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Summary

1. ‘Dated-tip’ methods ofmolecular dating useDNA sequences sampled at different times, to estimate the age of

theirmost recent common ancestor. Several tests of ‘temporal signal’ are available to determinewhether data sets

are suitable for such analysis. However, it remains unclear whether these tests are reliable.

2. We investigate the performance of several tests of temporal signal, including some recently suggested modifi-

cations. We use simulated data (where the true evolutionary history is known), and whole genomes of methi-

cillin-resistant Staphylococcus aureus (to show how particular problems arise with real-world data sets).

3. We show that all of the standard tests of temporal signal are seriously misleading for data where temporal and

genetic structures are confounded (i.e. where closely related sequences are more likely to have been sampled at

similar times). This is not an artefact of genetic structure or tree shape per se, and can arise even when sequences

have measurably evolved during the sampling period. More positively, we show that a ‘clustered permutation’

approach introduced by Duchêne et al. (Molecular Biology and Evolution, 32, 2015, 1895) can successfully cor-

rect for this artefact in all cases and introduce techniques for implementing thismethodwith real data sets.

4. The confounding of temporal and genetic structures may be difficult to avoid in practice, particularly for out-

breaks of infectious disease, or when using ancient DNA. Therefore, we recommend the use of ‘clustered permu-

tation’ for all analyses. The failure of the standard tests may explain why different methods of dating pathogen

origins have reached suchwildly different conclusions.

Key-words: Bayesian dating, dated-tips, pathogen origins, permutation tests, Staphylococcus

aureus

Introduction

Molecular dating uses evolutionary change between homolo-

gous DNA sequences to infer the time since their most recent

common ancestor (tMRCA). If the genomes were sampled at

similar times, then this inference requires external temporal

information, such as a known rate of evolution, to calibrate

the molecular clock. But if the genomes were sampled at suffi-

ciently different times, then the sampling dates are all the tem-

poral information required (Rambaut 2000; Drummond,

Pybus & Rambaut 2003b; Drummond et al. 2003a). Such

‘dated-tip’ methods have been particularly useful in the study

of viral and bacterial pathogens and have been used to under-

stand the origins and spread of diseases, as well as transmission

pathways within a single outbreak (e.g. Smith et al. 2009;

Didelot et al. 2012;McAdam et al. 2012; Gire et al. 2014).

Dated-tip methods are only valid if there is temporal signal

in the data. This will not be the case if the sampling period was

too short for sufficient evolutionary change to occur or if evo-

lutionary rates were too variable (Drummond, Pybus & Ram-

baut 2003b; Firth et al. 2010; Duchêne et al. 2015a). However,

evolutionary rates are often unknown, and molecular dating

methods will usually converge on an estimate whether or not

temporal signal is present (Firth et al. 2010). As such, it is cru-

cial to test themolecular data for temporal signal.

Several approaches have been used to test for temporal sig-

nal. The simplest is a linear regression of phylogenetic root-

to-tip distance against sampling date (Buonagurio et al. 1986;

Shankarappa et al. 1999; Korber et al. 2000; Drummond,

Pybus & Rambaut 2003b). If sampling dates are sufficiently

different, then more recently sampled sequences will have

undergone substantiallymore evolutionary change than earlier

sampled sequences, and this should create a strong positive

correlation. This test obviously requires a rooted phylogeny,

and when the root is unknown, it is common to estimate the

root simultaneously with the regression, so as to maximize the

model fit (Drummond et al. 2003a). Significance is not gener-

ally calculated, because root-to-tip distances are non-indepen-

dent, but Navascu�es, Depaulis & Emerson (2010) suggest*Correspondence author. E-mail: ggrm2@cam.ac.uk
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using permutation, asking whether the correlation is stronger

than expected if the sampling dates were assigned to sequences

at random.

Linear regression is a crudemethod of molecular dating, but

analogous tests can be used with more formal methods. Most

commonly, the tMRCA or rate estimate from a Bayesian dated-

tip analysis is used as the test statistic. If more recently sampled

sequences have undergone more molecular evolution, then the

true sampling dates should yield a tMRCA that differs substan-

tially from the equivalent estimates with the sampling dates

randomly permuted over sequences (Ramsden, Holmes &

Charleston 2009; e.g. Duffy & Holmes 2009; Firth et al. 2010;

Fraile et al. 2011; Pag�an&Holgu�ın 2013; Duchêne, Holmes &

Ho 2014b; Duchêne et al. 2015a).

