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Summary. We study generalized additive models, with shape restrictions (e.g. monotonicity,
convexity and concavity) imposed on each component of the additive prediction function. We
show that this framework facilitates a non-parametric estimator of each additive component,
obtained by maximizing the likelihood. The procedure is free of tuning parameters and under
mild conditions is proved to be uniformly consistent on compact intervals. More generally, our
methodology can be applied to generalized additive index models. Here again, the procedure
can be justified on theoretical grounds and, like the original algorithm, has highly competitive
finite sample performance. Practical utility is illustrated through the use of these methods in the
analysis of two real data sets. Our algorithms are publicly available in the R package scar, short
for shape-constrained additive regression.
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1. Introduction

Generalized additive models (GAMs) (Hastie and Tibshirani, 1986, 1990; Wood, 2006) have be-
come an extremely popular tool for modelling multivariate data. They are designed to enjoy the
flexibility of non-parametric modelling while avoiding the curse of dimensionality (Stone, 1986).
Mathematically, suppose that we observe pairs .X1, Y1/, : : : , .Xn, Yn/, where Xi = .Xi1, : : : , Xid/T

is the predictor and Yi is the real-valued response, for i=1, : : : , n. A GAM relates the predictor
and the mean response μi =E.Yi|Xi/ through

g.μi/=f.Xi/=
d∑

j=1
fj.Xij/+ c,

where g is a specified link function, and where the response Yi conditional on Xi follows an
exponential family distribution. Here c ∈ R is the intercept term and, for every j = 1, : : : , d,
the additive component function fj : R → R is assumed to satisfy the identifiability constraint
fj.0/=0. Our aim is to estimate the additive components f1, : : : , fd together with the intercept c

on the basis of the given observations. Standard estimators are based on penalized spline-based
methods (e.g. Wood (2004, 2008)), and involve tuning parameters whose selection is not always
straightforward, especially if different additive components have different levels of smoothness,
or if individual components have non-homogeneous smoothness.

In this paper, we propose a new approach, motivated by the fact that the additive compo-
nents of f often follow certain common shape constraints such as monotonicity, convexity or
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Table 1. Different shape constraints and their corresponding labels

Shape constraint Label Shape constraint Label Shape constraint Label

Linear 1 Monotone increasing 2 Monotone decreasing 3
Convex 4 Convex increasing 5 Convex decreasing 6
Concave 7 Concave increasing 8 Concave decreasing 9

concavity. For instance, monotone regression techniques have been used in biology to search for
gene–gene interactions (Luss et al., 2012), and in medicine to study the expression of a leukaemia
antigen as a function of white blood cell count and DNA index (Schell and Singh, 1997). Eco-
nomic theory dictates that utility functions are increasing and concave (Matzkin, 1991) and that
the cost function of a standard perfectly competitive firm is increasing and convex (Aı̈t-Sahalia
and Duarte, 2003), whereas production functions are often assumed to be concave (Varian,
1984). In finance, theory restricts call option prices to be convex and decreasing functions of
the strike price (Aı̈t-Sahalia and Duarte, 2003); in stochastic control, value functions are often
assumed to be convex (Keshavarz et al., 2011).

The full list of constraints that we consider is given in Table 1, with each assigned a numerical
label to aid our exposition. By assuming that each of f1, : : : , fd satisfies one of these nine
shape restrictions, we show in Section 2 that it is possible to derive a non-parametric maximum
likelihood estimator, which requires no choice of tuning parameters and which can be computed
by using fast convex optimization techniques. In theorem 1, we prove that, under mild regularity
conditions, it is uniformly consistent on compact intervals.

More generally, as we describe in Section 3, our approach can be applied to generalized
additive index models (GAIMs), in which the predictor and the mean response μi = E.Yi|Xi/

are related through

g.μi/=f I.Xi/=f1.αT
1 Xi/+: : :+fm.αT

mXi/+ c, .1/

where the value of m ∈ N is assumed known, where g is a known link function, and where
the response Yi|Xi again follows an exponential family distribution. Here, α1, : : : , αm ∈Rd are
called the projection indices, f1, : : : , fm : R → R are called the ridge functions (or, sometimes,
additive components) of f I, and c∈R is the intercept. Such index models have also been widely
applied, especially in the area of econometrics (Li and Racine, 2007). When g is the identity
function, the model is also known as projection pursuit regression (Friedman and Stuetzle,
1981); when m=1, the model reduces to the single-index model (Ichimura, 1993). As for additive
models, in some applications it is natural to impose shape constraints on the ridge functions;
for instance, Foster et al. (2013) argued in favour of the use of monotone single-index models
for analysing certain randomized clinical trial data. In other cases, as pointed out by Xu et al.
(2014), shape restrictions are attractive as tractable non-parametric relaxations of linear models.
Recent work by Kim and Samworth (2014) has shown that shape-restricted inference without
further assumptions can lead to slow rates of convergence in higher dimensions. The additive or
index structure therefore becomes particularly attractive in conjunction with shape constraints
as an attempt to evade the curse of dimensionality. In Section 3, we extend our methodology
and theory to this setting, allowing us to estimate simultaneously the projection indices, the
ridge functions and the intercept.

The challenge of computing our estimators is taken up in Section 4, where our algorithms
are described in detail. In Section 5, we summarize the results of a thorough simulation study
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designed to compare the finite sample properties of scar with several alternative procedures.
We conclude in Section 6 with two applications of our methodology to real data sets concerning
doctoral publications in biochemistry and the decathlon. All proofs, as well as various auxiliary
results, are given in the on-line supplementary material.

This paper contributes to the larger literature of regression in the presence of shape con-
straints. In the univariate case, and with the identity link function, the properties of shape-
constrained least squares procedures are well understood, especially for the problem of isotonic
regression. See, for instance, Brunk (1958, 1970) and Barlow et al. (1972). For the problem of
univariate convex regression, see Hanson and Pledger (1976), Groeneboom et al. (2001, 2008)
and Guntuboyina and Sen (2013). These references cover consistency, local and global rates of
convergence, and computational aspects of the estimator. Hall and Huang (2001) proposed an
alternative approach to univariate monotone regression, based on perturbing a kernel estim-
ator. Banerjee (2007) and Banerjee (2009) studied monotone regression models in which the
conditional distribution of a response given a covariate is assumed to come from a regular para-
metric model and an exponential family respectively. There have been several papers studying
additive isotonic regression, including Bacchetti (1989), Morton-Jones et al. (2000), Tutz and
Leitenstorfer (2007), Cai and Dunson (2007), Mammen and Yu (2007), Brezger and Steiner
(2008), Cheng (2009), Cheng et al. (2012), Fang and Meinshausen (2012), Rueda (2013) and
Yu (2014). The recent work of Meyer (2013a) develops similar methodology (but not theory)
to ours in the Gaussian, non-index setting. The problem of GAMs with shape restrictions was
also recently studied by Pya and Wood (2015), who proposed a penalized spline method that is
compared with ours in Section 5; in particular, they consider the same set of constraints as in
this paper. Meyer et al. (2011) investigated a Bayesian spline-based approach to the problem of
GAMs, with a focus on the isotonic case.

2. Generalized additive models with shape constraints

2.1. Background
Recall that the density function of a natural exponential family (EF) distribution with respect to
a reference measure (either Lebesgue measure on R or counting measure on Q) can be written
in the form

fY .y;μ,φ/=h.y,φ/ exp
[

yg.μ/−B{g.μ/}
φ

]
,

where μ ∈ M ⊆ R and φ ∈ Φ ⊆ .0, ∞/ are the mean and dispersion parameters respectively.
To simplify our discussion, we restrict our attention to the most commonly used natural EF
distributions, namely the Gaussian, gamma, Poisson and binomial families, and take g to be the
canonical link function. Expressions for g and the (strictly convex) log-partition function B for
the different exponential families can be found in Table 2. The corresponding distributions are
denoted by EFg,B.μ,φ/, and we write dom.B/={η∈ R : B.η/ <∞} for the domain of B. As a
convention, for the binomial family, the response is scaled to take values in {0, 1=T , 2=T , : : : , 1}
for some known T ∈N.

