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Abstract
Multivariate categorical data occur in many ap-
plications of machine learning. One of the main
difficulties with these vectors of categorical vari-
ables is sparsity. The number of possible obser-
vations grows exponentially with vector length,
but dataset diversity might be poor in compari-
son. Recent models have gained significant im-
provement in supervised tasks with this data.
These models embed observations in a continu-
ous space to capture similarities between them.
Building on these ideas we propose a Bayesian
model for the unsupervised task of distribution
estimation of multivariate categorical data.

We model vectors of categorical variables as
generated from a non-linear transformation of
a continuous latent space. Non-linearity cap-
tures multi-modality in the distribution. The con-
tinuous representation addresses sparsity. Our
model ties together many existing models, link-
ing the linear categorical latent Gaussian model,
the Gaussian process latent variable model, and
Gaussian process classification. We derive in-
ference for our model based on recent develop-
ments in sampling based variational inference.
We show empirically that the model outperforms
its linear and discrete counterparts in imputation
tasks of sparse data.

1 Introduction
Multivariate categorical data is common in fields ranging
from language processing to medical diagnosis. Recently
proposed supervised models have gained significant im-
provement in tasks involving big labelled data of this form
(see for example Bengio et al. (2006); Collobert & Weston
(2008)). These models rely on information that had been
largely ignored before: similarity between vectors of cate-
gorical variables. But what should we do in the unsuper-
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vised setting, when we face small unlabelled data of this
form?

Medical diagnosis provides good examples of small unla-
belled data. Consider a dataset composed of test results of
a relatively small number of patients. Each patient has a
medical record composed often of dozens of examinations,
taking various categorical test results. We might be faced
with the task of deciding which tests are necessary for a
patient under examination to take, and which examination
results could be deduced from the existing tests. This can
be achieved with distribution estimation.

Several tools in the Bayesian framework could be used
for this task of distribution estimation of unlabelled small
datasets. Tools such as the Dirichlet-Multinomial distribu-
tion and its extensions are an example of such. These rely
on relative frequencies of categorical variables appearing
with others, with the addition of various smoothing tech-
niques. But when faced with long multivariate sequences,
these models run into problems of sparsity. This occurs
when the data consists of vectors of categorical variables
with most configurations of categorical values not in the
dataset. In medical diagnosis this happens when there is a
large number of possible examinations compared to a small
number of patients.

Building on ideas used for big labelled discrete data, we
propose a Bayesian model for distribution estimation of
small unlabelled data. Existing supervised models for dis-
crete labelled data embed the observations in a continuous
space. This is used to find the similarity between vectors of
categorical variables. We extend this idea to the small unla-
belled domain by modelling the continuous embedding as
a latent variable. A generative model is used to find a dis-
tribution over the discrete observations by modelling them
as dependent on the continuous latent variables.

Following the medical diagnosis example, patient n would
be modelled by a continuous latent variable xn ∈ X . For
each examination d, the latent xn induces a vector of prob-
abilities f = (fnd1, ..., fndK), one probability for each pos-
sible test result k. A categorical distribution returns test re-
sult ynd based on these probabilities, resulting in a patient’s
medical assessment yn = (yn1, ..., ynD). We need to de-
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cide how to model the distribution over the latent space X
and vectors of probabilities f .

We would like to capture sparse multi-modal categorical
distributions. A possible approach would be to model the
continuous representation with a simple latent space and
non-linearly transform the points in the space to obtain
probabilities. In this approach we place a standard normal
distribution prior on a latent space, and feed the output of a
non-linear transformation of the latent space into a Softmax
to obtain probabilities. We use sparse Gaussian processes
(GPs) to transform the latent space non-linearly. Sparse
GPs form a distribution over functions supported on a small
number of points with linear time complexity with respect
to the number of data points (Quiñonero-Candela & Ras-
mussen, 2005; Titsias, 2009). We use a covariance function
that is able to transform the latent space non-linearly. We
name this model the Categorical Latent Gaussian Process
(CLGP). Using a Gaussian process with a linear covariance
function recovers the linear Gaussian model (LGM, Marlin
et al., 2011). This model linearly transforms a continuous
latent space resulting in discrete observations.