Finally, a distinct approach uses model selection and com-

pares the fit of models with the sampling dates included or

excluded, thereby failing to take special account for any evolu-

tion that might have taken place during the sampling period

(Rambaut 2000; Drummond, Pybus & Rambaut 2003b;

Drummond et al. 2003a; Baele et al. 2012). Temporal signal is

confirmed if the inclusion of the sampling dates improves the

fit.

All of the approaches above are widely used, but it is not

clear how well they identify temporal signal, especially if we

define temporal signal as the ability of a data set to yield reli-

able date estimates. Previous studies have shown that dated-tip

methods can be unreliable not only for data with too short a

sampling period or too variable an evolutionary rate, but also

for data with strong population structure (Navascu�es & Emer-

son 2009) or imbalanced trees (Duchêne, Duchêne & Ho

2015b). Furthermore, Duchêne et al. (2015a) showed that the

Bayesian permutation test gave false evidence of temporal sig-

nal for simulated data where the sampling period was too

short, but where clusters of closely related sequences were sam-

pled at the same time, that is where temporal and genetic struc-

tures were confounded. To solve this problem, they introduced

a ‘clustered permutation approach’ where dates were ran-

domly reassigned among clusters of sequences sampled on the

same date.

Here, we investigate the performance of tests of temporal

signal on a variety of simulated and real-world structured

data sets. We show that while structured data can generate

accurate estimates of the tMRCA with dated-tip methods,

when temporal and genetic structures are confounded, esti-

mates are consistently misleading, regardless of the level of

temporal structure in the data. We further show that the

standard tests of temporal signal fail to identify data sets

that result in unreliable estimates when temporal and

genetic structures are confounded. We demonstrate that the

clustered permutation approach of Duchêne et al. (2015a)

can be applied to both the regression and Bayesian tests

for temporal signal, and that it successfully identifies those

data sets that give reliable estimates in the presence of con-

founded genetic structure. Finally, through analysis of two

sets of whole-genome data from Staphylococcus aureus,

with very different sampling periods, we develop methods

of applying these tests to real data and show that

confounding can arise naturally from clinical sampling

practice, suggesting that the unreliable date estimates may

be widespread.

Materials andmethods

DATA SETS

Details of our simulated and real data sets are provided in the Support-

ing information.

BASIC DATING ANALYSES

Weestimated the tMRCA for all of our data sets using BEAST v1.8 (Drum-

mond et al. 2012). In all cases, we used a constant population size coa-

lescent prior for the node ages, and (except for Bayes factor

calculations) the BEAUti v1.8 default priors for all other parameters

(Drummond et al. 2012). After each run, convergence was assessed

using TRACER v1.6 (Rambaut et al. 2014) and burn-in removed as

required. For the tMRCA, we recorded the maximum a posteriori

(MAP) estimate, estimated from the MCMC using the Venter mode

estimator from the R packagemodeest (Venter 1967; Poncet 2012), and

the 95%highest posterior density (HPD) interval.

For the simulated data sets, we fit the same evolutionary model that

was used to simulate the data, namely the HKY+Γ substitution model

and a strict molecular clock. For the reanalysis of the S. aureus data,

we also used the HKY+Γ substitution model. For the data from

Holden et al. (2013), we used the uncorrelated log-normal relaxed

molecular clock (replicating the published analysis), whereas for the

data from Paterson et al. (2015) we used a strict clock due to the small

number of variable sites.

TESTS OF TEMPORAL SIGNAL

Regression test

To regress phylogenetic root-to-tip distance against sampling date, we

obtained crude root-to-tip distances from a neighbour-joining tree esti-

mated using aK80 nucleotide substitutionmodel with the APE package

in R (Paradis, Claude & Strimmer 2004). Following the PATH-O-GEN

software (Rambaut 2013), the root was fit simultaneously with the

regression, so as to minimize the residual mean squares (see also

Korber et al. 2000). Following the suggestion of Navascu�es, Depaulis

& Emerson (2010), the significance of the regression was assessed by

random permutation of the sampling dates over the sequences, using

the correlation coefficient as the test statistic. For all reported results,

we generated 1000 replicates of the data, with the sampling dates ran-

domly permuted. The P-value is the proportion of replicates with a test

statistic greater than or equal to the true value. The null hypothesis is

that a negligible amount of evolution took place between the sampling

dates, so that the correlation observed can be attributed to stochastic

variation in molecular branch length estimates and (when the root is

not known independently) to our having rooted the tree to maximize

clocklikeness.

