot is several orders of magnitude
smaller than the number of time steps (3 × 109) in the MD
REX simulation. The two plots are still comparable because
Kirkwood sampling generates uncorrelated samples.
Figure 17 also shows the Ramachandran plot for the biased

MC simulations using refpdfsT500 and the reference plots from
the MD replica exchange simulation. Biased MC effectively
resamples from the Kirkwood distribution to reproduce a target
distribution, here the Boltzmann distributions at 300 and 400
K. All regions of the Ramachandran plot that are sampled by
the MD simulation are represented in the biased MC
simulation. At both temperatures, the basins in the ϕ < 0
region of the plot, which are highly populated in the MD
simulation, are well sampled in the MC simulations. The less
populated basins in the ϕ > 0 region are poorly sampled by the
biased MC simulations, and may explain the deviations in the
energy distribution (Figure 16). Nevertheless, in spite of the
low acceptance ratio, since all regions are sampled in the biased
MC simulation, it would be advantageous to combine
Kirkwood sampling with MD or MC based local sampling, as
demonstrated for the model system above.
Finally, we performed a T = 300 K biased MC simulation

using the refpdfsT400 pdf set which was populated using
conformations from the 400 K MD replica. An acceptance ratio
of 0.024 was obtained in a 5 × 106 step simulation. The energy
distribution of the MC samples using refpdfsT400 (marked by
red triangles in Figure 16) is in much better agreement with the
reference distribution as compared to that using refpdfsT500

Table 3. Average Energy (kJ/mol), ⟨E⟩, and Heat Capacity (kB/2), C, Computed from the Replica Exchange Simulation Using
the Low Temperature pdf Set (Section 3.1.4)a

reference T-REX KR-REX

T (K) ⟨E⟩ C ⟨E⟩ C ⟨E⟩ C

20 −20.75 23.96 −20.13 (0.62) 25.98 (2.02) −20.66 (0.09) 28.52 (4.56)
30 −19.75 24.88 −19.15 (0.6) 23.28 (−1.6) −19.63 (0.12) 26.87 (1.99)
50 −17.66 25.69 −17.26 (0.4) 23.5 (−2.19) −17.56 (0.1) 26.07 (0.38)
100 −12.24 26.8 −12.38 (−0.14) 24.15 (−2.65) −12.12 (0.12) 27.36 (0.56)

aThe pdf set refpdfsT200 was used to set up the reservoir in KR-REX simulation. Reference values from Table 1 are also given. The numbers in
parentheses are differences with respect to the reference values.

Figure 16. Potential energy distributions for alanine dipeptide.
Reference distributions from MD replica exchange simulation are in
solid black lines with 300 K being the left-most, followed by 400 and
500 K. The dashed lines show distributions for 5 × 106 Kirkwood
samples with red corresponding to refpdfs400 and blue to refpdfs500
pdf sets. The marked lines are distributions from different biased MC
simulations. Blue squares and circles correspond to biased MC using
refpdfs500 at 300 and 400 K, respectively. Red triangles correspond to
300 K biased MC simulation using refpdfs400.

Figure 17. Ramachandran plots for the alanine residue of alanine
dipeptide with ϕ torsion on the horizontal axis and ψ on the vertical
axis. Both axes range from −π to π radians. Each plot shows the
normalized distribution computed using 105 data points. Darker colors
represent higher probability regions. The MD plots employ data from
the 1000 ns replica exchange simulation. The other plots employ
refpdfsT500 for Kirkwood sampling, which was populated using data
from the 500 K MD replica.
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(marked by blue boxes). Note that the acceptance ratio for T =
400 K biased MC simulation using refpdfsT500 is comparable
to that of T = 300 K simulation using refpdfsT400. One could
envision a multistage simulation to enable simulating arbitrarily
low temperature where each stage would consist of biased MC
simulation followed by repopulation of the pdf’s using biased
MC sampled conformations. The successive stage would
simulate lower temperature with the first stage employing
pdf’s populated by high temperature MD or other enhanced
sampling methods.