The Softmax likelihood is not conjugate to the our Gaus-
sian prior, and integrating the latent variables with a Soft-
max distribution is intractable. A similar problem exists
with LGMs. Marlin et al. (2011) solved this by using vari-
ational inference and various bounds for the likelihood in
the binary case, or alternative likelihoods to the Softmax in
the categorical case (Khan et al., 2012). Many bounds have
been studied in the literature for the binary case: Jaakkola
and Jordan’s bound (Jaakkola & Jordan, 1997), the tilted
bound (Knowles & Minka, 2011), piecewise linear and
quadratic bounds (Marlin et al., 2011), and others. But for
categorical data fewer bounds exist, since the multivariate
Softmax is hard to approximate in high-dimensions. The
Bohning bound (Böhning, 1992) and Blei and Lafferty’s
bound (Blei & Lafferty, 2006) give poor approximation
(Khan et al., 2012).

Instead we use recent developments in sampling-based
variational inference (Blei et al., 2012) to avoid integrat-
ing the latent variables with the Softmax analytically. Our
approach takes advantage of this tool to obtain simple yet
powerful model and inference. We use Monte Carlo in-
tegration to approximate the non-conjugate likelihood ob-
taining noisy gradients (Kingma & Welling, 2013; Rezende
et al., 2014; Titsias & Lázaro-Gredilla, 2014). We then use
learning-rate free stochastic optimisation (Tieleman & Hin-
ton, 2012) to optimise the noisy objective. We leverage
symbolic differentiation (Theano, Bergstra et al., 2010) to
obtain simple and modular code1.

1Python code for the model and inference is given in the ap-
pendix, and available at http://github.com/yaringal/
CLGP

We experimentally show the advantages of using non-linear
transformations for the latent space. We follow the ideas
brought in Paccanaro & Hinton (2001) and evaluate the
models on relation embedding and relation learning. We
then demonstrate the utility of the model in the real-world
sparse data domain. We use a medical diagnosis dataset
where data is scarce, comparing our model to discrete fre-
quency based models. We use the estimated distribution
for a task similar to the above, where we attempt to in-
fer which test results can be deduced from the others. We
compare the models on the task of imputation of raw data
studying the effects of government terror warnings on po-
litical attitudes. We then evaluate the continuous models on
a binary Alphadigits dataset composed of binary images of
handwritten digits and letters, where each class contains a
small number of images. We inspect the latent space em-
beddings and separation of the classes. Lastly, we evaluate
the robustness of our inference, inspecting the Monte Carlo
estimate variance over time.

2 Related Work
Our model (CLGP) relates to some key probabilistic mod-
els (fig. 1). It can be seen as a non-linear version of the
latent Gaussian model (LGM, Khan et al. (2012)) as dis-
cussed above. In the LGM we have a standard normal prior
placed on a latent space, which is transformed linearly and
fed into a Softmax likelihood function. The probability
vector output is then used to sample a single categorical
value for each categorical variable (e.g. medical test re-
sults) in a list of categorical variables (e.g. medical assess-
ment). These categorical variables correspond to elements
in a multivariate categorical vector. The parameters of the
linear transformation are optimised directly within an EM
framework. Khan et al. (2012) avoid the hard task of ap-
proximating the Softmax likelihood by using an alternative
function (product of sigmoids) which is approximated us-
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Figure 1. Relations between existing models and the model pro-
posed in this paper (Categorical Latent Gaussian Process); the
model can be seen as a non-linear version of the latent Gaus-
sian model (left to right), it can be seen as a latent counterpart to
the Gaussian process classification model (back to front), or al-
ternatively as a discrete extension of the Gaussian process latent
variable model (top to bottom).

http://github.com/yaringal/CLGP
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ing numerical techniques. Our approach avoids this cum-
bersome inference.

Our proposed model can also be seen as a discrete ex-
tension of the Gaussian process latent variable model
(GPLVM, Lawrence, 2005). This model has been proposed
recently as means of performing non-linear dimensional-
ity reduction (counterpart to the linear principal component
analysis (Tipping & Bishop, 1999)) and density estima-
tion in continuous space. Lastly, our model can be seen as
a latent counterpart to the Gaussian process classification
model (Williams & Rasmussen, 2006), in which a Softmax
function is again used to discretise the continuous values.
The continuous valued outputs are obtained from a Gaus-
sian process, which non-linearly transforms the inputs to
the classification problem. Compared to GP classification
where the inputs are fully observed, in our case the inputs
are latent. However, note that GP classification is a special
case of the CLGP model, in the same way that GP regres-
sion can be seen as a special case of the Gaussian process
latent variable model. In both cases the latent inputs can
be modelled with delta functions fixed at the observations
which are not optimised.