Bayesian dating permutation tests

To test for temporal signal using Bayesian dating, each analysis was

repeated 10 times, after randomly permuting the sampling dates across

sequences (e.g. Ramsden, Holmes & Charleston 2009). We then asked
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whether the tMRCA estimate from the true datawas outlyingwhen com-

pared with the estimates from the randomly permuted data. This is not

standard hypothesis test, since each of the 11 estimates is associated

with uncertainty, and therefore, P-values were not calculated. We note

that the choice of the tMRCA as a test statistic is somewhat arbitrary,

and that other alternatives (such as mean rate) could also be used.

Unless one or other statistic was of particular interest, statistics might

be preferred whose posterior distributions are easier to estimate from

theMCMC.

Clustered permutation tests

The permutation tests described above assume that the sampling dates

are exchangeable under the null. This will not be true if closely related

sequences were preferentially sampled at the same date. A heuristic

approach to dealing with this artefact was introduced by Duchêne

et al. (2015a). Their approach is to randomize dates over clusters of

sequences, rather than individual sequences. Clusters are defined as

monophyletic clades, which were sampled at the same time. If we have

n clusters, then the maximum number of permutations of these clusters

is n!, and if each sampling date is associated in more than one of the

clusters, then the total number of unique permutations is n!
Qdates

i m�1
i

where mi is the number of clusters associated with sampling date i.

When this number is suitably small, it is easiest to generate all possible

permutations. For example, in Fig. 1c,d, there were only 3! = 6 possi-

ble permutations, which made 1/6 the smallest possible P-value for

these extreme cases. For the simulated data, we identified single-date

clusters from a neighbour-joining tree, rooted to minimize the residual

mean squares of a linear regression of sampling time against root-to-tip

distance (see Results for definitions for real data). All tests were

implemented in R scripts (R Core Team 2014), which are provided in

the Supporting information.

Tests ofmodel fit

A final test of temporal signal is to compare some measure of model fit

for phylogenetic analyses with or without sampling dates (Baele et al.

2012). In practice, for the ‘no dates’model, to keep the two cases as sim-

ilar as possible, we set all sequences to the most recent sampling date in

the original data set. We compared two model comparison statistics.

The AICM is computationally cheap and robust to specification of

improper priors. It can also be transformed into a true hypothesis test,

using Akaike weights (Burnham & Anderson 2002). To do this, when

the ‘with dates’ model was preferred, the relative support for this

model, equivalent to the P-value, was calculated as

w ¼ 1þ e
1
2DAICM

� ��1

, where DAICM is the improvement in the fit.

AICMwas estimated in TRACER v1.6 (Rambaut et al. 2014), which was

also used to check convergence.

To calculate Bayes factors, we used the path sampling approachwith

100 steps, as implemented in BEAST v.2 (Baele et al. 2012; Bouckaert

et al. 2014). The method relies on the specification of priors that are

proper (integrating to unity), and not too diffuse (Baele et al. 2012).

(This may be difficult for data sets where a priori plausible date or rate

estimates span several orders of magnitude.)We set themean rate prior

to a gamma distribution with a shape parameter of 0�1 and a

scale parameter of 1, the standard deviation of the rate prior to an

exponential distribution with a mean of 1, the population size prior to

an exponential distribution with a mean of 100, the HKY transition–

transversion parameter prior to a gamma distribution with a shape

parameter of 2 and a scale parameter of 1, and the between-site rate

gamma shape prior to an exponential distribution ofmean 1.

Results

DATING ARTEFACTS WITH SIMULATED DATA

To illustrate the performance of tests of temporal signal on

genetically structured samples, we simulated molecular data

sampled on three different dates, from a highly structured pop-

ulation, consisting of three distinct and equally related clades,

whosemost recent common ancestor lived 10 000 years before

the present (ybp), evolving at a comparable rate to some bacte-

ria and viruses (1�6 9 10�6 subs per site per year). We applied

the standard tests of temporal signal to these simulated data

and estimated their tMRCA (Fig. 1).

