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Abstract: Papillomaviruses have evolved over many millions of years to propagate
themselves at specific epithelial niches in a range of different host species. This has
led to the great diversity of papillomaviruses that now exist, and to the appearance of
distinct strategies for epithelial persistence. Many papillomaviruses minimise the risk of
immune clearance by causing chronic asymptomatic infections, accompanied by long-term
virion-production with only limited viral gene expression. Such lesions are typical of those
caused by Beta HPV types in the general population, with viral activity being suppressed by
host immunity. A second strategy requires the evolution of sophisticated immune evasion
mechanisms, and allows some HPV types to cause prominent and persistent papillomas,
even in immune competent individuals. Some Alphapapillomavirus types have evolved
this strategy, including those that cause genital warts in young adults or common warts
in children. These strategies reflect broad differences in virus protein function as well
as differences in patterns of viral gene expression, with genotype-specific associations
underlying the recent introduction of DNA testing, and also the introduction of vaccines
to protect against cervical cancer. Interestingly, it appears that cellular environment and the
site of infection affect viral pathogenicity by modulating viral gene expression. With the
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high-risk HPV gene products, changes in E6 and E7 expression are thought to account for
the development of neoplasias at the endocervix, the anal and cervical transformation zones,
and the tonsilar crypts and other oropharyngeal sites. A detailed analysis of site-specific
patterns of gene expression and gene function is now prompted.

Keywords: human papillomavirus; tropism; diversity; evolution; tissue stem cells;
niche; carcinogenesis

1. Introduction

Papillomaviruses have been discovered in a wide array of vertebrates. More than 300
papillomaviruses have been identified and completely sequenced, including over 200 human
papillomaviruses (PaVE: Papillomavirus Episteme [1]). One of the most distinctive characteristics of
the papillomavirus group is their genotype-specific host-restriction, and the preference of particular
papillomavirus types for distinct anatomical sites, where they cause lesions with distinctive clinical
pathologies [2]. These include benign hyper-proliferative lesions such as warts, as well as unapparent or
asymptomatic precursor lesions, that can in some instances progress to high-grade neoplasia and invasive
malignant cancer. The association of “high-risk” human papillomavirus (HPV) types (see legend to
Figure 1) with cervical cancer is now well established, and provides a rationale for the introduction of
HPV DNA testing in cervical screening, as well as the development of prophylactic vaccines against
HPV16 and 18 which are the major papillomavirus types responsible for cervical cancer. Such typing
studies have also revealed a plethora of HPV types, both high and low-risk, in oral mouthwash samples
despite the absence of apparent clinical disease [3], as well as in skin swabs and plucked hairs taken from
immunocompetent individuals [4–9]. The predominant asymptomatic skin HPV types come primarily
from the genera Betapapillomavirus and Gammapapillomavirus, and at a population level, members of
these genera are very successful, infecting children at a young age to produce persistent subclinical
infections [4]. Changes in the epithelial micro-environment, as can occur following immunosuppression
or in individuals suffering from epidermodysplasia verruciformis (EV), can allow these HPV types
to produce visible papillomas, and in some situations can facilitate the development of cancers [10].
Certain Beta HPV types are a significant cause of non-Melanoma skin cancer in susceptible individuals,
although the molecular mechanism by which they facilitate cancer progression appears to be somewhat
different from what has been worked out for the Alphapapillomavirus types [11]. When considered
together, it appears that different papillomavirus types have evolved distinct life-cycle strategies, which
allow them to thrive and produce viral progeny at different epithelial sites. At least part of this
variation reflects the different ability of papillomaviruses to interact with the immune system, and to
produce productive infections that are visible at the macroscopic level. The complex immune evasion
strategies that underlie the ability to produce such lesions are a particular characteristic of the Genus
Alphapapillomavirus, with low-risk Alphapapillomavirus types in particular (Figure 1), often being
responsible for recalcitrant warts even in immunocompetent hosts [12]. By contrast, most members
of the genera β- and Gammapapillomavirus only cause such visible lesions when the normal immune
response of the host is compromised [13–16]. The clinical importance of papillomaviruses, and their
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relatively small genomic size, has led to many full genomic sequences becoming available in recent
years. The availability of such extensive sequence information, combined with a developing clinical
and biochemical understanding of disease-biology, means that papillomaviruses are an ideal model
system to understand how evolution can influence viral tropisms, pathogenicity, and the underlying
molecular processes that govern disease outcome [17–20]. As discussed below, this “natural experiment”
in infection is also providing us with insight into epithelial cell biology and immunology.