3 A Latent Gaussian Process Model for Mul-
tivariate Categorical Data

We consider a generative model for a dataset Y with N
observations (patients for example) and D categorical vari-
ables (different possible examinations). The d-th categor-
ical variable in the n-th observation, ynd, is a categorical
variable that can take an integer value from 0 to Kd. For
ease of notation, we assume all the categorical variables
have the same cardinality, i.e. Kd ≡ K, ∀d = 1, . . . , D.

In our generative model, each categorical variable ynd fol-
lows a categorical distribution with probability given by a
Softmax with weights fnd = (0, fnd1, . . . , fndK). Each
weight fndk is the output of a nonlinear function of a Q
dimensional latent variable xn ∈ RQ: Fdk(xn). To com-
plete the generative model, we assign an isotropic Gaussian
distribution prior with standard deviation σ2

x for the latent
variables, and a Gaussian process prior for each of the non-
linear functions. We also consider a set of M auxiliary
variables which are often called inducing inputs. These
inputs Z ∈ RM×Q lie in the latent space with their cor-
responding outputs U ∈ RM×D×K lying in the weight
space (together with fndk). The inducing points are used
as “support” for the function. Evaluating the covariance
function of the GP on these instead of the entire dataset
allows us to perform approximate inference in O(M2N)
time complexity instead of O(N3) (where M is the num-
ber of inducing points and N is the number of data points
(Quiñonero-Candela & Rasmussen, 2005)).

The model is expressed as:
xnq

iid∼ N (0, σ2
x) (1)

Fdk
iid∼ GP(0,Kd)

fndk = Fdk(xn), umdk = Fdk(zm)

ynd ∼ Softmax(fnd),
for n ∈ [N ] (the set of naturals between 1 and N ), q ∈ [Q],
d ∈ [D], k ∈ [K], m ∈ [M ], covariance matrices Kd, and
where the Softmax distribution is defined as,

Softmax(y = k; f) = Categorical

(
exp(fk)

exp(lse(f))

)
,

lse(f) = log

(
1 +

K∑
k′=1

exp(fk′)

)
, (2)

for k = 0, . . . ,K and with f0 := 0.

Following our medical diagnosis example from the in-
troduction, each patient is modelled by latent xn; for
each examination d, xn has a sequence of weights
(fnd1, ..., fndK), one weight for each possible test result k,
that follows a Gaussian process; Softmax returns test result
ynd based on these weights, resulting in a patient’s medical
assessment yn = (yn1, ..., ynD).

Define fdk = (f1dk, ..., fNdk) and define udk =
(u1dk, ..., uMdk). The joint distribution of (fdk,udk)
with the latent nonlinear function, Fdk, marginalized un-
der the GP assumption, is a multi-variate Gaussian dis-
tribution N (0,Kd([X,Z], [X,Z])). It is easy to verify
that when we further marginalize the inducing outputs,
we end up with a joint distribution of the form fdk ∼
N (0,Kd(X,X)),∀d, k. Therefore, the introduction of in-
ducing outputs does not change the marginal likelihood of
the data Y. These are used in the variational inference
method in the next section and the inducing inputs Z are
considered as variational parameters.

We use the automatic relevance determination (ARD) ra-
dial basis function (RBF) covariance function for our
model. ARD RBF is able to select the dimensionality of the
latent space automatically and transform it non-linearly.

4 Inference
The marginal log-likelihood, also known as log-evidence,
is intractable for our model due to the non-linearity of
the covariance function of the GP and the Softmax like-
lihood function. We first describe a lower bound of the
log-evidence (ELBO) by applying Jensen’s inequality with
a variational distribution of the latent variables following
Titsias & Lawrence (2010).