If .X1, Y1/, : : : , .Xn, Yn/ are independent and identically distributed pairs taking values in
Rd × R, with Yi|Xi ∼ EFg,B[g−1{f.Xi/},φ] for some prediction function f : Rd → dom.B/, then
the (conditional) log-likelihood of f can be written as

1
φ

n∑
i=1

[Yif.xi/−B{f.xi/}]+
n∑

i=1
log{h.Yi,φ/}:
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Table 2. Exponential family distributions, their corresponding canonical link functions,
log-partition functions and mean and dispersion parameter spaces

Exponential family g(μ) B(η) dom(B) M Φ

Gaussian μ η2=2 R R .0,∞/

Gamma −μ−1 − log.−η/ .−∞, 0/ .0,∞/ .0,∞/
Poisson log.μ/ exp.η/ R .0,∞/ {1}
Binomial log{μ=.1−μ/} log{1+ exp.η/} R .0, 1/ {1=T}

Since we are only interested in estimating f , it suffices to consider the scaled partial log-likeli-
hood

¯̀
n.f/≡ ¯̀

n.f ; .X1, Y1/, : : : , .Xn, Yn// := 1
n

n∑
i=1

[Yif.Xi/−B{f.Xi/}]≡ 1
n

n∑
i=1

`i.f/, .2/

say.

2.2. Maximum likelihood estimation under shape constraints
Let R̄=R∪{−∞, ∞} denote the extended real line. To guarantee the existence of our estimator,
defined in expression (3) below, it turns out to be convenient to extend the definition of each `i

(and therefore ¯̀
n) to all f : Rd → R̄, which we do as follows.

(a) For the gamma family, if f.Xi/�0, then we take `i.f/=−∞.
(b) If f.Xi/=−∞, then we set `i.f/= lima→−∞{Yia−B.a/}. Similarly, if f.Xi/=∞ (in the

Gaussian, Poisson or binomial setting), then we define `i.f/= lima→∞{Yia−B.a/}. Note
that both limits always exist in R̄.

For any shape vector Ld = .l1, : : : , ld/T ∈{1, 2, : : : , 9}d , let F =FLd denote the set of functions
f : Rd →R of the form

f.x/=
d∑

j=1
fj.xj/+ c

for x = .x1, : : : , xd/T ∈ Rd , where, for every j = 1, : : : , d, fj : R → R is a function obeying the
shape restriction indicated by label lj and satisfying fj.0/=0, and where c∈R. Whenever f has
such a representation, we write f∼F .f1, : : : , fd , c/, and call Ld the shape vector. The pointwise
closure of F is defined as

cl.F/={f : Rd → R̄|∃f 1, f 2, : : :∈F such that lim
k→∞

f k.x/=f.x/ for every x ∈Rd}:

For a specified shape vector Ld , we define the shape-constrained maximum likelihood esti-
mator (SCMLE) as

f̂ n ∈arg max
f∈cl.F/

¯̀
n.f/: .3/

Our reason for maximizing over cl.F/ rather than F in the definition of f̂ n is a technical
convenience: as we see from proposition 1 below, it ensures that a maximizer always exists. This
would be false in certain special cases if instead we only maximized over F (see example 1 in
Appendix A for such an instance), though, from the paragraph immediately following theorem
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1 below, we see that the distinction is not too important. Like many other shape-restricted
regression estimators, f̂ n is not unique in general. However, as can be seen from the second part
of proposition 1, the value of f̂ n is uniquely determined at X1, : : : , Xn.

Proposition 1. The set Ŝn :=arg maxf∈cl.F/
¯̀
n.f/ is non-empty. Moreover, all elements of Ŝn

agree at X1, : : : , Xn.

In fact, as can be seen from the proof of proposition 1, if the EF distribution is Gaussian or
gamma, then Ŝn ∩F �= ∅. Whenever Ŝn ∩F �= ∅, it contains an element for which each additive
component is piecewise linear, and any solution obtained from our algorithm in Section 4.1 has
this piecewise linear property.

2.3. Consistency of the shape-constrained maximum likelihood estimator
In this subsection, we show the consistency of f̂ n in a random-design setting. We shall impose
the following assumptions.

Assumption 1. .X, Y/, .X1, Y1/, .X2, Y2/, : : : is a sequence of independent and identically dis-
tributed (IID) pairs taking values in Rd ×R.

Assumption 2. The random vector X has a Lebesgue density with support Rd .

Assumption 3. Fix Ld ∈ {1, 2, : : : , 9}d . Suppose that Y |X ∼ EFg,B[g−1{f0.X/},φ0], where
f0 ∈F andφ0 ∈ .0, ∞/ denote the true prediction function and dispersion parameter respectively.

Assumption 4. f0 is continuous on Rd .

We are now in the position to state our main consistency result.

Theorem 1. Assume assumptions 1–4. Then, for every a0 �0,

sup
f̂ n∈Ŝn

sup
x∈[−a0,a0]d

|f̂ n.x/−f0.x/|→0 almost surely

as n→∞.

Under assumption 3, we may write f0∼F .f0,1, : : : , f0,d , c0/. When the assumptions of theorem
1 hold, in particular assumption 2, we see from the proof of theorem 1 that, for any a0 > 0,
with probability 1, for sufficiently large n, any f̂ n ∈ Ŝn can be written in the form f̂ n.x/ =
Σd

j=1 f̂ n,j.xj/+ ĉn for x = .x1, : : : , xd/T ∈ [−a0, a0]d , where f̂ n,j satisfies the shape constraint lj
and f̂ n,j.0/=0 for each j =1, : : : , d.

We now turn to estimation of the additive components and the intercept. Recall that, whenever
we write f∼F .f1, : : : , fd , c/, we insist that fj.0/=0 for all j, and refer to it as an identifiability
condition. This is because, if we also had f∼F .f̃ 1, : : : , f̃ d , c̃/, then we would have

d∑
j=1

fj.xj/+ c=
d∑

j=1
f̃ j.xj/+ c̃ .4/

for all .x1, : : : , xd/T ∈Rd . By considering this equation at 0 and at points of the form {.x1, 0, : : : ,
0/T : x1 ∈R}, : : : , {.0, : : : , 0, xd/T : xd ∈R}, we could then conclude that c̃= c and f̃ j =fj. Note,
however, that, as observed by Meyer (2013a), if we only know that the equality (4) holds at a finite
set of points .x1,1, : : : , x1,d/T, : : : , .xn,1, : : : , xn,d/T ∈ Rd , then we do not even necessarily know
that f̃ j.xi,j/=fj.xi,j/ for all i, j. Nevertheless, the following corollary establishes the important
fact that each additive component (as well as the intercept term) is estimated consistently by the
SCMLE.
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Corollary 1. Assume assumptions 1–4. Then, for any a0 �0,

sup
f̂ n∈Ŝn

{ d∑
j=1

sup
xj∈[−a0,a0]

|f̂ n,j.xj/−f0,j.xj/|+ |ĉn − c0|
}

→0 almost surely

as n→∞.

3. Generalized additive index models with shape constraints

3.1. The generalized additive index model and its identifiability
Recall that, in the GAIM, the real-valued response Yi and the predictor Xi = .Xi1, : : : , Xid/T are
related through equation (1), where g is a known link function, and where, conditionally on Xi,
the response Yi has a known EF distribution with mean parameter g−1{f I.Xi/} and dispersion
parameter φ.

Let A= .α1, : : : , αm/ denote the d ×m index matrix, where m�d, and let f.z/=Σm
j=1 fj.zj/+

c for z = .z1, : : : , zm/T ∈ Rm, so the prediction function can be written as f I.x/ = f.ATx/ for
x = .x1, : : : , xd/T ∈ Rd . As in Section 2, we impose shape constraints on the ridge functions by
assuming that fj :R→R satisfies the shape constraint with label lj ∈{1, 2, : : : , 9}, for j=1, : : : , m,
and consider the shape vector Lm ∈ {1, : : : , 9}m to be fixed throughout, so that in this section,
as well as in the corresponding proofs and algorithm, F =FLm .

The interesting question of the identifiability of GAIMs was settled recently by Yuan (2011).
To discuss the issue of identifiability carefully, we first state the main result of Yuan (2011) and
then relate it to our shape-constrained setting. It is convenient to say that .α1, : : : , αm, f1, : : : , fm,
c/ satisfy the additive index model assumptions on .−a, a/d with a ∈ .0, ∞] if the following
conditions hold.

Condition 1.

(a) f1, : : : , fm : .−a, a/→R are non-zero functions with fj.0/=0 for j =1, : : : , m, and c∈R.
(b) ‖αj‖1 =1 for j =1, : : : , m, where ‖ · ‖1 denotes the `1-norm.
(c) The first non-zero entry of αj is positive for every j.
(d) There is at most one linear ridge function in f1, : : : , fm; if fj is linear, then αT

k αj =0 for
every k �= j.

(e) There is at most one quadratic ridge function in f1, : : : , fm.
(f) A = .α1, : : : , αm/ has full column rank m.
(g) Each fj is either continuous at 0 or is monotonic or bounded on a subinterval of .−a, a/.

