
through neurotoxicity induced by aggregation of host 
proteins. These conditions include Alzheimer’s disease, 
Huntington’s disease, Parkinson’s disease, motor neuron 
disease, tauopathies and prion diseases. Collectively, 
these conditions are a challenge to society because of 
the increasing aged population and through the real threat 
to human food security by animal prion diseases. It is 
therefore important to understand the cellular and molecular 
mechanisms that underlie protein misfolding-induced 
neurotoxicity as this will form the basis for designing 
strategies to alleviate their burden. Prion diseases are an 
important paradigm for neurodegenerative conditions in 
general since several of these maladies have now been 
shown to display prion-like phenomena. Increasingly, 
cell cycle activity and the DNA damage response are 
recognised as cellular events that participate in the 
neurotoxic process of various neurodegenerative 
diseases, and their associated animal models, which 
suggests they are truly involved in the pathogenic process 
and are not merely epiphenomena. Here we review the 
role of cell cycle activity and the DNA damage response 
in neurodegeneration associated with protein misfolding 
diseases, and suggests that these events contribute 
towards prion-induced neurotoxicity. In doing so, we 
highlight PrP transgenic Drosophila  as a tractable model 
for the genetic analysis of transmissible mammalian 
prion disease. 
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Core tip: It is important to understand the cellular and 
molecular mechanisms of protein misfolding-induced 
neurotoxicity in order to combat conditions such as 
Alzheimer’s, Huntington’s, Parkinson’s, and motor neuron 
disease, tauopathies and prion diseases. Here, we 
review the role of cell cycle activity and the DNA damage 
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Abstract
Protein misfolding neurodegenerative diseases arise 
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response in neurodegeneration associated with protein 
misfolding diseases, including prion diseases. In doing so, 
we highlight PrP transgenic Drosophila as a tractable model 
of transmissible mammalian prion disease. Our review 
provides a new impetus to the study of prion diseases, 
which are increasingly seen as an important paradigm for 
neurodegenerative conditions in general.

Bujdoso R, Landgraf M, Jackson WS, Thackray AM. Prion-
induced neurotoxicity: Possible role for cell cycle activity and 
DNA damage response. World J Virol 2015; 4(3): 188-197  
Available from: URL: http://www.wjgnet.com/2220-3249/full/
v4/i3/188.htm  DOI: http://dx.doi.org/10.5501/wjv.v4.i3.188

INTRODUCTION
While many diseases can cause degeneration of nervous 
system tissue, including human immunodeficiency virus 
infection and acquired immune deficiency syndrome, 
multiple sclerosis or rabies, the designation of protein 
misfolding neurodegenerative disease is typically assigned 
to those induced by aberrant folding and aggregation 
of disease-specific host proteins. These conditions, 
which include Alzheimer’s disease, Huntington’s disease, 
Parkinson’s disease, motor neuron disease, tauopathies and 
prion diseases, are invariably fatal as there are no known 
treatments[1,2]

. Each of these conditions is characterised 
by the misfolding of a disease-specific protein[3] and 
accumulation of misfolded protein in the brain is central to 
the pathological process that typically manifests as synaptic 
loss, neuronal dysfunction, with resultant clinical symptoms. 
Prion diseases include scrapie of sheep, bovine spongiform 
encephalopathy (BSE) of cattle, together with Creutzfeldt-
Jakob disease (CJD) and fatal familial insomnia (FFI) in 
humans[4]. Prion diseases are an important paradigm 
for protein misfolding neurodegenerative conditions in 
general since Alzheimer’s, Huntington’s, Parkinson’s and 
motor neuron disease, as well as tauopathies all possess 
features of prion-like transmission in experimental settings, 
evidenced by transcellular spread of misfolded disease-
specific protein[5]. However, prion diseases are unique since 
they are transmissible between individuals of the same and 
different species, that sometimes occurs unintentionally. 
Protein misfolding neurodegenerative diseases typically 
cause clinical disease late in life and are therefore a 
major concern to society because of the increasing size 
of the ageing population. In addition, prion diseases are 
a significant concern to food security since they occur in 
animals destined for human consumption. Understanding 
the mechanism of neurotoxicity induced by protein 
misfolding will allow the design of strategies to alleviate the 
burden of these conditions.