Consider a variational approximation to the posterior dis-
tribution of X, F and U factorized as follows:

q(X,F,U) = q(X)q(U)p(F|X,U). (3)

We can obtain the ELBO by applying Jensen’s inequality

log p(Y) = log

∫
p(X)p(U)p(F|X,U)p(Y|F)dXdFdU
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≥
∫
q(X)q(U)p(F|X,U)

· log p(X)p(U)p(F|X,U)p(Y|F)

q(X)q(U)p(F|X,U)
dXdFdU

= −KL(q(X)‖p(X))−KL(q(U)‖p(U))

+

N∑
n=1

D∑
d=1

∫
q(xn)q(Ud)p(fnd|xn,Ud)

· log p(ynd|fnd)dxndfnddUd

:= L (4)
where

p(fnd|xn,Ud) =

K∏
k=1

N (fndk|aT
ndudk, bnd) (5)

with
and = K−1

d,MMKd,Mn,

bnd = Kd,nn −Kd,nMK−1
d,MMKd,Mn. (6)

Notice however that the integration of log p(ynd|fnd) in eq.
4 involves a nonlinear function (lse(f) from eq. 2) and is
still intractable. Consequently, we do not have an analytical
form for the optimal variational distribution of q(U) unlike
in Titsias & Lawrence (2010). Instead of applying a further
approximation/lower bound on L, we want to obtain bet-
ter accuracy by following a sampling-based approach (Blei
et al., 2012; Kingma & Welling, 2013; Rezende et al., 2014;
Titsias & Lázaro-Gredilla, 2014) to compute the lower
bound L and its derivatives with the Monte Carlo method.

Specifically, we draw samples of xn, Ud and fnd from
q(xn), q(Ud), and p(fnd|xn,Ud) respectively and esti-
mate L with the sample average. Another advantage of us-
ing the Monte Carlo method is that we are not constrained
to a limited choice of covariance functions for the GP that
is otherwise required for an analytical solution in stan-
dard approaches to GPLVM for continuous data (Titsias &
Lawrence, 2010; Hensman et al., 2013).

We consider a mean field approximation for the latent
points q(X) as in (Titsias & Lawrence, 2010) and a joint
Gaussian distribution with the following factorisation for
q(U):

q(U) =

D∏
d=1

K∏
k=1

N (udk|µdk,Σd),

q(X) =

N∏
n=1

Q∏
i=1

N (xni|mni, s
2
ni) (7)

where the covariance matrix Σd is shared for the same cat-
egorical variable d (remember that K is the number of val-
ues this categorical variable can take). The KL divergence
in L can be computed analytically with the given varia-
tional distributions. The parameters we need to optimise
over2 include the hyper-parameters for the GP θd, varia-

2Note that the number of parameters to optimise over can be

tional parameters for the inducing points Z, µdk, Σd, and
the mean and standard deviation of the latent points mni,
sni.

4.1 Transforming the Random Variables

In order to obtain a Monte Carlo estimate to the gradients of
L with low variance, a useful trick introduced in (Kingma
& Welling, 2013) is to transform the random variables to
be sampled so that the randomness does not depend on the
parameters with which the gradients will be computed. We
present the transformation of each variable to be sampled
as follows:

Transforming X. For the mean field approximation, the
transformation for X is straightforward as

xni = mni + sniε
(x)
ni , ε

(x)
ni ∼ N (0, 1) (8)

Transforming udk. The variational distribution of udk is
a joint Gaussian distribution. Denote the Cholesky decom-
position of Σd as LdL

T
d = Σd. We can rewrite udk as

udk = µdk + Ldε
(u)
dk , ε

(u)
dk ∼ N (0, IM ) (9)

We optimize the lower triangular matrix Ld instead of Σd.

Transforming fnd. Since the conditional distribution
p(fnd|xn,Ud) in Eq. 5 is factorized over k we can define a
new random variable for every fndk:
fndk = aT

ndudk +
√
bndε

(f)
ndk, ε

(f)
ndk ∼ N (0, 1) (10)

Notice that the transformation of the variables does not
change the distribution of the original variables and there-
fore does not change the KL divergence in Eq. 5.

4.2 Lower Bound with Transformed Variables

Given the transformation we just defined, we can represent
the lower bound as

L =−
N∑

n=1

Q∑
i=1

KL(q(xni)‖p(xni)) (11)

−
D∑

d=1

K∑
k=1

KL(q(udk)‖p(udk))

+

N∑
n=1

D∑
d=1

E
ε
(x)
n ,ε

(u)
d ,ε

(f)
nd

[
log Softmax

(
ynd

∣∣∣fnd (ε(f)nd ,Ud(ε
(u)
d ),xn(ε

(x)
n )
))]

where the expectation in the last line is with respect to the
fixed distribution defined in Eqs. 8, 9 and 10. Each expec-
tation term that involves the Softmax likelihood, denoted
as Lnd

s , can be estimated using Monte Carlo integration as
Lnd
s ≈ (12)

reduced by transforming the latent space non-linearly to a second
low-dimensional latent space, which is then transformed linearly
to the weight space containing points fndk.
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1