(This condition is not stated in Yuan (2011), but it is implicitly assumed in his lemma 2,
which states that the only solutions of Cauchy’s functional equation are linear.)

Theorem 2 (Yuan (2011), theorem 1). Assume that both .α1, : : : , αm, f1, : : : , fm, c/ and
.β1, : : : , βq, g1, : : : , gq, c̃/ satisfy the additive index model assumptions on .−a, a/d , and that

m∑
j=1

fj.αT
j x/+ c=

q∑
`=1

g`.βT
` x/+ c̃ .5/

for all x∈ .−a, a/d . Then c̃=c and q=m and there is a permutation π of {1, : : : , m} such that
βj =απ.j/ and gj =fπ.j/.

Although theorem 2 requires several conditions, most of these are very natural to rule out
trivial lack of identifiability problems. The most interesting conditions are 1(d) and 1(e). As
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explained in equation (2.4) of Yuan (2011), even if there is only one linear function, further
restrictions are required because

f1.αT
1 x/+b2α

T
2 x ={f1.αT

1 x/−b1α
T
1 x}+‖b1α1 +b2α2‖1

(
b1α1 +b2α2

‖b1α1 +b2α2‖1

)T

x

for all non-zero scalars b1 and b2. This is why we require αT
k αj = 0 for every k �= j whenever

fj is linear. As shown in proposition 1 of Yuan (2011), condition 1(e) is necessary, because,
if there are two quadratic ridge functions, then their corresponding projection indices are not
identifiable. This fact is closely related to the identifiability of independent component analysis
models (Eriksson and Koivunen, 2004; Samworth and Yuan, 2012).

In our setting, we say that .α1, : : : , αm, f1, : : : , fm, c/ satisfy the shape-constrained additive
index model assumptions on .−a, a/d with shape vector Lm = .l1, : : : , lm/T if the following con-
dition 1(a′) and conditions 1(b)–1(f) hold.

Condition 1(a′). For j = 1, : : : , m, fj : .−a, a/ → R satisfies shape constraint lj, is non-zero
and satisfies fj.0/=0, and c∈R.

Note that condition 1(a′) ensures that condition 1(g) holds. It follows immediately from
theorem 2 that if both .α1, : : : , αm, f1, : : : , fm, c/ and .β1, : : : , βq, g1, : : : , gq, c̃/ satisfy the shape-
constrained additive index model assumptions on .−a, a/d with shape vectors .l1, : : : , lm/T and
.l′1, : : : , l′q/T respectively, and if equation (5) holds for all x ∈ .−a, a/d , then c̃ = c, q = m and
there is a permutation π of {1, : : : , m} such that βj =απ.j/ and gj =fπ.j/. Thus, in this sense, if
conditions 1(a′) and 1(b)–1(f) hold, then the GAIM is identifiable.

3.2. Generalized additive index model estimation
Let A0 = .α0,1, : : : , α0,m/ denote the true index matrix. For x = .x1, : : : , xd/T ∈Rd , let

f I
0.x/=f0,1.αT

0,1x/+: : :+f0,m.αT
0,mx/+ c0

be the true prediction function, and write f0.z/ =Σm
j=1f0,j.zj/ + c0 for z = .z1, : : : , zm/T ∈ Rm.

Again we restrict our attention to the common EF distributions listed in Table 2 and take g
to be the corresponding canonical link function. In the light of the identifiability discussion in
Section 3.1, it makes sense to define the class of index matrices associated with a given shape
vector Lm as

A={A = .α1, : : : , αm/∈Rd×m|A satisfies conditions 1(b) and 1(c), and, if ∃ k ∈{1, : : : , m}
such that lk =1, then αT

j αk =0 for every j �=k}:

We can now consider the set of shape-constrained additive index functions given by

G ={f I : Rd →R|f I.x/=f.ATx/, with f ∈F and A ∈A}:

By analogy with the approach that was adopted in Section 2, a natural idea is to seek to maximize
the scaled partial log-likelihood ¯̀

n over the pointwise closure of G. As part of this process, and
writing ¯̀

n.f ; A/= ¯̀
n{f ; .ATX1, Y1/, : : : , .ATXn, Yn/} for the scaled partial index log-likelihood ,

we would like to find a d ×m matrix in A that maximizes

Λn.A/= sup
f∈F

¯̀
n.f ; A/, .6/

where the dependence of Λn.·/ on Lm and .X1, Y1/, : : : , .Xn, Yn/ is suppressed for notational
convenience. We argue, however, that this strategy has two drawbacks. First, if m � 2 and
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Lm �∈ Lm := {1, 4, 5, 6}m ∪ {1, 7, 8, 9}m, then, in certain cases, maximizing Λn.A/ over A can
lead to a perfect fit to the data; second, the function Λn.·/ need not be upper semicontinuous,
so we are not guaranteed that a maximizer exists. These phenomena are illustrated in examples
2 and 3 in Appendix A.

As a result, certain modifications are required for our shape-constrained approach to be
successful in the context of GAIMs. To deal with the first issue when Lm �∈ Lm, we optimize
Λn.·/ over the subset of matrices

Aδ ={A ∈A :λmin.ATA/� δ}
for some predetermined δ> 0, where λmin.·/ denotes the smallest eigenvalue of a non-negative
definite matrix. Other strategies are also possible. For example, when Lm = .2, : : : , 2/T, the
‘perfect fit’ phenomenon can be avoided by considering only matrices with non-negative entries
(see Section 6.2 below).

To address the second issue, we shall show that, given f I
0 ∈ G satisfying the identifiability

conditions, to obtain a consistent estimator, it is sufficient to find f̃
I
n from the set

S̃n ∈{f I : Rd →R|f I.x/=f.ATx/, with f ∈F ; if Lm ∈Lm or m=1, then A ∈A;

otherwise, A ∈Aδ; ¯̀
n.f ; A/� ¯̀

n.f0; A0/}, .7/

for some δ∈ .0,λmin.AT
0 A0/]. We write f̃

I
n.x/= f̃ n.ÃT

n x/, where Ãn = .α̃n,1, : : : , α̃n,m/∈A orAδ

is the estimated index matrix and f̃ n.z/=Σm
j=1f̃ n,j.zj/+ c̃n is the estimated additive function

with f̃ n,j satisfying the shape constraint lj and f̃ n,j.0/=0 for every j =1, : : : , m. We call f̃
I
n the

shape-constrained additive index estimator (SCAIE), and write Ãn and f̃ n,1, : : : , f̃ n,m respectively
for the corresponding estimators of the index matrix and ridge functions.

When there is a maximizer of the function Λn.·/ over A or Aδ, the set S̃n is certainly non-
empty; in fact, S̃n is always non-empty, in view of the following proposition and the argument
below it.

Proposition 2. The function Λn.·/ is lower semicontinuous.

If a maximizer of Λn.·/ does not exist, there must exist some Ån such that Λn.Ån/ >Λn.A0/.
It then follows from proposition 2 that

lim inf
A→Ån

Λn.A/�Λn.Ån/>Λn.A0/� ¯̀
n.f0; A0/,

so any A sufficiently close to Ån yields a prediction function in S̃n. A stochastic search algorithm
can be employed to find such matrices; see Section 4.2 for details.

3.3. Consistency of shape-constrained additive index estimator
In this subsection, we show the consistency of f̃

I
n and Ãn under a random-design setting. In

addition to assumptions 1 and 2, we require the following conditions.

Condition 2. Fix Lm ∈{1, 2, : : : , 9}m. The true prediction function f I
0 and the corresponding

index matrix A0 satisfy the shape-constrained additive index model conditions 1(a′) and 1(b)–
1(f) on Rd with shape vector Lm. In particular, if the ridge function f0,j is linear, then lj =1.

Condition 3. Suppose that Y |X ∼ EFg,B[g−1{f I
0.X/},φ0], where φ0 ∈ .0, ∞/ is the true dis-

persion parameter.

Condition 4. f I
0 is continuous on Rd .
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Theorem 3. Assume assumptions 1 and 2 as well as conditions 2–4. Then, provided that
δ�λmin.AT

0 A0/ when Lm �∈Lm, we have for every a0 �0 that

sup
f̃

I
n∈S̃n

sup
x∈[−a0,a0]d

|f̃ I
n.x/−f I

0.x/|→0 almost surely

as n→∞.

To obtain consistency, whenever Lm �∈Lm, the practitioner requires an a priori assumption of
a lower bound for λmin.AT

0 A0/, and this lower bound plays a role in the computation. However,
it is quite natural to want projection indices not to be too highly correlated to aid interpretability.
In practice, choosing δ too small can result in overfitting when n is small, but in our experience
the method is relatively insensitive to quite a wide range of choices of δ.