Many aspects of prion-induced neurotoxicity remain 
incompletely understood. During prion diseases the normal 
host protein PrPC is converted into the abnormal form, 
PrPSc, the transmissible prion agent[4,6] (Figure 1). This 
conversion event appears to be an essential requirement 

for prion disease neurotoxicity, evidenced by the failure of 
exogenous PrPSc to cause pathology in brain tissue devoid 
of PrPC[7,8] and the reversal of neurodegeneration when 
PrPC expression is ablated during prion infection[9-11]. The 
essential requirement for PrP expression in prion-induced 
neurotoxicity may suggest that an intermediate in the 
conversion of PrPC to PrPSc is the neurotoxic agent[12,13]. 
Alternatively, neurotoxicity may result from an interference 
with the normal biosynthesis and metabolism of PrPC 
mediated by the presence of PrPSc[14]. For example, PrP 
can accumulate in the cytosol in a misfolded form when 
proteasomal activity is compromised[15,16] and cytosolic PrP 
has been reported to be neurotoxic in some neurons[17-20]. 
A feature of prion-induced neurotoxicity is its effect on 
protein synthesis. For example, it has been shown that 
accumulation of PrPSc in cells[21] and mice[22] with an 
ongoing prion infection triggers over-activation of the PERK/
eIF2a branch of the unfolded protein response. This in turn 
leads to persistently high levels of phosphorylated eIF2a and 
consequently a block of protein translation. Pharmacological 
inhibition of PERK can reverse the prion disease-induced 
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Figure 1  Conversion of PrPC into PrPSc. A: Schematic diagram of the 
conversion of PrPC into PrPSc. A major structural event occurs in the C-terminal 
domain of PrPC as it converts from a predominantly α-helical form into one 
enriched for β-sheet. This conformational change may involve the formation 
of intermediate structures of the protein; B: Western blot detection of ovine 
PrP. VRQ/VRQ sheep brain homogenate from animals that were scrapie-free 
(tracks 1 and 2) or scrapie-infected (tracks 3 and 4) were pre-treated with (tracks 
2 and 4) or without (tracks 1 and 3) PK at 32 µg/mL at 37 ℃ for 30 min and 
the products analysed by SDS/PAGE, and Western blot probed with anti-PrP 
monoclonal antibody 683. Molecular weight markers (in kDa) are shown on the 
left (Reproduced by kind permission of CAB Reviews). 



block in protein synthesis and alleviate this toxic phenotype 
despite the continued accumulation of PrPSc[23].

The value of these discoveries would be amplified 
by a more complete understanding of the sequence of 
cellular events that occur during the early stages of prion 
disease. This applies particularly to those acting prior to 
the onset of, and which may lead to, inhibition of protein 
synthesis. Knowledge in this area will be of fundamental 
importance to the understanding of prion biology per se 
and facilitate the search for early acting genetic modifiers 
of the neurotoxic process associated with these conditions. 
Interestingly, a number of reports have documented 
cell cycle activity and the DNA damage response (DDR) 
in post mitotic, terminally differentiated neurons during 
various neurodegenerative diseases[24-27], which represent 
potential candidates for such early acting pathways. This 
appears paradoxical since these are events traditionally 
associated with dividing cells. Here we discuss a potential 
role of cell cycle activity and DDR in prion-induced 
neurotoxicity. In support of this viewpoint, we present 
a novel Drosophila model of transmissible mammalian 
prion disease that provides a new animal system to study 
protein misfolding disease, one that combines the robust 
tools of experimental prion disease and fly genetics.

DDR
During the cell cycle, proliferating cells replicate their 
DNA and undergo division. This process is a highly 
organised series of cellular events that are tightly 
coordinated through the phase-specific expression 
of positive and negative regulatory proteins. Various 
quality control checkpoints operate to ensure faithful 
progression through the cell cycle. In addition to DNA 
replication errors, all cells whether proliferating or 
not, are constantly exposed to stimuli that can induce 
damage to DNA. These genotoxic stimuli may arise from 
exogenous events such as exposure to irradiation or 
carcinogens, or alternatively from endogenous events 
such as intracellular metabolism and associated reactive 
oxygen species (ROS)[28-30]. 