2. Papillomavirus Diversity at the Level of Genotype, Epithelial Tropism and Pathogenicity

Papillomaviruses comprise a diverse group of viruses that infect both humans and animals. Their
origin is linked to changes in the epithelium of their ancestral host that occurred at least 350 million
years ago. Since then, they have co-evolved as their different host species have evolved, with
little cross-transfer between species [17,18]. They are now found in birds, reptiles, marsupials and
other mammals, pointing to an earlier evolutionary appearance than was initially suspected. Recent
phylogenetic analysis suggests, however, that the “generalist” ancestral papillomavirus may not have
followed an identical evolutionary path to that of their hosts, but paralleled the evolution of host
resources or attributes, such as the presence or absence of fur or the evolution of sweat glands. These
host-adaptations are thought to have created new ecological niches for papillomavirus to colonise,
which in turn drove viral diversity followed by co-speciation with their hosts [17]. Through this route,
papillomaviruses have developed their remarkable species specificity as well as a great diversity of
epithelial tropisms. With over 240 distinct papillomavirus types classified into 37 genera, papillomavirus
may perhaps be considered as one of the most successful families of vertebrate viruses [17,21,22].

The classification of papillomaviruses is based on nucleotide sequence comparison rather than on
serology, with individual HPVs being referred to as genotypes [22]. Data from vaccine trials has
shown that there is limited antibody cross-reactivity, except between closely related genotypes [23],
with the major coat protein of the virus (L1) containing hypervariable loops that are exposed on the
virion surface [24,25]. The L1 gene was chosen early on as the standard for PV classification, and for
some papillomavirus types, there is little sequence information outside of this region. To be classified
as distinct types, individual papillomaviruses must be at least 10% divergent from each other in their
L1 nucleotide sequence. These papillomavirus “types” are grouped into larger phylogenetic groupings
or genera, which are categorised with a Greek letter followed by a number that indicates the species
(Figure 1) [22].

Thus the species Alphapapillomavirus 9 includes HPV types 16, 31, 35, 33, 52, 58 and 67.
Ideally, papillomavirus (PV) classification should integrate phylogeny, genome organization, biology
and pathogenicity as a single property, rather than being based simply on genomic sequence analysis, or
the analysis of genomic fragments [21]. This phylogenetic species concept, although potentially useful,
is complex to implement, however, and for many papillomavirus types, detailed information regarding
their biology is only poorly defined.
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Figure 1. Evolutionary Relationship between Human Papillomaviruses. The human 
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and Gammapapillomavirus (green) representing the largest groups; Human papillomaviruses 

types from the Alphapapillomavirus genus are often classified as low-risk cutaneous (light 

brown); low-risk mucosal (yellow); or high-risk (pink) according to their association with 

the development of cancer. The high-risk types highlighted with red text are confirmed as 

“human carcinogens” on the basis of epidemiological data. The remaining high-risk types 

are “probable” or “possible” carcinogens. Although the predominant tissue associations of 

each genus are listed as either cutaneous or mucosal, these designations do not necessarily 

hold true for every member of the genus. The evolutionary tree is based on alignment of 

the E1, E2, L1, and L2 genes [26]. HPV sequence data was be obtained from PaVE [1] 

In general, sequence-based phylogeny does provide some useful insight into disease association, 

although closely related types can in some instances show distinct pathologies. HPV4, 65 and 95 are 

encompassed in the Gammapapillomavirus 1 species, for instance, but while HPV4 and 65 induce 

indistinguishable pigmented wart-like lesions mainly on the palmoplantar or lateral surface of hands 

and feet [27–29], HPV95 induces less obvious unpigmented papules primarily on plantar epithelial 

surfaces [30]. HPV6 and 11 are similarly contained within a common species-grouping 

(Alphapapillomavirus 10), and although both cause papillomas of similar appearance, HPV6 shows  
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Figure 1. Evolutionary Relationship between Human Papillomaviruses. The human
papillomaviruses types found in humans fall into five genera, with the Alpha-, Beta- (blue)
and Gammapapillomavirus (green) representing the largest groups; Human papillomaviruses
types from the Alphapapillomavirus genus are often classified as low-risk cutaneous
(light brown); low-risk mucosal (yellow); or high-risk (pink) according to their association
with the development of cancer. The high-risk types highlighted with red text are confirmed
as “human carcinogens” on the basis of epidemiological data. The remaining high-risk types
are “probable” or “possible” carcinogens. Although the predominant tissue associations of
each genus are listed as either cutaneous or mucosal, these designations do not necessarily
hold true for every member of the genus. The evolutionary tree is based on alignment of the
E1, E2, L1, and L2 genes [26]. HPV sequence data was be obtained from PaVE [1].