We first simulated data with a high degree of temporal struc-

ture, by selecting three sampling dates such that an average of

20 nucleotide substitutions per genome occurred between each

sampling. We also assumed a ‘balanced’ sampling scheme,

such that all three genetic clades were sampled equally thor-

oughly on all three dates. With this high temporal structure,

and balanced sampling, the dating was a success. When corre-

lating root-to-tip distance with sampling dates, all of the 1000

simulated data sets showed the signature of temporal signal

(see Fig. S1a for a histogram of r-values). Figure 1a shows a

detailed analysis of a single typical replicate, with a permuta-

tion test, confirming that the correlation was unlikely to have

arisen by chance (Fig. 1a, middle column; see also Table S1);

indeed, for these simulated data, variation around the regres-

sion line must be attributed to stochastic variation in the sub-

stitution process, or to estimation error in the branch lengths.

The intercept of the regression was also similar to the true

tMRCA used to simulate the data. Bayesian molecular dating

with BEAST (Drummond et al. 2012) also performed well

(Fig. 1a, right-hand column): the tMRCA estimate (red point)

was accurate and precise, and also highly outlying when com-

pared with replicate analyses with sampling dates randomly

permuted (purple points).

We next simulated data with the same balanced sampling,

but little temporal structure, that is with sampling dates that

were so close that only 0�2 substitutions per genome were

expected between them (Fig. 1b). In this case, tMRCA estimates

were highly inaccurate, but tests of temporal signal correctly

indicated that these estimates could not be trusted. In particu-

lar, none of the 1000 data sets gave high r-values (Fig. S1b),

and tests confirmed that similar results could be obtained after

randomly permuting the sampling dates. Therefore, with bal-

anced sampling (Fig. 1a,b), tests of temporal signal perform

well.

Performance declined substantially when sampling was con-

founded with genetic structure, that is when each genetic clade

was sampled on a different date (Fig. 1c,d). In these cases, esti-

mates of the tMRCA were highly inaccurate, but tests of tempo-

ral signal wrongly indicated that the inaccurate dates could be

trusted. These artefacts occurred both when there was high

temporal structure (Fig. 1c), and when there was low temporal

structure (Fig. 1d). Indeed, with low temporal structure, over

a third of the simulated data sets showed a high correlation

between sampling date and root-to-tip distance (Fig. S1d), and
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a typical data set gave strong evidence of temporal signal,

despite yielding a wildly inaccurate estimate of the tMRCA:

51 ybp, as opposed to the true value of 10 000 ybp.

To show why confounding misleads molecular dating,

Fig. 2 illustrates two sections of phylogeny with the same sam-

pling period, but different levels of confounding. (a) will tend

(a)

(b)

(c)

(d)

Fig. 1. The left-hand column shows schematic representations of the tree topologies over which evolution was simulated. The grey triangle repre-

sents the variable branching patterns of a simulated coalescence process. The middle column shows results of the regression of root-to-tip distance

against sampling date. A significant positive correlation is consistent with the presence of temporal signal.P-values were obtained by randompermu-

tation of sampling dates across sequences (P) or monophyletic clusters of sequences that shared a sampling date (Pclust). The right-hand column

shows themaximum a posteriori estimate of the tMRCAwith 95%highest posterior density intervals (red) as inferred using BEAST. These are compared

to equivalent estimates from data sets with the sampling dates randomly permuted across sequences (purple), or clusters of sequences (blue). For the

model selection approach, we report the increase in AICM values when sampling dates were included in the analysis. (a) and (b) represent a ‘bal-

anced’ sampling strategy where each clade was sampled equally thoroughly at each of the sampling times; (c) and (d) represent a confounded sam-

pling strategy where each clade was sampled at a different time. For (a) and (c), true temporal structure is high, such that a substantial amount of

molecular evolution could occur between the sampling dates, while for (b) and (d), temporal structure is low.
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to give better results than (b) for two connected reasons. First,

in (b) the sampling period constitutes a much smaller propor-

tion of the lineages that connect sequences sampled at different

times. Secondly, (a) contains two quasi-independent opportu-

nities to measure the evolutionary change between the

sampling dates, while in (b), the measurements are clearly

non-independent. As such, Fig. 2 suggests that the failure of

random permutation can be understood, intuitively, as an

inflation of the true sample size, when there is confounding.