DNA damage in metazoan cells is deleterious: it may 
initiate mutagenesis or chromosomal re-arrangements 
that result in de-regulated cell cycle activity and 
neoplasia, or aberrant gene expression concomitant with 
cellular dysfunction and senescence or cell death[31-33]. 
In order to avoid these hazardous effects, cells have 
evolved a variety of molecular mechanisms for the 
repair of DNA damage[34]. For example, base excision 
repair (BER) is used to correct oxidative lesions[35] while 
nucleotide excision repair (NER) can excise UV light-
induced thymidine dimers[36]. Single strand breaks (SSBs) 
in DNA, which may occur through ROS-mediated lesions 
or intermediates in BER, are repaired by polB and various 
ligases[37]. Double strand breaks (DSBs), that can arise 
through failures in DNA transcription or replication, are 
repaired by two different mechanisms: non-homologous 
end joining (NHEJ), which is error prone, or homologous 
recombination (HR), which is error-free but is restricted 
to the S/G2 phase of the cell cycle in dividing cells[38]. 

DSBs in DNA arise relatively infrequently, though are 
particularly hazardous as they can induce a significant 
loss of genomic integrity[39]. 

The maintenance of genome integrity is critical to 
organismal function and survival. As a consequence, cells 
co-ordinate an elaborate set of mechanisms that function 
in the surveillance and repair of DNA lesions with cell cycle 
progression. These integrated pathways are collectively 
referred to as the DNA damage response (DDR). In 
proliferating cells, checkpoint control mechanisms mediate 
cell cycle arrest to allow DNA repair when damage is 
detected, although senescence or apoptosis may ensue 
in the case of extensive lesions[40-42]. In contrast, post 
mitotic terminally differentiated neurons appear to 
display a lower capacity for DNA repair than proliferating 
cells, and they are thought to accumulate and tolerate 
comparatively high levels of DNA damage, since they 
are unable to replace damaged cells by division[43,44]. 
However, increasing evidence suggests that cell cycle 
activity and DDR are features of post mitotic neurons 
in neurodegenerative conditions[25-27,45,46]. For example, 
post mitotic neurons, when exposed to genotoxic stimuli, 
can replicate DNA and initiate apoptosis associated 
with cell cycle activation[47]. In addition, evidence of cell 
cycle activity and DNA damage can be found in natural 
and experimental hosts undergoing protein misfolding 
diseases, such as Alzheimer’s disease[48-51]; amyotrophic 
lateral sclerosis[52,53]; Huntington’s disease[54,55] and 
Parkinson’s disease[56-58]. 

THE CONTRIBUTION OF DNA DAMAGE 
AND DDR TO NEUROTOXICITY 
Neurons like all other cell types are subject to a variety 
of stimuli that can potentially induce deleterious DNA 
damage. In dividing cells DNA damage activates cell 
cycle arrest concomitant with DDR so that the integrity 
of the cellular genome is maintained between successive 
generations. A major cell cycle checkpoint control 
operates at the G2/M interface to allow for DNA damaged 
during replication to be repaired prior to mitosis. Since 
post mitotic neurons are unable to divide, the expression 
of cell cycle associated genes in these cells may promote 
the DDR and facilitate access to DNA for repair in 
order to maintain genome integrity and appropriate 
regulation of gene expression. An emerging view is 
that structural modulation of chromatin associated with 
these processes, together with genome integrity, have a 
major influence on the neurotoxic process in post mitotic 
neurons during neurodegenerative disease[27,59]. In this 
context, important unanswered questions include: Do 
the same processes and events also occur in protein 
misfolding neurodegenerative diseases? And if so, what 
precisely are the molecular mechanisms that confer 
neurotoxicity and that culminate in neuronal dysfunction 
and neurodegeneration?