4. SUMMARY AND DISCUSSION
In this contribution, we have presented two methods for
barrierless equilibrium sampling of molecular systems. Our
approach builds upon Kirkwood sampling, which employs low-
order correlations among internal coordinates of a molecule for
random sampling of the conformation space. Both methods
make use of the property of Kirkwood sampling whereby the
normalized probability of generating a given conformation can
be computed. We have presented proof-of-concept results for
the new methods using a model system with nine atoms where
the intramolecular force field can be adjusted to highlight
particular sampling issues. We also showed results for alanine
dipeptide, a commonly used model system for benchmarking
sampling algorithms.
The first of the two algorithms is based on biased Monte

Carlo where the Kirkwood samples are used as MC moves. In
contrast to standard molecular dynamics or Monte Carlo
simulations, no equilibration is required in the biased MC
simulation, since successive Kirkwood samples are generated
independently. As a result, biased MC using Kirkwood moves
can be trivially parallelized in a distributed computing
environment, with no communication required between the
compute nodes. Furthermore, since Kirkwood sampling is a
geometrical sampling method, independent of the energy
landscape, the same set of samples can be used to generate
Boltzmann distributions for different temperatures and
potential energy functions.
The convergence of a biased MC simulation depends

primarily on the overlap of the Kirkwood sampling distribution
and the target Boltzmann distribution. The conformational
space covered by Kirkwood sampling is determined by the
input set of probability distribution functions. In the present
work, the pdf’s were populated using conformations obtained
from MD simulations. The results showed that Kirkwood
samples could be used to generate a Boltzmann distribution,
not only for the temperature of the original MD simulation but
also for lower temperatures, although the convergence slows as
the temperature is reduced. One can imagine an iterative
scheme where the initial set of pdf’s is constructed in a manner
that provides coverage of a wide conformational space. For
instance, the pdf’s could be populated using high temperature
MD, or using a database of conformations from the PDB or a
fragment pdf library. Given this initial set of pdf’s and a
potential energy function, one could then perform successive
stages of biased MC simulations and repopulation of the pdf’s
to reach arbitrarily low temperatures.
The second algorithm introduced in this work is a

modification of temperature replica exchange where a temper-
ature replica is coupled with a Kirkwood reservoir of
conformations. Exchanges with the reservoir help to enhance
sampling for that replica. As for biased MC, the acceptance
ratio for exchanges with the reservoir is determined by the

overlap of the Kirkwood distribution and the Boltzmann
distribution for the coupled replica. Note that in the absence of
a reservoir the highest temperature in a replica exchange
simulation needs to be high enough to overcome the energy
barriers and avoid trapping. By coupling to a Kirkwood
reservoir, the highest temperature can be set independent of the
energy barriers. In the presence of a Kirkwood reservoir, the
criterion for setting the highest temperature becomes the
requirement of sufficient overlap to facilitate frequent
exchanges with the reservoir. Thus, coupling with a reservoir
effectively places a limit on the highest temperature required,
which may be lower than the highest temperature dictated by
the barriers of the PES. Indeed, if the reservoir has good
overlap with the Boltzmann distribution corresponding to the
temperature of interest, then just a single replica would suffice.
In that case, the temperature replica essentially performs local
sampling, while the reservoir facilitates global sampling of the
conformational space. Finally, we also note that the sampling
for the lowest temperature replicas can be enhanced by
coupling to a reservoir constructed from a set of low energy
minima from the potential energy landscape.54 In this scenario,
Kirkwood samples could be used for seeding basin-
hopping33−35 simulations in order to generate the low energy
minima of the system, or in the MC part of a basin-sampling
calculation.55