For this reason, one way to correct for the artefact is to identify

genetic clusters (monophyletic groups) in the data that share a

sampling date, and then permute dates over these clusters,

rather than over the individual sequences (Duchêne et al.

2015a). With this approach (a) would contain four clusters,

but (b) would contain only two, and so a clustered permutation

test will be less likely to reach significance.

When Duchêne et al.’s (2015a) method of clustered permu-

tation was applied to our simulated data, performance

remained good with balanced sampling (Fig. 1a,b: Pclust for

regression, blue points for the Bayesian analysis) and improved

dramatically with confounded sampling (Fig. 1c,d). In particu-

lar, with confounded sampling, neither test of temporal signal

reached significance, indicating – correctly – that both date

estimates were unreliable.

Clustered permutation corrects for the confounding of

genetic and temporal structure, but sometimes this confound-

ing can arise from the evolutionary process itself, and not from

sampling artefacts. Any evolutionary change in the genetic

constitution of a population could lead to sequences sampled

on the same date being more closely related to each other. A

classic example is the ‘ladderized’ genealogy of influenza A,

caused by regular selective sweeps (Grenfell et al. 2004), but

the same effect could arise from genetic drift (Gray, Pybus &

Salemi 2011). In either case, temporal and genetic structures

are inherently confounded, and so clustered permutation

becomes conservative. To explore the power of the clustered

tests in this situation, we simulated ladderized genealogies with

high temporal structure (Fig. S2). Results showed that the clus-

tered permutation approach was still able to detect the tempo-

ral signal (an appreciable rate of false negatives arose only

when the basal clade was monophyletic, and fewer than four

clusters were simulated).

DATING ARTEFACTS WITH WHOLE GENOMES OF

METHICILL IN-RESISTANT S. AUREUS

Figure 1 illustrates dating artefacts with extreme cases, but the

same artefacts occur with more realistic data. In the Support-

ing information, we demonstrate this with simulations (Tables

S1–S3, Figs S1 and S3), but it can also be observed with real-

world data.

To see this, we reanalysed 157 complete genomes of epi-

demic methicillin-resistant S. aureus sequence type (ST) 22,

sampled over a 17-year period (Holden et al. 2013). In agree-

ment with Holden et al. (2013), we estimated the tMRCA of

these sequences as 1980, 28 years prior to the youngest sample

(Fig. S4). Several lines of evidence suggest that this tMRCA is

plausible. First, all tests indicated very strong temporal signal

(Fig. 3, Table S4); secondly, the inferred rate of evolution is

consistent with previous estimates from S. aureus (Weinert

et al. 2012); and finally, this dating places the acquisition of flu-

oroquinolone resistance at the time and location where fluoro-

quinolone drugs were first tested in UK clinical trials (Holden

et al. 2013).

We next re-estimated the tMRCA after subsampling the

S. aureus strains. These subsamples were chosen to transect

the same root node and to retain the 17-year sampling period

(illustrated in Fig. S4a–f). With these constraints, we chose

strains either at random (reproducing the ‘balanced’ sampling

of Fig. 1a,b) or in clusters sampled in the same year (reproduc-

ing the ‘confounded’ sampling of Fig. 1c,d). In all cases, the

balanced subsampling provided consistent estimates of the

tMRCA (Fig. 3a, purple points), albeit with wider credible inter-

vals, reflecting the reduced sample size. However, the con-

founded subsamples produced much younger dates (Fig. 3a,

blue points). In addition, all six subsamples gave evidence of

temporal signal using the standard tests. If we were to trust

these standard tests, we might draw quite different conclusions

about the evolution of antibiotic resistance in theUK.

The same applies when we analysed subsamples collected

over a 3-year period (Fig. S4g,h). Given evolutionary rates for

these strains, fewer than 7 nucleotide substitutions per genome

would be expected during this entire sampling period, and so

this produces ‘low temporal structure’ data sets. For both data

sets, the estimated tMRCA differed from its true value (as

inferred from the complete data set; Fig. 3b, red dashed line).

For the balanced subsample, all tests confirmed this lack of

temporal signal, but the standard tests failed for the con-

founded subsample, resulting in false confidence in an inaccu-

rate and deceptively precise estimate of the tMRCA (Fig. 3b).

As with the simulated data, these problems can be solved by

using the clustered permutation approach of Duchêne et al.