Chromatin is a repeat structure of nuclear DNA and 
histone proteins with nucleosomes representing the 
fundamental core unit[60,61]. The structure of chromatin 
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mitochondrial function could lead to disturbances in 
the cellular energy balance and have a detrimental 
effect on neuronal function including synaptic defects, 
as occurs in various inherited neurological disorders[82]. 
Since the brain has a high metabolic activity neurons are 
thought to be particularly prone to oxidative stress, a 
recognised cause for DNA damage. Oxidative stress and 
mitochondrial dysfunction are increasingly implicated in 
protein misfolding-induced neurodegeneration although 
the molecular events of this association have not yet 
been defined[83]. Mitochondria are the principal source 
of cellular ROS and mitochondrial DNA is particularly 
sensitive to ROS-mediated damage[84]. The mutation rate 
of mitochondrial DNA, which lacks histone proteins, is 
> 15 fold higher than that of nuclear DNA[85]. Mutations 
in mitochondrial DNA can perturb the expression and 
function of oxidative phosphorylation complexes and 
thereby precipitate mitochondrial dysfunction, which in 
turn may lead to accelerated ROS generation[86,87]. 

Many studies have shown that ageing, a major risk 
factor for neurodegenerative disease, is associated with 
an accumulation of DNA lesions in the mature brain. DNA 
lesions may additionally arise from an age-dependent 
reduction in DNA repair capacity[88] and contribute to a 
reduction in genome integrity[43,89]. These DNA lesions, 
which are envisaged to occur in individual neurons, may 
result in the expression of mutant proteins that either 
fold or traffic incorrectly. This will result in an increasing 
demand on the cellular protein quality control machinery 
that functions to detect and triage these molecules, 
a situation already exacerbated in the case of protein 
misfolding diseases. In this situation, activation of the 
unfolded protein response may occur in order to attempt 
to maintain protein homeostasis[21,22]. The effects of 
aberrant misfolded protein accumulation that arise in 
protein misfolding diseases presumably enhance DNA 
damage and accelerate the loss of genome integrity and 
thereby promote the onset of neurodegenerative disease. 

CELL CYCLE-ASSOCIATED PROTEINS 
WITH A ROLE AT THE SYNAPSE 
Mature nerve cells are derived from neural progenitors 
that undergo proliferation, exit the cell cycle and mature 
into terminally differentiated neurons. Under normal 
circumstances, post mitotic neurons do not participate in 
any further cell cycle activity. Any attempt by post mitotic 
neurons to undergo cell cycle re-entry is considered to 
be detrimental to these cells. However, it has become 
evident that terminally differentiated neurons express 
a variety of proteins with important roles in cell cycle 
regulation that have a normal function in diverse post 
mitotic neuronal events under physiological conditions[90]. 
Significantly, some of these cell cycle-associated 
proteins localise to synapses in post mitotic neurons. 
For example, the Orc2-5 core subunits of the origin of 
recognition complex (Orc), which is key to initiating 
DNA replication, are highly expressed in differentiated 

is strongly influenced by post translational modifications 
of the histone proteins through the addition of various 
chemical groupings including phosphate, acetyl or 
methyl moieties[62]. In addition, sequence variants of 
core histone proteins (e.g., H2A.X) exist that further 
enhance chromatin structural diversity[63]. Chemical modi-
fication of histones, or the inclusion of their sequence 
variants, influence nucleosome-DNA or inter-nucleosome 
interactions and thereby regulate the degree of chromatin 
compaction and consequentially DNA transcriptional 
activity. Heterochromatin is relatively compacted and 
transcriptionally silent, whereas euchromatin is a more 
relaxed and open structure that is permissive for gene 
activation[64-67]. Chromatin structure and its modulation 
are therefore fundamental features in the maintenance 
of DNA integrity and regulation of gene expression. 

DNA contained in compacted chromatin is relatively 
well protected from genotoxic stimuli and is typically 
inaccessible to transcription and DDR machinery. During 
DDR, chromatin undergoes transient dis-aggregation at 
the sites of DNA lesion to facilitate access of repair and 
cell cycle checkpoint proteins[68-70]. In some cases of DNA 
repair, chromatin modulation may be quite extensive 
and extend over several kilobases[71]. Since open 
chromatin is evident in regions of actively transcribed 
DNA, heterochromatin relaxation in response to DDR 
can trigger aberrant gene expression of normally 
silenced regions of the genome. Indeed, it has been 
shown that wide spread loss of heterochromatin 
occurs in Drosophila and mouse tauopathy models 
(tau transgenics), and human Alzheimer’s disease, and 
that this is associated with aberrant gene expression 
in CNS neurons[72]. Conversely, genetic rescue of tau-
induced heterochromatin loss substantially reduced tau-
induced neurodegeneration in Drosophila. It has been 
postulated that post mitotic neurons undergoing DDR 
and associated changes in chromatin organisation, 
may have the potential to revert to a de-differentiated 
state, and that this might be linked to activation of 
apoptotic pathways[73,74]. Mechanistically, oxidative 
stress and subsequent DNA damage were identified as 
causes of heterochromatin loss in tau neurotoxicity[72]. 
These studies suggest an etiological progression from 
neurotoxic stimuli to chromatin-mediated gene regulation 
and subsequent neurodegeneration. 