Consistency of the estimated index matrix and the ridge functions is established in the next
corollary. Some care, however, is required to define an appropriate notion of distance between
the estimator and estimand. In particular, note that the ordering of the additive components is
arbitrary. This means that we can only hope to estimate the set of projection indices, and not
their ordering, so it is only by allowing a permutation of the components that we can guarantee
that the estimated quantities are asymptotically close to their population counterparts. Never-
theless, each projection index has a corresponding ridge function, so in permuting the ordering
we must ensure to apply the same permutation to both the projection indices and the ridge
functions. Similarly, since we are also unable to estimate the zero entries of the index matrix
exactly, we should also allow the sign of each column of the index matrix to be flipped. This dis-
cussion leads us to make the following definition: if f I.x/=f.ATx/ with A = .α1, : : : , αm/ and
f∼F .f1, : : : , fm, c/, and gI.x/=g.BTx/ with B= .β1, : : : , βm/ and g∼F .g1, : : : , gm, c′/, then for
a> 0 we set

da.f I, gI/= min
π∈Pm

min
ε1,:::,εm∈{−1,1}

m∑
j=1

{‖εjαπ.j/ −βj‖1 + sup
zj∈[−a,a]

|fπ.j/.εjzj/−gj.zj/|}+|c− c′|,

where Pm denotes the set of permutations of {1, : : : , m}.

Corollary 2. Assume assumptions 1 and 2 and conditions 2–4. Then, provided that δ�
λmin.AT

0 A0/ when Lm �∈Lm, we have for every a0 �0 that

sup
f̃

I
n∈S̃n

da0.f̃
I
n, f I

0/→0 almost surely

as n→∞.

4. Computational aspects

4.1. Computation of shape-constrained maximum likelihood estimator
Throughout this subsection, we fix the shape vector Ld = .l1, : : : , ld/T, the EF distribution and
the values of the observations, and present an algorithm for computing the SCMLE described
in Section 2. The algorithm is quite different from backfitting algorithms that are commonly
used for fitting (generalized) additive models (Breiman and Friedman, 1985; Buja et al., 1989;
Mammen and Park, 2006; Yu et al., 2008), but we found it to be somewhat faster in practice for
our purposes.

Our aim is to reformulate the problem as a convex program in terms of basis functions and to
apply an active set algorithm (Nocedal and Wright, 2006). Such algorithms have recently become
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Table 3. Pseudocode of the active set algorithm for computing the SCMLE

Step 1
Initialization—outer loop: sort {Xi}n

i=1 co-ordinate by co-ordinate; define the initial working
set as S1 ={.0, j/|j ∈{1,: : : , d1}}∪{.1, j/|lj ∈{4, 7}}; in addition, define the set of potential
elements as

S ={.i, j/ : i=1,: : : , n, j =d1 +1,: : : , d};

set the iteration count k =1

Step 2
Initialization—inner loop: if k> 1, set wÅ =w.k−1/

Step 3
Unrestricted GLM : solve the following unrestricted GLM problem by using iteratively

reweighted least squares (IRLS):
1
n

n∑
h=1

[
Yh

{ ∑
.i,j/∈Sk

wij gij.Xhj/+w00

}
−B

{ ∑
.i,j/∈Sk

wij gij.Xhj/+w00

}]
,

where, for k> 1, wÅ is used as a warm start; store its solution in w.k/ (with zero weights
for the elements outside Sk)

Step 4
Working set refinement: if k =1 or if wij > 0 for every .i, j/∈Sk\S1, go to step 5;

otherwise, define respectively the moving ratio p and the set of elements to drop as

p= min
.i,j/∈Sk\S1:

wij�0

wÅ
ij

wÅ
ij −wij

, S− =
{

.i, j/ : .i, j/∈Sk\S1, wij �0,
wÅ

ij

wÅ
ij −wij

=p

}
,

set Sk :=Sk\S−, overwrite wÅ by wÅ := .1−p/wÅ +pw.k/ and go to step 3

Step 5
Derivative evaluation: for every .i, j/∈S, compute

D
.k/
i,j = @ψn

@wij
.w.k//

Step 6
Working set enlargement: write S+ =arg max.i,j/∈SD

.k/
i,j for the enlargement set, with

maximum D.k/ =max.i,j/∈S D
.k/
i,j ; if D.k/ �0 (or some other criteria are met if the EF

distribution is non-Gaussian, e.g. D.k/ < εIRLS for some predetermined small εIRLS > 0),
stop the algorithm and go to step 7; otherwise, pick any single-element subset SÅ+ ⊆S+,
let Sk+1 =Sk ∪SÅ+, set k :=k +1 and go back to step 2

Step 7
Output: for every j =1,: : : , d, set f̂ n,j.xj/=Σ{i:.i,j/∈Sk}w.k/

ij gij.xj/; take ĉn =w.k/
00 ; finally, return

the SCMLE as f̂ n.x/=Σd
j=1 f̂ n,j.xj/+ ĉn

popular for computing various shape-constrained estimators. For instance, Groeneboom et al.
(2008) used a version, which they called the ‘support reduction algorithm’ in the one-dimensional
convex regression setting; Dümbgen and Rufibach (2011) applied another variant to compute
the univariate log-concave maximum likelihood density estimator. Recently, Meyer (2013b)
developed a ‘hinge’ algorithm for quadratic programming, which can also be viewed as a variant
of the active set algorithm.

Without loss of generality, we assume in what follows that only the first d1 components (d1 �d)
of f0 are linear, i.e. l1 =: : := ld1 =1 and .ld1+1, : : : , ld/T ∈{2, : : : , 9}d−d1 . Furthermore, we assume
that the order statistics {X.i/,j}n

i=1 of {Xij}n
i=1 are distinct for every j = d − d1 + 1, : : : , d. For

x= .x1, : : : , xd/T ∈Rd , define the basis functions g0j.xj/=xj for j =1, : : : , d1 and, for i=1, : : : , n,
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gij.xj/=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1{X.i/,j�xj} −1{X.i/,j�0}, if lj =2,
1{xj<X.i/,j} −1{0<X.i/,j}, if lj =3,
.xj −X.i/,j/1{X.i/,j�xj} +X.i/,j1{X.i/,j�0}, if lj =4 or lj =5,
.X.i/,j −xj/1{xj�X.i/,j} −X.i/,j1{0�X.i/,j}, if lj =6,
.X.i/,j −xj/1{X.i/,j�xj} −X.i/,j1{X.i/,j�0}, if lj =7 or lj =9,
.xj −X.i/,j/1{xj�X.i/,j} +X.i/,j1{0�X.i/,j}, if lj =8:

Note that all the basis functions given above are zero at the origin. Let W denote the set of
weight vectors

w = .w00, w01, : : : , w0d1 , w1.d1+1/, : : : , wn.d1+1/, : : : , w1d , : : : , wnd/T ∈Rn.d−d1/+d1+1

satisfying

wij �0, for every i=1, : : : , n and every j with lj ∈{2, 3, 5, 6, 8, 9},

wij �0, for every i=2, : : : , n and every j with lj ∈{4, 7}:

To compute the SCMLE, it suffices to consider prediction functions of the form

f w.x/=w00 +
d1∑

j=1
w0jg0j.xj/+

d∑
j=d1+1

n∑
i=1

wijgij.xj/

subject to w ∈W . Our optimization problem can then be reformulated as maximizing

ψn.w/= ¯̀
n{f w; .X1, Y1/, : : : , .Xn, Yn/}

over w ∈W . Note that ψn is a concave (but not necessarily strictly concave) function. Since

sup
w∈W

¯̀
n.f w/= ¯̀

n.f̂ n/,

our goal here is to find a sequence .w.k// such that ψn.w.k// → supw∈W ¯̀
n.f w/ as k →∞. In

Table 3, we give the pseudocode for our active set algorithm for finding the SCMLE, which is
implemented in the R package scar (Chen and Samworth, 2014).

We outline below some implementation details.

(a) Iteratively reweighted least squares (IRLS): step 3 solves an unrestricted GLM problem by
applying IRLS. Since the canonical link function is used here, IRLS is simply the Newton–
Raphson method. If the EF distribution is Gaussian, then IRLS gives the exact solution
of the problem in just one iteration. Otherwise, there is no closed form expression for the
solution, so a threshold εIRLS must be picked to serve as part of the stopping criterion.
Note that here IRLS can be replaced by other methods that solve GLM problems, though
we found that IRLS offers competitive timing performance.