T

T∑
i=1

log Softmax
(
ynd

∣∣∣fnd (ε(f)nd,i,Ud(ε
(u)
d,i ),xn(ε

(x)
n,i)
))

with ε(x)n,i , ε
(u)
d,i , ε

(f)
nd,i drawn from their corresponding dis-

tributions. Since these distributions do not depend on the
parameters to be optimized, the derivatives of the objective
function L are now straight-forward to compute with the
same set of samples using the chain rule.

4.3 Stochastic Gradient Descent

We use gradient descent to find an optimal variational dis-
tribution. Gradient descent with noisy gradients is guaran-
teed to converge to a local optimum given decreasing learn-
ing rate with some conditions, but is hard to work with in
practice. Initial values set for the learning rate influence
the rate at which the algorithm converges, and misspeci-
fied values can cause it to diverge. For this reason new
techniques have been proposed that handle noisy gradients
well. Optimisers such as AdaGrad (Duchi et al., 2011),
AdaDelta (Zeiler, 2012), and RMSPROP (Tieleman & Hin-
ton, 2012) have been proposed, each handling the gradi-
ents slightly differently, all averaging over past gradients.
Schaul et al. (2013) have studied empirically the different
techniques, comparing them to one another on a variety
of unit tests. They found that RMSPROP works better on
many test sets compared to other optimisers evaluated. We
thus chose to use RMSPROP for our experiments.

A major advantage of our inference is that it is extremely
easy to implement and adapt. The straight-forward com-
putation of derivatives through the expectation makes it
possible to use symbolic differentiation. We use Theano
(Bergstra et al., 2010) for the inference implementation,
where the generative model is implemented as in Eqs. 8,
9 and 10, and the optimisation objective, evaluated on sam-
ples from the generative model, is given by Eq. 11.

5 Experimental Results
We evaluate the categorical latent Gaussian process
(CLGP), comparing it to existing models for multivariate
categorical distribution estimation. These include mod-
els based on a discrete latent representation (such as the
Dirichlet-Multinomial), and continuous latent representa-
tion with a linear transformation of the latent space (latent
Gaussian model (LGM, Khan et al., 2012)). We demon-
strate over-fitting problems with the LGM, and inspect the
robustness of our inference.

For the following experiments, both the linear and non-
linear models were initialised with a 2D latent space. The
mean values of the latent points,mn, were initialised at ran-
dom following a standard normal distribution. The mean
values of the inducing outputs (µdk) were initialised with
a normal distribution with standard deviation 10−2. This
is equivalent to using a uniform initial distribution for all
values. We initialise the standard deviation of each latent

point (sn) to 0.1, and initialise the length-scales of the ARD
RBF covariance function to 0.1. We then optimise the vari-
ational distribution for 500 iterations. At every iteration we
optimise the various quantities while holding udk’s varia-
tional parameters fixed, and then optimise udk’s variational
parameters holding the other quantities fixed.

Our setting supports semi-supervised learning with par-
tially observed data. The latents of partially observed
points are optimised with the training set, and then used
to predict the missing values. We assess the performance
of the models using test-set perplexity (a measure of how
much the model is surprised by the missing test values).
This is defined as the exponent of the negative average log
predicted probability.

5.1 Linear Models Have Difficulty with Multi-modal
Distributions

We show the advantages of using a non-linear categorical
distribution estimation compared to a linear one, evaluating
the CLGP against the linear LGM. We implement the latent
Gaussian model using a linear covariance function in our
model; we remove the KL divergence term in u following
the model specification in (Khan et al., 2012), and use our
inference scheme described above. Empirically, the Monte
Carlo inference scheme with the linear model results in the
same test error on (Inoguchi, 2008) as the piece-wise bound
based inference scheme developed in (Khan et al., 2012).