General instability of the cellular genome, as a 
consequence of damage to mitochondrial or nuclear 
DNA, or to chromatin, is also a potential cause of neuroto-
xicity[75]. Since post mitotic terminally differentiated 
neurons are unable to divide, these cells are forced to 
endure genotoxic insults. However, if the level of DNA 
damage exceeds the capacity of the DDR, or if DDR 
function is compromised, mutations and incorrect repair 
may lead to inappropriate DNA metabolism and, de-
regulated gene expression or harmful mutations[32]. 
This view is supported by the correlation between 
neurodegeneration and sensitivity to DNA damage and/
or DDR deficiencies[76-81]. DNA damage that compromises 
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mammalian neurons. Orc3 and Orc5 are enriched in the 
postsynaptic dendritic compartment, and regulate the 
dendritic filopodia and spine formation[91]. The anaphase-
promoting complex/cyclosome (APC/C), an E3 ubiquitin 
ligase, locates to both pre- and postsynaptic sites in post 
mitotic neurons, regulating synaptic terminal growth 
and differentiation as well as synapse formation and 
function (reviewed in[92]). Other cell cycle associated gene 
products implicated in regulating synaptic function include 
the PI3Kinase family member ataxia telangiectasia 
mutated (ATM), which in post mitotic neurons associates 
with synaptic vesicle proteins[93], and Cyclin E that acts as 
a repressor of the synaptic regulator Cdk5[94].

While it is accepted that these various proteins, 
initially discovered as central to cell division, can have 
additional roles in post mitotic cells, it remains unclear 
whether dysregulation of their expression or function is 
linked to neurotoxicity and cell death in protein misfolding 
neurodegenerative diseases[24]. One suggestion has 
been that synaptic loss early in neurodegenerative 
conditions, results in upregulation of cell cycle-associated 
gene expression in a bid to maintain synaptic function 
and plasticity, but that this might lead to inappropriate 
action of these proteins in the nucleus, promoting 
neuronal dedifferentiation and apoptosis[24]. For example, 
shuttling of Cdk5 from the nucleus to cytoplasm has 
been postulated as critical for the breakdown of the post 
mitotic state in neurons[95]. Alternatively, it is conceivable 
that dysregulation of cell cycle-associated proteins at 
the synapse and concomitant sub-optimal synaptic 
communication may lead to increased metabolism as 
neurons struggle to remain within their homeostatic 
activity range. This in turn could lead to increased 
production of ROS, with an ensuing cycle of genotoxicity 
and associated dysregulation of gene expression. 

CELL CYCLE ACTIVITY AND DDR IN 
PRION-INDUCED NEUROTOXICITY?
It is not yet established whether cell cycle activity 
and DDR are features of prion-mediated neurotoxicity. 
Evidence this might be the case derives from observations 
of mammalian models of prion disease. For example, 
nuclear accumulation of proliferating cell nuclear antigen 
(PCNA) and phosphorylated histone H2A.X proteins, which 
in other cell types are indicative of DNA replication and/or 
repair, have been detected in CNS neurons of mice that 
model familial CJD and FFI prion diseases[96]. In addition, 
the brains of scrapie-affected hamsters show evidence 
of cell cycle activity with an increase in the proteins 
polo-like kinase (PLK) 1 and cyclin B1, and a decrease 
of PLK3 and Cdc25C[97]. PLKs, which function as key 
regulators of the cell cycle and its checkpoint response 
to genotoxic stress, are regulated by synaptic activity 
in post mitotic neurons[98]. Prion infectivity experiments 
in vivo have shown that mice deficient in BER activity 
displayed an accelerated clinical course of prion disease as 
compared to wild type animals[99]. These various animal 