(b) Fast computation of the derivatives: although step 5 appears at first sight to require O.n2d/

operations, it can actually be completed with only O.nd/ operations by exploiting some
nice recurrence relations. Define the ‘nominal’ residuals at the kth iteration by

r
.k/
i =Yi −μ

.k/
i , for i=1, : : : , n,

where μ.k/
i =g−1{f w.k/

.Xi/} are the fitted mean values at the kth iteration. Then

@ψn

@wij
.w.k//= 1

n

n∑
u=1

r.k/
u gij.Xuj/:
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Table 4. Pseudocode of the stochastic search algorithm for computing the SCAIE

Step 1
Initialization: let N denote the total number of stochastic searches; set k =1

Step 2
Draw random matrices: draw a d ×m random matrix Ak by initially choosing the entries to

be IID N.0, 1/ random variables; for each column of Ak , if there is a j ∈{1,: : : , m} such
that lj =1, subtract its projection to the jth column of Ak so that condition 1(d) is satisfied;
then normalize each column so that conditions 1(b) and 1(c) are satisfied

Step 3
Rejection sampling: if Lm �∈Lm and λmin{.Ak/TAk}< δ, then go back to step 2; otherwise,

if k<N, set k :=k +1 and go to step 2

Step 4
Evaluation of Λn: for every k =1,: : : , N, compute Λn.Ak/ using the active set algorithm

described in Table 3

Step 5
Index matrix estimation—1: let AÅ ∈arg max1�k�N Λn.Ak/; set Ãn =AÅ

Step 6
Index matrix estimation—2 (optional): treat AÅ as a warm start and apply another

optimization strategy to find AÅÅ in a neighbourhood of AÅ such that Λn.AÅÅ/>Λn.AÅ/;
if such AÅÅ can be found, set Ãn =AÅÅ

Step 7
Output: use the active set algorithm described in Table 3 to find

f̃ n ∈arg max
f∈cl.F/

¯̀n.f ; Ãn/;

finally, output the SCAIE as f̃
I
n.x/= f̃ n.Ã

T
n x/

For simplicity, we suppress henceforth the superscript k. Now fix j and reorder the pairs
.ri, Xij/ as .r.1/, X.1/,j/, : : : , .r.n/, X.n/,j/ such that X.1/,j �: : : � X.n/,j (note that this is
performed in step 1). Furthermore, define

Ri,j =

⎧⎪⎪⎨
⎪⎪⎩

i∑
u=1

r.u/, if lj ∈{2, 4, 5, 6},

−
i∑

u=1
r.u/, if lj ∈{3, 7, 8, 9},

for i = 1, : : : , n, where we suppress the explicit dependence of r.u/ on j in the notation.
We have Rn,j = 0 because of the presence of the intercept w00. The following recurrence
relations can be derived by simple calculation.
(i) For lj ∈{2, 3}, we have D1,j =0 and nDi,j =−Ri−1,j for i=2, : : : , n.
(ii) For lj ∈{4, 5, 7, 9}, the initial condition is Dn,j =0, and

nDi,j =nDi+1,j −Ri,j.X.i+1/,j −X.i/,j/, for i=n−1, : : : , 1:

(iii) For lj ∈{6, 8}, the initial condition is D1,j =0, and

nDi,j =nDi−1,j +Ri−1,j.X.i/,j −X.i−1/,j/, for i=2, : : : , n:

Therefore, the complexity of step 5 in our implementation is O(nd).
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(c) Convergence: if the EF distribution is Gaussian, then it follows from theorem 1 of Groene-
boom et al. (2008) that our algorithm converges to the optimal solution after finitely many
iterations. In general, the convergence of this active set strategy depends on the following
two aspects.
(i) Convergence of IRLS: the convergence of the Newton–Raphson method in step 3

depends on the starting values. It is not guaranteed without step size optimization; see
Jørgensen (1983). However, starting from the second iteration, each subsequent IRLS
step is performed by starting from the previous well-approximated solution, which
typically makes the method work well.

(ii) Accuracy of IRLS: if IRLS gives the exact solution every time, thenψn.w.k// increases
at each iteration. In particular, one can show that, at the kth iteration, the new element
SÅ+ added into the working set in step 6 will remain in the working set Sk+1 after the
.k +1/th iteration. However, since IRLS returns only an approximate solution, there
is no guarantee that the above-mentioned phenomenon continues to hold. One way
to resolve this issue is to reduce the tolerance εIRLS if ψn.w.k//�ψn.w.k−1//, and to
redo the computations for both the previous and the current iteration.

Here we terminate our algorithm in step 6 if either ψn.w.k// is non-increasing or D.k/ < εIRLS.
In our numerical work, we did not encounter convergence problems, even outside the Gaussian
setting.

4.2. Computation of shape-constrained additive index estimator
The computation of the SCAIE can be divided into two parts.

(a) For a given A, find f ∈ cl.F/ that maximizes l̄n.f ; A/ by using the algorithm in Table 3
but with ATXi replacing Xi. Denote the corresponding maximum value by Λn.A/.

(b) For a given lower semicontinuous function Λn on A or Aδ as appropriate, find a maxi-
mizing sequence .Ak/ in this set.

The second part of this algorithm solves a finite dimensional optimization problem. Possible
strategies include the differential evolution method (Price et al., 2005; Dümbgen et al., 2011)
or a stochastic search strategy (Dümbgen et al., 2013) described below. In Table 4, we give the
pseudocode for computing the SCAIE. We note that step 4 of the stochastic search algorithm
is parallelizable.

5. Simulation study

To analyse the empirical performance of the SCMLE and SCAIE, we ran a simulation study
focusing on the running time and the predictive performance. Throughout this section, we took
εIRLS =10−8.

5.1. Generalized additive models with shape restrictions
For each data set, we took X1, : : : , Xn ∼IID U[−1, 1]d . The following three problems were con-
sidered.

(a) In problem 1, d =4. We set L4 = .4, 4, 4, 4/T and f0.x/=|x1|+ |x2|+ |x3|3 +|x4|3.
(b) In problem 2, d =4. We set L4 = .5, 5, 5, 5/T and

f0.x/=x11{x1�0} +x21{x2�0} +x3
31{x3�0} +x3

41{x4�0}:
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(c) In problem 3, d =8. We set L8 = .4, 4, 4, 4, 5, 5, 5, 5/T and

f0.x/=|x1|+ |x2|+ |x3|3 +|x4|3 +x51{x5�0} +x61{x6�0} +x3
71{x7�0} +x3

81{x8�0}:

For each of these three problems, we considered three types of EF distribution.

(i) Gaussian: for i=1, : : : , n, conditionally on Xi, draw Yi ∼N{f0.Xi/, 0:52} independently.
(ii) Poisson: for i=1, : : : , n, conditionally on Xi, draw Yi ∼Pois[g−1{f0.Xi/}] independently,

where g.μ/= log.μ/.
(iii) Binomial: for i = 1, : : : , n, draw Ti (independently of X1, : : : , Xn) from a uniform distri-

bution on {11, 12, : : : , 20}, and then, conditionally on Xi and Ti, draw Yi ∼ T −1
i Bin[Ti,

g−1{f.xi/}] independently, where g.μ/= log{μ=.1−μ/}.

All the component functions are convex, so f0 is convex. This allows us to compare our
method with other shape-restricted methods in the Gaussian setting. In the binomial setting,
we considered the EF with different dispersion parameters since Ti here can take different values.
The new partial log-likelihood can be viewed as a weighted version of the original partial log-
likelihood, where this feature can be easily incorporated in the SCMLE. Regardless of the EF
distributions, problem 3 represents a more challenging (higher dimensional) problem.

In the Gaussian setting, we compared the performance of the SCMLE with shape-constrained
additive models, SCAM (Pya and Wood, 2015), GAMs with integrated smoothness estimation,
GAMIS (Wood, 2004), multivariate adaptive regression splines with maximum interaction de-
gree equal to 1, MARS (Friedman, 1991), regression trees, Tree (Breiman et al., 1984), convex
adaptive partitioning, CAP (Hannah and Dunson, 2013) and multivariate convex regression,
MCR (Lim and Glynn, 2012; Seijo and Sen, 2011). Some of these methods are not designed to
deal with non-identity link functions, so in the Poisson and binomial settings we compared the
SCMLE with only SCAM and GAMIS.

SCAM can be viewed as a shape-restricted version of GAMIS. It is a spline-based method,
and is implemented in the R package scam (Pya, 2012). GAMIS is implemented in the R
package mgcv (Wood, 2012), whereas MARS can be founded in the R package mda (Hastie
et al., 2011). The method of regression trees is implemented in the R package tree (Ripley,
2012), and CAP is implemented in MATLAB by Hannah and Dunson (2013). We implemented
MCR in MATLAB using the interior-point-convex solver. Default settings were used
for all the competitors mentioned above.