(2015a). If we define clusters as monophyletic groups sampled

in same year, regression and Bayesian approaches both cor-

rectly identified the data sets that yielded inaccurate estimates

of the tMRCA. However, for these data, there is something arbi-

trary about the choice to cluster by year (we might also have

chosen to cluster by month). This highlights the need for a test

of confounding that can be applied to real-world data sets. An

obvious choice is a Mantel test of the correlation between

(a) (b)

Fig. 2. Illustrative phylogenies in which genetic and temporal structure

are (a) unconfounded or (b) confounded. Grey arrows describe the dis-

tance between pairs of sequences sampled on different dates (t0 and t1).
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pairwise genetic distances and absolute differences in sampling

dates. Applying this test to theS. aureus data successfully iden-

tified the confounding in all of the confounded data sets, and

in one of the smallest balanced data sets (Fig. 3). We then

repeated the Mantel test after clustering the data (using the

average pairwise genetic between clusters, and the absolute dif-

ference between sampling years). This test confirmed that our

choice to cluster sampling dates by year was sufficiently coarse-

grained to eliminate the signal of confounding in these data

(Fig. 3).

MODEL SELECTION APPROACH

A test for temporal signal not considered so far, is to compare

the fit of models with the sampling dates either included (‘with

dates’) or ignored (‘no dates’) (Rambaut 2000; Drummond,

Pybus&Rambaut 2003b;Drummond et al. 2003a; Baele et al.

2012). Various measures and estimators of model fit are avail-

able (Rambaut 2000; Suchard, Weiss & Sinsheimer 2003;

Kitchen, Miyamoto & Mulligan 2008; Baele et al. 2012). We

initially tried the AICM, an analogue of the Akaike Informa-

tion Criterion, which is estimated from the MCMC (Raftery

et al. 2007; Baele et al. 2012).

On simulated data, the AICM approach performed very

well, showing strong support for the ‘with dates’ model when-

ever the tMRCA was well estimated, and weak or no support

when the tMRCAwas poorly estimated (Fig. 1, Table S1).How-

ever, for the real S. aureus data, only one subsample gave evi-

dence of temporal signal, and this was a confounded

subsample where the tMRCA estimate was extremely poor

(Fig. 3; Table S4). We next calculated full Bayes factors, using

path sampling (Baele et al. 2012; Bouckaert et al. 2014; Leach�e

(a) (b)

Fig. 3. Dating analyses for Staphylococcus aureus genomes sampled over 17 years. Plots show the maximum a posteriori (MAP) estimates of the

tMRCA, with 95% highest posterior density (HPD) intervals. (a) shows the estimate from the complete data set (red), and from random (purple) or

confounded (blue) subsamples, all with the same common ancestor and range of sampling dates. (b) shows estimates from subsamples with a nar-

rower sampling range, and a different true tMRCA.Red dashed lines and shaded areas describe the best estimate of the tMRCA and its 95%HPD inter-

val as inferred from the complete data set. Grey dashed lines show the youngest possible tMRCA, as determined by the oldest sample. Below are the

results of tests of temporal signal and confounding. For BEAST permutation tests:✓ indicates that the true MAP estimate lay outside of the range of

the MAP estimates from the randomized data sets, ✓✓ indicates that the true MAP estimate is not within the HPD intervals of the estimates from

randomized data sets, and ✓✓✓ indicates that the HPD interval of the true estimate does not overlap with the HPD intervals of estimates from the

randomized data sets. For the model selection approaches, we report the probability that the model without sampling dates is the ‘true’ model

(AICManalysis), or the Bayes factor support for the inclusion of sampling dates (Kass &Raftery 1995). Tests indicating temporal signal are in bold;

*P < 0�05; **P < 0�01.
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et al. 2014). This had the opposite problem: all but one sub-

sample yielded strong support for the ‘with dates’ model. As

such, model selection led to false confidence in inaccurate esti-

mates of the tMRCA.

The failure of this approach is initially surprising, since it

makes no explicit assumptions about random sampling or

exchangeability. Since the approach worked well on simulated

data (which used a strict clock and known substitution pro-

cess), this is probably explained by model inadequacy. Evolu-

tionary models may be good enough to provide accurate

estimates of the tMRCA, and yet sufficiently different from real-

ity to render unreliable a comparison of model fit with and

without sampling dates. It is also notable that the Bayes factor

approach worked well when sampling was random, but not

when sampling was confounded (Fig. 3; Table S4). This might

be a failure analogous to ‘overfitting’, given the reduction in

effective sample sizes in the confounded data sets (Fig. 2).