(a) LGM

(b) CLGP
Figure 2. Density over the latent space for XOR as predicted
by the linear model (top, LGM), and non-linear model (bot-
tom, CLGP). Each figure shows the probability p(yd = 1|x)
as a function of x, for d = 0, 1, 2 (first, second, and third dig-
its in the triplet left to right). The darker the shade of green, the
higher the probability. In blue are the latents corresponding to the
training points, in yellow are the latents corresponding to the four
partially observed test points, and in red are the inducing points
used to support the function.
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(a) LGM (b) CLGP (c) Ground truth

Figure 3. Histogram of categorical values for XOR (encoded
in binary for the 8 possible values) for samples drawn from the
posterior of the latent space of the linear model (left, LGM), the
non-linear model (middle, CLGP), and the data used for training
(right).

5.1.1 Relation Embedding – Exclusive Or

A simple example of relational learning (following Pac-
canaro & Hinton (2001)) can be used to demonstrate
when linear latent space models fail. In this task we are
given a dataset with example relations and the model is
to capture the distribution that generated them. A non-
linear dataset is constructed using the XOR (exclusive
or) relation. We collect 25 positive examples of each
assignment of the binary relation (triplets of the form
(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), corresponding to
0 XOR 1 = 1 and so on). We then maximise the vari-
ational lower bound using RMSPROP for both the lin-
ear and non-linear models with 20 samples for the Monte
Carlo integration. We add four more triplets to the dataset:
(0, 0, ?), (0, 1, ?), (1, 0, ?), (1, 1, ?). We evaluate the
probabilities the models assign to each of the missing val-
ues (also known as imputation) and report the results.

We assessed the test-set perplexity repeating the experi-
ment 3 times and averaging the results. The linear model
obtained a test-set perplexity (with standard deviation) of
75.785 ± 13.221, whereas the non-linear model obtained
a test-set perplexity of 1.027 ± 0.016. A perplexity of 1
corresponds to always predicting correctly.

During optimisation the linear model jumps between differ-
ent local modes, trying to capture all four possible triplets
(fig. 2). The linear model assigns probabilities to the miss-
ing values by capturing some of the triplets well, but cannot
assign high probability to the others. In contrast, the CLGP
model is able to capture all possible values of the relation.
Sampling from probability vectors from the latent varia-
tional posterior for both models, we get a histogram of the
posterior distribution (fig. 3). As can be seen, the CLGP
model is able to fully capture the distribution whereas the
linear model is incapable of it.

5.1.2 Relation Learning – Complex Example

We repeat the previous experiment with a more com-
plex relation. We generated 1000 strings from a
simple probabilistic context free grammar with non-

terminals {α, β,A,B,C}, start symbol α, terminals
{a, b, c, d, e, f, g}, and derivation rules:

α→ Aβ [1.0]

β → BA [0.5] | C [0.5]

A→ a [0.5] | b [0.3] | c [0.2]
B → d [0.7] | e [0.3]
C → f [0.7] | g [0.3]

where we give the probability of following a derivation rule
inside square brackets. Following the start symbol and the
derivation rules we generate strings of the form ada, af ,
ceb, and so on. We add two “start” and “end” symbols
s, s to each string obtaining strings of the form sscebss.
We then extract triplets of consecutive letters from these
strings resulting in training examples of the form ssc, sce,
..., bss. This is common practice in text preprocessing in
the natural language community. It allows us to generate
relations from scratch by conditioning on the prefix ss to
generate the first non-terminal (say a), then condition on
the prefix sa, and continue in this vein iteratively. Note
that a simple histogram based approach will do well on this
dataset (and the previous dataset) as it is not sparse.

Split LGM CLGP
1 7.898± 3.220 2.769± 0.070
2 26.477± 23.457 2.958± 0.265
3 6.748± 3.028 2.797± 0.081

Table 1. Test-set perplexity on relational data. Compared are
the linear LGM and the non-linear CLGP.

We compared the test-set perplexity of the non-linear
CLGP (with 50 inducing points) to that of the linear LGM
on these training inputs, repeating the same experiment set-
up as before. We impute one missing value at random in
each test string, using 20% of the strings as a test set with
3 different splits. The results are presented in table 1. The
linear model cannot capture this data well, and seems to get
very confident about misclassified values (resulting in very
high test-set perplexity).

5.2 Sparse Small Data

We assess the model in the real-world domain of small
sparse data. We compare the CLGP model to a his-
togram based approach, demonstrating the difficulty with
frequency models for sparse data. We further compare our
model to the linear LGM.