models of prion disease are supportive of the view 
that DNA damage plays a pivotal role in prion-induced 
neurotoxicity. It will be important to verify this is the 
case, in order to determine the extent of commonality 
in the mechanism(s) of neurotoxicity between different 
neurodegenerative conditions and prion diseases. This is 
underlined by the fact that bona fide prion diseases are 
seen as important paradigms for other protein misfolding 
diseases, and common underlying mechanisms would 
suggest the possibility of common therapeutic strategies 
for these presently invariably fatal diseases. However, 
prion diseases are difficult to study in their natural 
hosts, such as ruminants and humans, because these 
diseases can take many years to develop, resulting in 
progress being slow and cumbersome[4]. In addition, the 
natural forms of prion diseases tend to occur in outbred 
populations that render genetic analysis of complex 
biochemical pathways difficult. Even in the more tractable 
experimental system of mouse models, the significant 
expenses of time and husbandry restrict the scope of 
genetic experimentation for dissection of prion disease 
mechanisms. 

A DROSOPHILA MODEL OF 
TRANSMISSIBLE MAMMALIAN PRION 
DISEASE 
In order to circumvent the difficulties associated with 
the genetic analysis of prion diseases in their natural 
hosts, we have established Drosophila as a new tractable 
animal model of transmissible mammalian prion 
disease. Importantly, because of the high evolutionary 
conservation of most cellular signaling pathways 
and processes, our Drosophila model system allows 
exploitation of the power of fly genetics to probe the 
mechanisms of prion-induced neurotoxicity. 

We have used pUAST/PhiC31-mediated site-directed 
germ line transformation to generate Drosophila 
transgenic for topological and polymorphic variants of 
ovine PrP under expression control of the bipartite UAS-
GAL4 system[100-102]. The topological variants of ovine PrP 
were targeted to the plasma membrane, to the cytosol, 
or for secretion. Site-specific PCR using genomic DNA 
from ovine PrP transgenic flies as substrate, together 
with DNA sequence analysis, was used to confirm that a 
single copy of each PrP transgene had been inserted at 
a single site in the genome of each appropriate fly line. 
Expression control of ovine PrP in Drosophila via the UAS-
GAL4 system allowed the prion protein to be targeted 
to defined cell populations during a specific period of 
development and ageing. For example, UAS-ovine PrP 
flies crossed with the elav-GAL4 driver fly line achieves 
efficient expression of cell-surface anchored ovine prion 
protein in all neurons of Drosophila[100,102].

Our Drosophila model allowed us to test the hypothesis 
that exogenous ovine prions can induce toxicity in flies 
transgenic for ovine PrP. Remarkably, adult Drosophila, 
which express ovine PrP pan neuronally and that are 

August 12, 2015|Volume 4|Issue 3|WJV|www.wjgnet.com 192

Bujdoso R et al . Prion-induced neurotoxicity



exposed to ovine prions at the larval stage, show a 
neurotoxic phenotype as compared to control non-
transgenic flies that have been similarly exposed to prion 
inocula. The prion-induced neurotoxicity in PrP transgenic 
Drosophila is evidenced by an accelerated decline in 
locomotor activity[100,101,103] (Figure 2). In addition, 
we have used protein misfolding cyclic amplification 
(PMCA) to show that this prion-induced phenotype is 
accompanied by accumulation of proteinase K (PK)-
resistant PrPSc in fly brains[100]. The presence of PrPSc is 
a pathogonomic feature of prion diseases. However, the 
most sensitive hallmark of transmissible prion diseases, is 
the transmission of these conditions to new hosts, since in 
some prion-infected hosts, neuropathology can develop 
in the apparent absence of PrPSc and conversely, PrPSc 
can accumulate in the absence of neuropathology[4,104]. 
Importantly therefore, we have demonstrated that 
the prion-induced fly phenotype is transmissible to PrP 
transgenic Drosophila[100,101,103]. In mammalian hosts, 
prion-mediated toxicity has been shown to be inextricably 
linked to prion replication[4,12,105] and these two events 
only occur in PrP expressing hosts. In our experiments, 
scrapie-infected sheep brain material did not induce 
toxicity in control non-PrP transgenic flies, and head 
homogenate from these prion-exposed control flies did 
not transmit any toxicity to fresh PrP transgenic recipient 
flies. Collectively, these data are consistent with the 
formation of transmissible prions in Drosophila transgenic 
for PrP expression. Furthermore, while the conversion of 
PrPC to PrPSc has been reported to occur either at the 
cell surface or within the endocytic pathway[106-108], our 
novel studies in Drosophila show that PrP targeted to the 
plasma membrane, to the cytosol, or for secretion, can 
participate in the generation of prion-induced toxicity. 