In the present work, canonical sampling for the temperature
replicas of a KR-REX simulation was performed by Monte
Carlo. The Kirkwood reservoir can also be coupled with
temperature replicas evolving via heat bath coupled molecular
dynamics. Coupling to an MD replica would require a relatively
minor modification of the current algorithm to assign velocities
to the reservoir generated conformations. The velocities would
be sampled from the Maxwell−Boltzmann1 distribution
corresponding to the temperature of the coupled temperature
replica. It should therefore be straightforward to enhance the
performance of existing MD based replica exchange codes by
coupling them to a Kirkwood sampler.
Kirkwood sampling provides a normalized probability

distribution over the full conformational space. Therefore, it
can be Boltzmann inverted56 to construct a reference energy
function. We can then define intermediate potentials, which
progress from the potential energy of the physical force field to
the Kirkwood reference energy. The intermediate potentials
could be used to perform Hamiltonian replica exchange57 with
the two boundary replicas corresponding to the reference and
physical energy functions. All replicas may now be simulated at
the temperature of interest using standard perturbation move
Monte Carlo. This approach would facilitate coupling of the
Kirkwood sampling with existing Monte Carlo codes.51,58 The
number and spacing of the intermediate replicas will depend on
the overlap between the reference and the physical energy
surfaces. We note that molecular dynamics cannot be used for
canonical simulation with Hamiltonian replicas, since the
reference energy surface is piecewise continuous and its
gradients are not well-defined. This limitation arises because
the Kirkwood distribution is constructed over a discretized
conformational space. Note that in this scheme Kirkwood
sampling is only used for defining a reference energy function
and not for generating MC moves. We are currently working
on Hamiltonian replica exchange using a Kirkwood reference
energy and will present the results in a separate publication.
Finally, nonequilibrium simulations, which switch the Hamil-
tonian between the physical and reference energy func-
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tions,6,27,59 can also be used to enhance replica overlap and
reduce the number of intermediate replicas.
Application of the present methods to systems of practical

interestfrom small drug-like molecules to large proteins
would require a flexible and scalable implementation of
Kirkwood sampling. Some of the strategies that could be
pursued in this direction are as follows. In the present work, the
low order pdf’s were populated using conformations for the full
molecule. The pdf’s can also be generated for smaller molecular
fragments and assembled for an arbitrary molecule. We are
currently working on developing such a fragment pdf library for
proteins using peptide fragments up to five residues long. The
fragment pdf’s will be populated using PDB8 data and/or
exhaustive MD simulations. For small fragments, it is
computationally feasible to calculate triplet or even quadruplet
pdf’s, which would help better account for local packing. We
note that the Kirkwood framework can be used to sample a
subset of coordinates while keeping the other coordinates fixed.
In the context of conformational sampling of polymers, local
packing can be accounted for by incorporating correlations
among coordinates of adjacent subunits. Therefore, Kirkwood
sampling is likely to be particularly useful for sampling small
molecules, short peptides, or for sampling side-chain
conformations for a fixed backbone.
Construction of pdf libraries for proteins is relatively

straightforward, since proteins are built from a fixed set of
amino acid residues. In the case of small molecules, it may be
necessary to enumerate the different possible bonded top-
ologies for a given number of atoms and atom types. Certain
simplifications, such as treating rings or other groups as rigid
bodies,60 may also be beneficial. For certain families of
molecules, such as macrocycles, it may be necessary to explore
alternative internal coordinate systems that better capture the
constraints imposed by the cyclic bonded topologies. We note
that auxiliary variables could be used in the Kirkwood
framework to impose constraints on the samples. For example,
for the system studied in this work, by using end-to-end
distance as a sampled variable, one could generate samples with
a given end-to-end distance.
In principle, Kirkwood sampling can be performed using any

number of pdf’s of different orders. In practice, however, it is
desirable to use as few pdf’s as possible, since the computational
cost is proportional to the number of pdf’s used and also the
accessible conformational space reduces with increasing pdf’s.
Therefore, it would be useful to develop an adaptive scheme
that successively adds pdf’s for different combinations of
variables to achieve a certain overlap with a target distribution.
The overlap could be measured in terms of the acceptance ratio
in a biased MC simulation. Finally, we note that Kirkwood
sampling is a general method for sampling points in high
dimensional spaces and methods presented here may be
applicable to other areas which deal with high dimensional
probability distributions such as machine learning.
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