For different sample sizes n = 200, 500, 1000, 2000, 5000, we ran all the methods on 50 ran-
domly generated data sets. Our numerical experiments were carried out on standard 32-bit
desktops with 1.8 GHz central processor units. Each method was given at most 1 h per data set.
Beyond this limit, the run was forced to stop and the corresponding results were omitted. Tables
1 and 2 in the on-line supplementary material provide the average running time of different
methods per training data set. The SCMLE method takes roughly 1–2 s with a sample size of
n = 1000 and 4–8 additive components, which is unsurprisingly slower than Tree or MARS,
but it is typically faster than other shape-constrained methods such as SCAM and MCR. Note
that MCR is particularly slow compared with the other methods and becomes computationally
infeasible for n�1000.

To study the empirical performance of the SCMLE, we drew 105 covariates independently
from U[−0:98, 0:98]d and estimated the mean integrated squared error MISE, namely
E{∫[−0:98,0:98]d .f̂ n − f0/2}, using Monte Carlo integration. Estimated MISEs are given in
Tables 5 and 6. For every setting that we considered, the SCMLE method performs better
than Tree, CAP and MCR. This is largely because these three estimators do not take into ac-
count the additive structure. In particular, MCR suffers severely from its boundary behaviour.
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Table 5. Estimated MISEs in the Gaussian setting for problems 1–3†

Method MISEs for the following values of n:

n=200 n=500 n=1000 n=2000 n=5000

Problem 1
SCMLE 0.41 0.17 0.085 0.044 0.021
SCAM10 0.41 0.25 0.16 0.13 0.079
SCAM20 0.40 0.21 0.12 0.052 0.024
GAMIS 0.41 0.18 0.095 0.049 0.024
MARS 0.54 0.25 0.14 0.087 0.044
Tree 3.7 2.8 2.5 2.3 2.3
CAP 3.2 1.7 0.91 0.55 0.28
MCR 200 8400 — — —

Problem 2
SCMLE 0.27 0.10 0.053 0.028 0.012
SCAM10 0.26 0.11 0.058 0.032 0.016
SCAM20 0.27 0.11 0.055 0.030 0.013
GAMIS 0.36 0.15 0.079 0.041 0.019
MARS 0.42 0.18 0.087 0.050 0.021
Tree 2.0 1.3 1.1 1.0 0.97
CAP 1.3 0.74 0.42 0.25 0.15
MCR 9400 15000 — — —

Problem 3
SCMLE 11 3.8 2.1 1.1 0.48
SCAM10 9.3 4.9 3.7 2.7 2.4
SCAM20 9.4 4.7 3.0 1.9 1.1
GAMIS 11 4.6 2.5 1.4 0.63
MARS 14 6.6 4.9 3.6 3.1
Tree 120 94 87 81 80
CAP 93 72 51 39 30
MCR 170 1500 — — —

†The lowest MISE-values are in italics.

The performance of SCAM depends on the choice of a tuning parameter k that controls the
number of B-spline basis functions for each component function. The default choice in the
scam package is k = 10, though we also experimented with k = 20 and k = 30. The picture is
somewhat mixed: in some settings, moving from k = 10 to k = 20 resulted in improvements for
larger sample sizes, whereas in others the results were very similar, or even resulted in a de-
terioration in performance. Moving from k = 20 to k = 30 made much smaller differences. A
drawback of increasing k is that the computation quickly became very burdensome, and in fact
sometimes went beyond our ‘1 h per data set’ cut-off for k =30 when n=5000. The k =10 and
k =20 versions of SCAM are denoted as SCAM10 and SCAM20 respectively in Tables 5 and 6.

We found that SCAM and GAMIS occasionally offer slightly better performance than the
SCMLE method when n is small. This is also mainly caused by the boundary behaviour of
the SCMLE and is alleviated as the number of observations n increases. In fact, in each of the
problems considered, the SCMLE method enjoys better predictive performance than the other
methods for n�500. The SCMLE appears to offer particular advantages when the true signal
exhibits inhomogeneous smoothness, since it can regularize in a locally adaptive way, whereas
both SCAM and GAMIS rely on a single level of regularization throughout the covariate space.
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Table 6. Estimated MISEs in the Poisson and binomial settings for problems
1–3†

Model Method MISEs for the following values of n:

n=200 n=500 n=1000 n=2000 n=5000

Problem 1
Poisson SCMLE 0.34 0.13 0.067 0.038 0.017

SCAM10 0.34 0.21 0.14 0.11 0.069
SCAM20 0.33 0.17 0.082 0.041 0.019
GAMIS 0.33 0.14 0.078 0.043 0.021

Binomial SCMLE 0.93 0.28 0.15 0.079 0.037
SCAM10 0.50 0.32 0.27 0.24 0.22
SCAM20 0.50 0.32 0.26 0.24 0.21
GAMIS 0.64 0.28 0.15 0.085 0.040

Problem 2
Poisson SCMLE 0.44 0.14 0.079 0.042 0.019

SCAM10 0.38 0.18 0.092 0.047 0.024
SCAM20 0.46 0.24 0.15 0.086 0.042
GAMIS 0.51 0.21 0.12 0.064 0.030

Binomial SCMLE 0.36 0.13 0.065 0.036 0.016
SCAM10 0.45 0.23 0.14 0.072 0.025
SCAM20 0.46 0.25 0.13 0.065 0.018
GAMIS 0.45 0.17 0.090 0.054 0.024

Problem 3
Poisson SCMLE 4.4 1.5 0.75 0.41 0.18

SCAM10 5.4 3.4 2.5 2.1 1.7
SCAM20 6.0 4.4 4.0 3.8 2.7
GAMIS 4.7 1.9 0.98 0.57 0.28

Binomial SCMLE 41 11 5.7 3.0 1.3
SCAM10 24 17 14 13 12
SCAM20 23 15 13 11 7.5
GAMIS 25 12 6.3 3.5 1.6

†The lowest MISE-values are in italics.

Finally, we note that in certain other shape-constrained estimation problems where boundary
effects are also observed, such as log-concave density estimation, it is possible to construct a
fully automatic smoothed estimate to alleviate these issues (Dümbgen and Rufibach, 2009; Cule
et al., 2010; Chen and Samworth, 2013). However, in this instance, it seems that the most
obvious remedy for boundary effects for small sample sizes would be to impose an additional
constraint on the Lipschitz constant of each convex or concave component, and an upper and
lower bound on each monotone component. Although feasible to implement, it seems difficult
to give practical advice for the choice of these tuning parameters, and we do not pursue this
issue further here.

5.2. Generalized additive index models with shape restrictions
In our comparisons of different estimators in GAIMs, we focused on the Gaussian case to
facilitate comparisons with other methods. We took X1, : : : , Xn ∼IID U[−1, 1]d for each data set
and considered the following two problems.
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Table 7. Estimated MISEs in problems 4 and 5†

Method MISEs for the following values of n:

n=200 n=500 n=1000 n=2000 n=5000

Problem 4
SCAIE 0.26 0.074 0.038 0.019 0.008
SSI 0.88 0.48 0.31 0.21 —
PPR 0.68 0.42 0.28 0.20 0.15
MARS 0.63 0.44 0.24 0.18 0.14
Tree 1.9 0.74 0.43 0.41 0.41
CAP 0.35 0.14 0.081 0.056 0.016
MCR 2:5×103 3:5×104 — — —

Problem 5
SCAIE 0.078 0.030 0.016 0.008 0.005
PPR 0.14 0.055 0.027 0.015 0.010
MARS 0.081 0.034 0.018 0.010 0.006
Tree 0.37 0.24 0.27 0.31 0.31

†The lowest MISE-values are in italics.

(a) In problem 4, d = 4 and m = 1. We set L1 = 4 and f I
0.x/ = |0:25x1 + 0:25x2 + 0:25x3 +

0:25x4|.
(b) In problem 5, d =2 and m=2. We set L2 = .4, 7/T and f I

0.x/= .0:5x1 +0:5x2/2 −|0:5x1 −
0:5x2|3.