Our observations validate PrP transgenic Drosophila 
as a new animal model to study the mechanisms of 

prion-induced neurotoxicity. One of the key benefits of 
this model system is its rapid and highly reproducible 
progression to symptomatic stages. This opens the door to 
a detailed cellular and molecular analysis of the sequence 
of changes that occur from immediately after infection 
until symptoms of neurotoxicity become overt. To this 
end we have performed a functional genomic analysis 
of prion-infected Drosophila transgenic for ovine PrP, 
membrane bound by a glycosylphosphatidyl-inositol (GPI) 
anchor in order to search for biochemical pathways and 
genetic modifiers of prion-induced neurotoxicity[109]. Our 
preliminary RNA-Seq-based analysis has revealed that 
during the early phase of prion infection in PrP transgenic 
Drosophila, the expression of genes associated with cell 
cycle re-entry and DNA damage repair were up-regulated 
in the fly brain. This observation is indicative of cell cycle 
activity and DDR in the early phase of prion-induced 
neurotoxicity. Significantly, during the early phase of 
prion infection in our fly model, cell cycle activation genes 
(e.g., PCNA) and double-stranded DNA repair genes 
(e.g., H2Av) are up-regulated, as also seen in brains of 
prion-diseased mice[96]. Importantly, we found that this 
response precedes a dramatic down-regulation of genes 
associated with protein synthesis, including those involved 
with eIF2a and mTOR pathways. These are interesting 
observations in light of the reports of translational defects 
in prion-infected mice[22]. Our novel observations show 
that prion infection in Drosophila has the potential to re-
capitulate prion-induced events in mammalian hosts. Our 
data further suggest that cell cycle re-entry and inhibition 
of protein synthesis are temporally linked events in prion-
induced neurotoxicity. In this context our hypothesis 
(Figure 3) is that neurotoxicity in post-mitotic neurons, 
stressed by prion replication, arises through aberrant cell 
cycle re-entry that contributes to the effect of sustained 
inhibition of protein synthesis and eventual neuronal 
dysfunction.

CONCLUSION
Prion diseases are an important paradigm for protein 
misfolding neurodegenerative diseases. It is important 
to establish the sequence and causal links of cellular 
events that underlie prion-induced neurotoxicity. This will 
help determine how protein misfolding and aggregation 
causes neurotoxicity and how this devastating process 
may be alleviated. Emerging evidence suggests that 
cell cycle activity and the DNA damage response are 
cellular processes that may be involved in prion-induced 
neurodegeneration, as appears to be the case in other 
neurodegenerative diseases. With the power of Drosophila 
genetics now in play, many important questions can be 
systematically addressed. Important questions to be 
answered include what is the temporal order of the cellular 
events that are responsible for the progression of prion-
induced neurotoxicity. In addition, what is the relationship 
between the accumulation of cell-cycle related proteins 
in prion-infected post mitotic neurons, the suppression of 
translation and resultant neurotoxicity? Future research 
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Figure 2  Prion-exposed ovine PrP transgenic Drosophila show enhanced 
locomotor defect. Drosophila with pan neuronal expression of ovine VRQ(cyt) 
were fed VRQ/VRQ scrapie-free (blue circles, blue line) or scrapie-infected (red 
circles, red line) sheep brain homogenate at the larval stage of development. 
The locomotor activity of adult flies was assessed by a negative geotaxis 
climbing assay. The performance index is shown for each genotype of fly per 
time point (Reproduced with permission, from Thackray et al[100] 2014. © the 
Biochemical Society). 
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in this area will be enhanced by the use of a Drosophila 
model of transmissible mammalian prion disease. 
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