APPLICATION TO DATA FROM A SINGLE OUTBREAK

Examples above used data that were subsampled in a contrived

way, but the same artefacts can arise with complete data sets.

To illustrate this, we analysed whole genomes of S. aureus

ST22, from a single disease outbreak. These samples were

obtained from a veterinary hospital over approximately

2 months, initially from a dog admitted to the clinic (141 iso-

lates), and then from a staff member (34 isolates) involved in

the dog’s treatment (Paterson et al. 2015).

Dated-tip analyses of these data placed the tMRCA of the dog

strains on the day after the dog’s admission to the hospital,

and the closely related strains from the staff member at

c. 12 weeks earlier (Fig. 4, for the dog samples, and Fig. S5,

for the staff member samples, red points). Together, these esti-

mates suggest a scenario in which the dog was infected in the

hospital, possibly by a staffmemberwith a long-standing infec-

tion, and where transmission was likely associated with a

strong bottleneck (since all of the genetic variation in the dog

can be traced back to a single feasible transmission event).

Standard tests of temporal signal supported this scenario.

For the dog samples, Mantel tests yielded no evidence of con-

founding of temporal and genetic structures (P = 0�88), and
permutation tests of the Bayesian dates detected temporal sig-

nal (Fig. 4 purple points) even, weakly, with clustered permu-

tation (Fig. 4, blue points). However, a combined analysis of

all 175 isolates shows that this tMRCA estimate – and thus the

epidemiological inference – is probably unreliable. In particu-

lar, the genealogies of the dog and staff samples are intermin-

gled, implying that they share a most recent common ancestor

(Fig. S6; Paterson et al. 2015).

What is wrong with the analysis above? The answer is clear

from comparing a neighbour-joining tree to the Maximum

Clade Consensus (MCC) tree from the BEAST analyses (Fig. 4).

The neighbour-joining tree has very little resolution reflecting

the low genetic diversity in these data and confirms that the

level of confounding is weak. In contrast, the BEAST tree is fully

resolved and contains very high levels of confounding (Mantel

tests using patristic distances: P < 0�001; Fig. 4, and

Table S5). This shows that, in the absence of phylogenetic sig-

nal, the dating algorithm has enhanced the confounding, clus-

tering the sequences by date to improve the fit of its clock

model. (We note that no such difference was found in data sets

analysed in earlier sections, where the data contained much

higher levels of genetic diversity.)

It is important to note that low levels of genetic diversity

would not be a problem, were there not also some genuine con-

founding of temporal and genetic structures, for in the absence

of any confounding, a random permutation approach would

succeed. For these S. aureus data, weak confounding – unde-

tected by the Mantel test – probably arose from the clinical

sampling practice. In particular, different sets of anatomical

sites of the dog were sampled on different dates (in part, as a

consequence of the progression of the disease), and genetic

structure was associated with these sites (Paterson et al. 2015).

As a result, we find genetic structure between the earliest dog

samples, and those taken on later dates (permutation test of

Hudson’s Fst estimator: P < 0�001; Hudson, Slatkin &

Maddison 1992), although not between the two later dates.

When phylogenetic resolution is low, there are two ways to

test for temporal signal, which avoid the artefact described

above. The first is to use the regression approach, with a phy-

logeny that was inferred without making any assumptions

about molecular rates. The second is to use the clustered Baye-

sian dating permutation approach, but with clusters identified

from the MCC tree (Fig. 4, green points). Both approaches

found no temporal signal in our S. aureus data (from either the

dog, or the staff member; Fig. S5), confirming that tMRCA esti-

mates from these data cannot be trusted.

Discussion

Molecular dates obtained with ‘dated-tip’ methods are reliable

only if the sequence data exhibit temporal signal. As such, we

cannot trust dates obtained from these methods unless we can

also trust the tests for temporal signal.

We have shown that all of the standard tests of temporal sig-

nal can be severely misled for data sets where temporal and

genetic structures are confounded, that is when closely related

sequences are more likely to have been sampled at similar

times. Our results show that the reliability of date estimates

cannot be determined from the degree of genetic structure per

se (data sets in Fig. 1a–d had equally high levels of structure),

nor from the number of sequences sampled (Fig. 3a shows that

subsamples of any size can yield both inaccurate and accurate

estimates) and nor from the overall range of the sampling

dates, or level of temporal structure (which was held constant

across both Figs 1a,c and 3a). However, we have shown that

when confounding is present, the clustered permutation

approach of Duchêne et al. (2015a), can give good results,

whether applied to linear regression or Bayesian dating, and to

data with or without temporal structure.