5.2.1 Medical Diagnosis

We use the Wisconsin breast cancer dataset for which ob-
taining samples is a long and expensive process3. The
dataset is composed of 683 data points, with 9 categori-
cal variables taking values between 1 and 10, and an addi-
tional categorical variable taking 0,1 values – 2×109 possi-

3Obtained from the UCI repository
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Split Baseline Multinomial Uni-Dir-Mult Bi-Dir-Mult LGM CLGP
1 8.68 4.41 4.41 3.41 3.57± 0.208 2.86± 0.119
2 8.68 ∞ 4.42 3.49 3.47± 0.252 3.36± 0.186
3 8.85 4.64 4.64 3.67 12.13± 9.705 3.34± 0.096

Table 2. Test-set perplexity on Breast cancer dataset, predicting randomly missing categorical test results. The models compared
are: Baseline predicting uniform probability for all values, Multinomial – predicting the probability for a missing value based on its
frequency, Uni-Dir-Mult – Unigram Dirichlet Multinomial with concentration parameter α = 0.01, Bi-Dir-Mult – Bigram Dirichlet
Multinomial with concentration parameter α = 1, LGM, and the proposed model (CLGP).

ble configurations. We use three quarters of the dataset for
training and leave the rest for testing, averaging the test-
set perplexity on three repetitions of the experiment. We
use three different random splits of the dataset as the dis-
tribution of the data can be fairly different among different
splits. In the test set we randomly remove one of the 10
categorical values, and test the models’ ability to recover
that value. Note that this is a harder task than the usual use
of this dataset for binary classification. We use the same
model set-up as in the first experiment.

We compare our model (CLGP) to a baseline predicting
uniform probability for all values (Baseline), a multino-
mial model predicting the probability for a missing value
based on its frequency (Multinomial), a unigram Dirichlet
Multinomial model with concentration parameter α = 0.01
(Uni-DirMult), a bigram Dirichlet Multinomial with con-
centration parameter α = 1 (Bi-Dir-Mult), and the lin-
ear continuous space model (LGM). More complicated fre-
quency based approaches are possible, performing variable
selection and then looking at frequencies of triplets of vari-
ables. These will be very difficult to work with in this
sparse small data problem.

We evaluate the models’ performance using the test-set per-
plexity metric as before (table 2). As can be seen, the
frequency based approaches obtain worse results than the
continuous latent space approaches. The frequency model
with no smoothing obtains perplexity∞ for split 2 because
one of the test points has a value not observed before in
the training set. Using smoothing solves this. The baseline
(predicting uniformly) obtains the highest perplexity on av-
erage. The linear model exhibits high variance for the last
split, and in general has higher perplexity standard devia-
tion than the non-linear model.

5.2.2 Terror Warning Effects on Political Attitude

We further compare the models on raw data collected in
an experimental study of the effects of government terror
warnings on political attitudes (from the START Terrorism
Data Archive Dataverse4). This dataset consists of 1282
cases and 49 variables. We used 1000 cases for training
and 282 for test. From the 49 variables, we used the 17 cor-

4Obtained from the Harvard Dataverse Network
thedata.harvard.edu/dvn/dv/start/faces/
study/StudyPage.xhtml?studyId=71190

responding to categorical answers to study questions (the
other variables are subjects’ geographic info and an answer
to an open question). The 17 variables take 5 or 6 possible
values for each variable with some of the values missing.

Baseline Multinomial LGM CLGP
2.50 2.20 3.07 2.11

Table 3. Test-set perplexity for terror warning effects on polit-
ical attitude. Compared are the linear LGM and the non-linear
CLGP.
We repeat the same experiment set-up as before, with a 6
dimensional latent space, 100 inducing points, 5 samples
to estimate the lower bound, and running the optimiser for
1000 iterations. We compare a Baseline using a uniform
distribution for all values, a Multinomial model using the
frequencies of the individual variables, the linear LGM, and
the CLGP. The results are given in table 3. On the training
set, the CLGP obtained a training error of 1.56, and the
LGM obtained a training error of 1.34. The linear model
seems to over-fit to the data.