In both problems, conditionally on Xi, we drew independently Yi ∼ N{f I
0.Xi/, 0:52} for

i = 1, : : : , n. We compared the performance of our SCAIE with projection pursuit regression,
PPR (Friedman and Stuetzle, 1981), multivariate adaptive regression splines with maximum
two interaction degrees, MARS, and Tree. In addition, in problem 4, we also considered the
semiparametric single-index method SSI (Ichimura, 1993), CAP and MCR. SSI was imple-
mented in the R package np (Hayfield and Racine, 2013). The SCAIE was computed by using
the algorithm illustrated in Table 4. We picked the total number of stochastic searches to be
N = 100. Because problem 4 is a single-index problem (i.e. m = 1), there is no need to sup-
ply δ. In problem 5, we chose δ= 0:1. We considered sample sizes n = 200, 500, 1000, 2000,
5000.

Table 3 in the on-line supplementary material gives the average running time of different
methods per training data set. Although SCAIE is slower than PPR, MARS and Tree, its
computation can be accomplished within 10–20 s when n=1000. As SSI adopts a leave-one-out
cross-validation strategy, it is typically considerably slower than the SCAIE method.

Estimated MISEs of different estimators over [−0:98, 0:98]d are given in Table 7 based on 50
randomly generated data sets. In both problem 4 and problem 5, we see that SCAIE outperforms
its competitors for all the sample sizes that we considered. It should, of course, be noted that
SSI, PPR, MARS and Tree do not enforce the shape constraints, whereas MARS, Tree, CAP
and MCR do not take into account the additive index structure.

In the index setting, it is also of interest to compare the performance of those methods that
directly estimate the index matrix. We therefore estimated root-mean squared errors RMSE,
given by

√
E.‖α̃n,1 −α0,1‖2

2/ in problem 4, where α0,1 = .0:25, 0:25, 0:25, 0:25/T. For problem
5, we estimated mean errors in Amari distance ρ, defined by Amari et al. (1996) as
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Table 8. Distance between the estimated index matrix and the
truth†

Method Results for the following values of n:

n=200 n=500 n=1000 n=2000 n=5000

Problem 4
SCAIE 0.23 0.10 0.056 0.038 0.024
SSI 0.68 0.62 0.60 0.49 —
PPR 0.58 0.60 0.54 0.48 0.45

Problem 5
SCAIE 0.22 0.14 0.090 0.062 0.045
PPR 0.26 0.21 0.14 0.10 0.067

†RMSEs were estimated in problem 4, whereas the mean Amari errors
were estimated in problem 5. The lowest distances are in italics.

ρ.Ãn, A0/= 1
2d

d∑
i=1

(
d∑

j=1
|Cij|

max1�j�d |Cij| −1

)
+ 1

2d

d∑
j=1

(
d∑

i=1
|Cij|

max1�i�d |Cij| −1

)
,

where Cij = .ÃnA−1
0 /ij and

A0 =
(

0:5 0:5
0:5 −0:5

)
:

This distance measure is invariant to permutation and takes values in [0, d −1]. Results obtained
for the SCAIE and, where applicable, SSI and PPR are displayed in Table 8. For both problems,
the SCAIE method performs better in these senses than both SSI and PPR in terms of estimating
the projection indices.

6. Real data examples

In this section, we apply our estimators in two real data examples. In the first, we study doctoral
publications in biochemistry and fit a generalized (Poisson) additive model with concavity con-
straints, whereas in the second we use an additive index model with monotonicity constraints
to study javelin performance in the decathlon.

6.1. Doctoral publications in biochemistry
The scientific productivity of a doctoral student may depend on many factors, including some
or all of the number of young children that they have, the productivity of the supervisor, their
gender and marital status. Long (1990) studied this topic, focusing on the gender difference; see
also Long (1997). The data set is available in the R package AER (Kleiber and Zeileis, 2013) and
contains n=915 observations. Here we model the number of articles written by the ith doctoral
student in the last 3 years of their research as a Poisson random variable with mean μi, where

log.μi/=f1.kidsi/+f2.mentori/+a3 genderi +a4marriedi + c,
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Table 9. Estimates obtained from the SCMLE, SCAM and GAMIS on
the doctoral publications data set

Method f̂ n,1(0) f̂ n,1(1) f̂ n,1(2) f̂ n,1(3) ân,3 ân,4

SCMLE 0 −0.110 −0.284 −0.816 −0.218 0.126
SCAM 0 −0.136 −0.303 −0.770 −0.224 0.152
GAMIS 0 −0.134 −0.301 −0.784 −0.226 0.157
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Fig. 1. Different estimates of f2: , SCMLE; , SCAM; , GAMIS

for i= 1, : : : , n, where kidsi and mentori are respectively the number of that student’s children
who are less than 6 years old, and the number of papers published by that student’s supervisor
during the same period of time. Both genderi and marriedi are factors taking values 0 and 1,
where 1 indicates ‘female’ and ‘married’ respectively. In the original data set, there is an extra
continuous variable that measures the prestige of the graduate programme. We chose to drop
this variable in our example because

(a) its values were determined quite subjectively and
(b) including this variable does not seem to improve the predictive power in the above set-

tings.

To apply the SCMLE, we assume that f1 is a concave and monotone decreasing function,
whereas f2 is a concave function. The main estimates obtained from the SCMLE are summarized
in Table 9 and Fig. 1. Outputs from SCAM and GAMIS are also reported for comparison.
We see that, with the exception of f̂n,2, estimates obtained from these methods are relatively
close. Note that, in Fig. 1, the GAMIS estimate of f2 displays local fluctuations that might
be more difficult to interpret than the estimates obtained by using the SCMLE and SCAM
methods.

Finally, we examine the prediction power of the different methods via cross-validation. Here
we randomly split the data set into training (70%) and validation (30%) subsets. For each split,
we compute estimates by using only the training set and assess their predictive accuracy in terms
of the root-mean-square prediction error RMSPE on the validation set. The RMSPEs reported
in Table 10 are averages over 500 splits. Our findings suggest that, although comparable with
SCAM, the SCMLE offers slight improvements over GAMIS and Tree for this data set.
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Table 10. Estimated prediction errors of
the SCMLE, SCAM, GAMIS and Tree on
the doctoral publications data set†

Method RMSPE

SCMLE 1.822
SCAM 1.823
GAMIS 1.838
Tree 1.890

†The smallest RMSPE is in italics.

Table 11. Estimated index loadings by SCAIE and SCAIEs

Method ân,11 ân,21 ân,31 ân,41 ân,12 ân,22 ân,32 ân,42

SCAIE 0.222 0.173 0.262 0.343 0.522 0.457 0.006 0.015
SCAIEs 0.140 0.320 0.235 0.305 0.536 0.464 0 0

6.2. Javelin throw
In this section, we consider the problem of predicting a decathlete’s javelin performance from
their performances in the other decathlon disciplines. Our data set consists of decathlon athletes
who scored at least 6500 points in at least one athletic competition in 2012 and scored points in
every event there. To avoid data dependence, we include only one performance from each athlete,
namely their 2012 personal best performance (over the whole decathlon). The data set, which
consists of n = 614 observations, is available in the R package scar (Chen and Samworth,
2014). For simplicity, we only select events (apart from the javelin) that directly reflect the
athlete’s ability in throwing and short distance running, namely the shot put, discus, 100 m race
and 110 m hurdles race. We fit the following additive index model:

javelini =f1.A11shoti +A21discusi +A31100mi +A41110mi/

+f2.A12shoti +A22discusi +A32100mi +A42110mi/+ c+ εi,

for i = 1, : : : , 614, where εi ∼IID N.0,σ2/, and where javelini, shoti, discusi, 100mi and 110mi

represent the corresponding decathlon event scores for the ith athlete. For the SCAIE, we assume
that both f1 and f2 are monotone increasing, and we also assume that A11, : : : , A41, A12, : : : , A42
are non-negative. This slightly restricted version of the SCAIE aids interpretability of the indices,
and prevents the ‘perfect fit’ phenomenon (see Section 3.2), so no choice of δ is required.

Table 11 gives the estimated index loadings by SCAIE. We observe that the first projection
index can be viewed as the general athleticism associated with the athlete, whereas the second can
be interpreted as a measure of throwing ability. Note that, when using the SCAIE method, Ân,32
and Ân,42 are relatively small. To simplify our model further, and to seek improvement in the
prediction power, we therefore considered forcing these entries to be exactly 0 in the optimization
steps of the SCAIE method. This sparse version is denoted as SCAIEs. Its estimated index
loadings are also reported in Table 11.

To compare the performance of our methods with PPR, MARS with maximum two degrees
of interaction and Tree, we again estimated the prediction power (in terms of RMSPE) via 500
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Table 12. Estimated prediction errors
of SCAIE, SCAIEs, PPR, MARS and Tree
on the javelin data set†

Method RMSPE

SCAIE 81.276
SCAIEs 80.976
PPR 82.898
MARS 82.915
Tree 85.085

†The smallest RMSPE is in italics.

repetitions of 70%–30% random splits into training–test sets. The corresponding RMSPEs are
reported in Table 12. We see that both SCAIE and SCAIEs outperform their competitors in this
particular data set. It is also interesting to note that SCAIEs has a slightly lower RMSPE than
the SCAIE, suggesting that the simpler (sparser) model might be preferred for prediction here.