We have also introduced some refinements to the approach

of Duchêne et al. (2015a), which show how clustered permuta-

tion can be best applied to real-world data. In particular, we

have shown how a Mantel test, comparing genetic distance
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and difference in sampling dates, can identify data sets where

confounding is present (Fig. 3). We have also shown how the

same test can confirm whether a particular choice of clusters

has successfully removed the confounding (this is particularly

useful when samples were taken on a very large range of dates,

as in the S. aureus data from Holden et al. (2013). Finally, we

have shown that an additional problem can arise for data with

low levels of phylogenetic resolution, when dating algorithms

may enhance the true level of confounding.We have suggested

that, to mitigate this problem, clusters should be chosen from

the tree estimated in the dating analysis (Fig. 4).

The problem of confounding, discussed here, may explain

some previously noted failures of the dated-tip approach. For

example, Navascu�es&Emerson (2009) showed that inaccurate

estimates of the tMRCA could be obtained in structured popula-

tions when ancient and modern sequences came from different

genetic clusters. Indeed, confounding is likely to be particularly

severe when the temporal information comes from a small

number of ancient DNA sequences. Similarly, Duchêne,

Duchêne & Ho (2015b) showed that inaccurate results could

be obtained when trees were highly imbalanced. Again, this

might result from confounding, since imbalanced trees contain

smaller clades, which are more likely to share a sampling date

just by chance (this possibility is supported by simulations

showing that unbalanced trees can give reliable results when

sampling is balanced; Fig. S3f).

Finally, we have suggested that confounding is likely to be

common when serially sampled-pathogen genomes are used to

study the course of a single outbreak. This is partly because

confounding can arise naturally from clinical sampling prac-

tice. For example, different individuals will often be sampled at

different times (Harris et al. 2013; Paterson et al. 2015), and

these individuals will generally contain distinct populations of

a pathogen, resulting from transmission barriers between indi-

viduals, and population bottlenecks during transmission

events. The same also applies to different tissues within an indi-

vidual (e.g. Sacrist�an et al. 2003; Lee et al. 2008; Paterson

et al. 2015) and to different geographic locations (Holmes

2008). We have also shown that the confounding may be

enhanced when little evolutionary change has taken place,

which may often be the case during a single outbreak. Consis-

tent with this prediction, we have presented data from an out-

break of S. aureus where standard tests provide support for

date estimates – and thereby transmission scenarios – that are

doubtful on other grounds (Paterson et al. 2015).

If confounding of temporal and genetic structures is com-

mon, then many dated-tip analyses may need revisiting. A

remarkably common finding in the study of pathogen evolu-

tion has been that plausible biogeographic scenarios imply

much slower evolutionary rates (and so much older tMRCA),

than are obtained from dated-tip analyses of serially sampled

genomes; often, these estimates differ by several orders of

Fig. 4. The Bayesian dating test for Staphylo-

coccus aureus strains sampled from a dog dur-

ing an outbreak in a veterinary hospital.

Differences in the degree of clustering with

sampling date are apparent between the

phylogenies estimated with (the MCC tree

from the Bayesian dated-tip analysis) and

without the use of temporal information (a

neighbour-joining tree). Colour and symbol

shape represent strains sampled on the same

date. The plot shows themaximum a posteriori

estimates of the tMRCA (on a log scale) with

95% highest posterior density intervals. The

true estimate (red) is compared to estimates

with the sampling dates randomly permuted

across sequences (purple), or across single-

date clusters identified from the neighbour-

joining tree (blue), or the MCC tree (green).

The blue horizontal line indicates the date of

admission of the dog into the veterinary hospi-

tal. Significance levels are described in the

legend of Fig. 3.
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magnitude (Sharp & Simmonds 2011). We have shown that

artefactual evidence of temporal signal often leads to false con-

fidence in dates that bear no relation to the true age of diver-

gence (see, e.g. Fig. 1d). As such, results reported here may

explain some of the wilder disagreements about pathogen ori-

gins.
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