5.2.3 Handwritten Binary Alphadigits

We evaluate the performance of our model on a sparse
dataset with a large number of dimensions. The dataset,
Binary Alphadigits, is composed of 20× 16 binary images
of 10 handwritten digits and 26 handwritten capital letters,
each class with 39 images5. We resize each image to 10×8,
and obtain a dataset of 1404 data points each with 80 binary
variables. We repeat the same experiment set-up as before
with 2 latent dimensions for ease of visual comparison of
the latent embeddings. Fig. 4a shows an example of each
alphadigit class. Each class is then randomly split to 30
training and 9 test examples. In the test set, we randomly
remove 20% of the pixels and evaluate the prediction error.

Fig. 4b shows the training and test error in log perplex-
ity for both models. LGM converges faster than CLGP
but ends up with a much higher prediction error due to its
limited modeling capacity with 2 dimensional latent vari-
ables. This is validated with the latent embedding shown
in fig. 4c and 4d. Each color-marker combination denotes
one alphadigit class. As can be seen, CLGP has a better
separation of the different classes than LGM even though
the class labels are not used in the training.

5Obtained from http://www.cs.nyu.edu/˜roweis/
data.html

thedata.harvard.edu/dvn/dv/start/faces/study/StudyPage.xhtml?studyId=71190
thedata.harvard.edu/dvn/dv/start/faces/study/StudyPage.xhtml?studyId=71190
http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
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(a) Example alphadigits
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(c) LGM latent space
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(d) CLGP latent space

Figure 4. Binary alphadigit dataset. (a) example of each class (b) Train and test log perplexity for 1000 iterations. (c,d) 2-D latend
embedding of the 36 alphadigit classes with LGM (left) and CLGP model (right). Each color-marker combination denotes one class.

5.3 Latent Gaussian Model Over-fitting

It is interesting to note that the latent Gaussian model
(LGM) over-fits on the different datasets. It is possible
to contribute this to the lack of regularisation over the lin-
ear transformation – the weight matrix used to transform
the latent space to the Softmax weights is optimised with-
out a prior. In all medical diagnosis experiment repetitions,
for example, the model’s training log perplexity decreases
while the test log perplexity starts increasing (see fig. 5 for
the train and test log perplexities of split 1 of the breast
cancer dataset). Note that even though the test log perplex-
ity starts increasing, at its lowest point it is still higher than
the end test log perplexity of the CLGP model. This is ob-
served for all splits and all repetitions.

It is worth noting that we compared the CLGP to the LGM
on the ASES survey dataset (Inoguchi, 2008) used to assess
the LGM in (Khan et al., 2012). We obtained a test perplex-
ity of 1.98, compared to LGM’s test perplexity of 1.97. We
concluded that the dataset was fairly linearly separable.

5.4 Inference Robustness

Lastly, we inspect the robustness of our inference, evaluat-
ing the Monte Carlo (MC) estimate standard deviation as
optimisation progresses. Fig. 6 shows the ELBO and MC
standard deviation per iteration (on log scale) for the Al-
phadigit dataset. It seems that the estimator standard devia-
tion decreases as the approximating variational distribution
fits to the posterior. This makes the stochastic optimisa-

(a) LGM (b) CLGP
Figure 5. Train and test log perplexities for LGM (left) and the
CLGP model (right) for one of the splits of the breast cancer
dataset. The train log perplexity of LGM decreases while the test
log perplexity starts increasing at iteration 50.

tion easier, speeding up convergence. A further theoretical
study of this behaviour in future research will be of interest.

6 Discussion and Conclusions
We have presented the first Bayesian model capable of cap-
turing sparse multi-modal categorical distributions based
on a continuous representation. The model time complex-
ity is O(NM2DK) for N data points, M inducing points,
D categorical variables, and K values for each variable.
When used with a single variable, this is the same as that of
the variational inference in sparse GPs (Titsias, 2009). This
model ties together many existing models in the field, link-
ing the linear and discrete latent Gaussian models to the
non-linear continuous space Gaussian process latent vari-
able model and to the fully observed discrete Gaussian pro-
cess classification.

In future work we aim to answer short-comings in the cur-
rent model such as scalability to high dimensionality and
robustness. We scale the model following research on GP
scalability done in (Hensman et al., 2013; Gal et al., 2014).
The robustness of the model depends on the sample vari-
ance in the Monte Carlo integration. As discussed in Blei
et al. (2012), variance reduction techniques can help in the
estimation of the integral, and methods such as the one de-
veloped in Wang et al. (2013) can effectively increase in-
ference robustness.
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Figure 6. ELBO and standard deviation per iteration (on log
scale) for the Alphadigits dataset.
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