7. Extensions and outlook

In this paper, we have developed methodology and theory for fitting GAMs with shape con-
straints on the additive components. Despite the non-parametric nature of the problem, our
approach has the attractive feature that there are no tuning parameters to choose, and more-
over it can be extended to handle an index structure. The algorithms that we have developed
are fast to compute and are publicly available in the R package scar. We now describe various
possible extensions of our theoretical result on the consistency of the SCMLE (theorem 1),
and we conclude with a more general discussion of remaining challenges and possible future
directions.

As a generalization of the Gaussian shape-constrained additive model, consider the setting
where the IID pairs .X1, Y1/, : : : , .Xn, Yn/ satisfy

Yi =f0.Xi/+ εi,

for i = 1, : : : , n, where E.εi|Xi/ = 0 and var.εi|Xi/ =φ0. In this case, we can define the shape-
constrained least squares estimator (SCLSE) by

f̃ n ∈arg min
f∈cl.F/

1
n

n∑
i=1

{Yi −f0.Xi/}2,

and note that the SCLSE coincides with the SCMLE when εi|Xi ∼N.0,φ0/. Theorem 1 can be
extended to show the consistency of the SCLSE; see the remarks following the proof of theorem
1 in the on-line supplementary material.

Several of the other assumptions of theorem 1 can be weakened at the expense of lengthening
the proof still further. First, in assumption 2, we can instead assume that the support supp.X/

of the covariates is a convex subset of Rd with positive Lebesgue measure. In that case, it can be
concluded that the SCMLE f̂ n converges uniformly to f0 almost surely on any compact subset
contained in the interior of supp.X/. In fact, with some minor modifications, our proof can
also be generalized to situations where some components of X are discrete. Second, consistency
under a weaker L1-norm on [−a0, a0]d can be established without assumption 4. In addition,
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instead of assuming a single dispersion parameter φ0 as done here, we can take φni =φ0=wni for
i= 1, : : : , n, where wni are known, positive weights (this is frequently needed in practice in the
binomial setting). In that case, the new partial log-likelihood can be viewed as a weighted version
of the original partial likelihood. Consistency of the SCMLE can be established provided that
lim infn→∞ mini wni=maxi wni > 0.

In another direction, our work could potentially be extended to non-canonical link functions,
though this would require further technical conditions. For example, proposition 1 does not
necessarily hold for every monotone link function g, i.e. the SCMLE f̂ n may not be unique at
X1, : : : , Xn. See Table 1 of Wedderburn (1976) for a summary of the uniqueness of the maximum
likelihood estimator for various link functions and EF distributions. Moreover, a different
algorithm would be needed here because the objective function is not necessarily concave for a
general link function.

There remain several outstanding theoretical and methodological challenges. On the theory
side, it is of great interest to understand both the local and the global rates of convergence
of the least squares and maximum likelihood estimators in shape-constrained additive models.
The only prior works in this direction with which we are familiar are Mammen and Yu (2007),
Cheng (2009) and Yu (2014) on local rates. Mammen and Yu (2007) studied the simplest setting
of least squares estimators f̂1, : : : , f̂d based on independent observations from the monotone
regression model

Yi =f1.Xi1/+: : :+fd.Xid/+ εi,

i = 1, : : : , n, where εi is assumed to have a subexponential distribution. Under regularity con-
ditions, including an assumption that the design points are supported on [0, 1]d and each fj is
strictly increasing and has a bounded derivative on [0, 1], they showed that n1=3{f̂ 1.x1/−f1.x1/}
has a non-degenerate limiting distribution at all points x1 ∈ .0, 1/ with f ′

1.x1/ > 0. This shows
that, under these conditions, the least squares estimator evades the curse of dimensionality
that one typically observes in multivariate shape-constrained regression problems and is the
optimal rate for monotone regression. It is natural to conjecture that, under appropriate condi-
tions, the least squares estimator would also achieve the optimal rate of Op.n−2=5/ for convex
or concave components. Cheng (2009) and Yu (2014) extended the work of Mammen and Yu
(2007) to a setting where the expected response is an additive function that can be decomposed
as a sum of linear and monotone components. The behaviour of our estimators under model
misspecification is another intriguing topic that warrants further research.

On the methodological side, in addition to studying other distributional families and shape
constraints, it would be desirable to extend our methodology to handle settings with large
numbers of covariates under an assumption that most of these covariates have a negligible effect
on the response. In this direction, Fang and Meinshausen (2012) studied the special case of
a high dimensional additive model with isotonic restrictions on the additive components. We
suggest that the additive structure is an attractive way of pushing ideas of shape-constrained
estimation into high dimensional settings.
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Appendix A: Examples

In this appendix, we give examples to illustrate certain phenomena that are described in the main text.

A.1. Example 1
In this example, we show that the SCMLE need not exist if we were to maximize over F rather than cl.F/
in expression (3), as claimed in Section 2.2. Suppose that d =1 and that Yi|Xi ∼Bin{1, p.Xi/}, where

log
{

p.Xi/

1−p.Xi/

}
= c+f.Xi/

and where f is monotone increasing. If there exists xÅ ∈R such that Yi = 0 whenever Xi < xÅ, and Yi = 1
whenever Xi > xÅ, then we claim that there is no maximizer of the scaled partial log-likelihood (2). To
see this, note that `i.f/=Yif.Xi/− log[1+ exp{f.Xi/}], which is strictly increasing in f.Xi/ if Yi =1, and
strictly decreasing in f.Xi/ if Yi =0. Thus, any maximizing sequence .f k/ in F must satisfy f k.x/→−∞
for x<xÅ and f k.x/→∞ for x>xÅ. But the pointwise limit of such a sequence does not belong to F .

A.2. Example 2
In this example, we show how maximizing the function Λn.·/ in expression (6) over A∈A can result in a
perfect fit to the data (or ‘saturated solution’), as claimed in Section 3.2. Consider the Gaussian family
with the identity link function. Suppose that we have data .X1, Y1/, : : : , .Xn, Yn/ with Xi = .Xi1, Xi2/

T (so
d = m = 2) and L2 = .2, 3/T. We assume here for simplicity that X11 <: : : < Xn1. It is possible to find
an increasing function f1, a decreasing function f2 (with f1.0/ = f2.0/ = 0) and a constant c such that
f1.Xi1/+f2.Xi1/+ c=Yi for every i=1, : : : , n. Now pick ε such that

0 < ε< min

⎧⎨
⎩

1
2

,
min

1�i<n
.Xi+1,1 −Xi1/

4. max
1�i�n

|Xi2|+1/

⎫⎬
⎭,

and let

A = .α1, α2/=
(1 1− ε

0 ε

)
:

It can be checked that {αT
2 Xi}n

i=1 is a strictly increasing sequence, so one can find a decreasing function fÅ
2

such that fÅ
2 .αT

2 Xi/=f2.Xi1/ for every i=1, : : : , n. Consequently, by taking f̂
I
.x/=f1.ATx/+fÅ

2 .ATx/+
c, we can ensure that f̂

I
.Xi/=Yi for every i=1, : : : , n.

We remark that this ‘perfect fit’ phenomenon is quite general. Actually, one can show (via simple
modifications of the above example) that it can happen whenever m � 2 and Lm �∈ Lm, where Lm =
{1, 4, 5, 6}m ∪{1, 7, 8, 9}m.

A.3. Example 3
We now show that the function Λn.·/ need not be upper semicontinuous, as was also claimed in Section
3.2. Again consider the Gaussian family with the identity link function. Take d =m=2 and L2 = .2, 3/T.
Assume that there are n = 4 observations, namely X1 = .0, 0/T, X2 = .0, 1/T, X3 = .1, 0/T, X4 = .1, 1/T,
Y1 =Y2 =Y3 =0 and Y4 =1. If we take

A =
(1 0

0 1

)
,

then it can be shown that Λn.A/ = 3=32 by fitting f̂
I
.X1/ = − 1

4 , f̂
I
.X2/ = f̂

I
.X3/ = 1

4 and f̂
I
.X4/ = 3

4 .
However, for any sufficiently small ε> 0, if we define

Aε =
(1− ε ε

ε 1− ε

)
,

then we can take f̂
I
.Xi/=Yi for i=1, : : : , 4, so that Λn.Aε/= 1

8 >Λn.A/.
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