In general, sequence-based phylogeny does provide some useful insight into disease association,
although closely related types can in some instances show distinct pathologies. HPV4, 65 and
95 are encompassed in the Gammapapillomavirus 1 species, for instance, but while HPV4 and 65
induce indistinguishable pigmented wart-like lesions mainly on the palmoplantar or lateral surface
of hands and feet [27–29], HPV95 induces less obvious unpigmented papules primarily on plantar
epithelial surfaces [30]. HPV6 and 11 are similarly contained within a common species-grouping
(Alphapapillomavirus 10), and although both cause papillomas of similar appearance, HPV6 shows a
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marked predilection for genital sites, when compared to HPV11, which is the most prominent type
at oral sites [31–34]. A third example comes from the Alphapapillomavirus 8 species which includes
HPV40, which causes mucosal lesions, and HPV7, which is the cause of “butchers” warts that develop
at cutaneous sites, particularly the hands [35]. Explaining such subtle tropism differences is beyond
our current understanding of virus biology, and is not of obvious medical importance. It is however
likely that such tropism differences reflect differences in viral gene function, patterns of gene expression
and epithelial regulation at different body sites. Perhaps of greater importance are the differences
in cancer risk associated with the high-risk types. HPV16, 31 and 35 are all contained within the
Alphapapillomavirus 9 species group and are classified as “carcinogenic to humans” by The International
Agency for the Research on Cancer (IARC) [36]. The association between HPV16 and cervical cancer
is more than 10 times stronger than that between either HPV31 or HPV35 however [37], and of these
three types, HPV16 is uniquely associated with tumours of the oropharyngeal region [38]. To explain
this will require a dissection of virus-specific gene expression at this particular epithelial site, and an
understanding of virus protein function and the extent to which proteins encoded by different HPV types
affect common molecular pathways.

From the above, it is apparent that viral pathogenicity depends on multiple factors, including the
virus genotype, the nature of the cell infected (tropism) and the status of host immunity. Our current
thinking suggest that tropism is controlled primarily at the level of viral gene expression rather than at
the level of viral entry into the cell [39], and that regulatory elements within the long control region
(LCR) are of key importance in determining the tissue range of different HPV types [40,41]. Differences
in infectivity may however be a contributing factor, and it has been suggested that this may correlate
with differences in surface charge distribution between cutaneous and mucosal virions [42]. Although
the diseases caused by specific HPV types sometimes occur at non-typical sites, this is uncommon, with
such lesions often exhibiting non-typical morphology and pathology [43]. The idea that papillomaviruses
have epithelial sites where they have evolved to complete their productive life-cycle, and epithelial sites
where they do this less-well or not at all, makes good sense when we consider the small number of
instances where cross-species infection has been documented. Bovine Papillomavirus type 1 infection
of cattle leads to the development of benign cutaneous lesions that may regress, whereas infection of
horses typically results in the development of locally aggressive, non-regressing equine sarcoids that
are non-permissive for virus production [44–47]. In this case, it appears that the BPV E5 gene, which
is important for the production of fibropapillomas in cattle, can stimulate aberrant cell proliferation
in the dermal layers in the horse [47]. Although cottontail rabbit papillomavirus (CRPV) is not a
fibropapillomavirus like BPV, a similar concept explains its ability to generate non-productive lesions
in domestic rabbits, that have a tendency to develop over time into neoplasia and cancer [48,49].
In this case, it is the E6 and E7 proteins, along with the viral transcription factor E2, that are ultimately
important for the development of the cancer phenotype [50,51]. Historically, these ideas are not new
to the field of tumour virus biology, with a large body of experimental work using animal models
to understand how members of the polyoma and adenoviruses families can cause tumours [52,53].
In the case of adenoviruses, it is the E1A and E1B proteins, and with polyomaviruses it is the T
antigens, that when deregulated can cause tumours in experimental systems [54,55], and it is now
well known that these proteins share functional similarity with the E6 and E7 proteins of the high-risk
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papillomaviruses [56,57]. In fact, our current knowledge suggests that it is the deregulated expression
of the high-risk E6 and E7 proteins that leads to the development of neoplasia at specific epithelial
sites, and that these infections should be regarded as “non-productive or abortive infections” rather
than “ordered” productive infections, where the level and pattern of viral gene expression is properly
controlled [58,59]. It has been reported that several factors such as the type of cell, hormone as well
as inflammatory cytokines control viral gene expression [41,60–62]. With this in mind, it is clearly
important to understand how epithelial environment, cell type and host immunity act together to drive
neoplasia, and we suspect that this will be an important topic of future research. Although this line
of thinking fits well with our understanding of how high-risk HPV types cause neoplasia and cancer
at specific sites, including the cervix, anus and oropharynx, the same broad principles also explain the
elevated risk of non-melanoma skin cancer posed by Betapapillomaviruses, even though the molecular
detail of how these viruses cause cancer is different [11]. Betapapillomavirus types are prevalent as
asymptomatic infections in normal skin and mucosa in the general population [3,63,64], with infection
occurring soon after birth [9]. In immunocompromised individuals, including those suffering from
epidermodysplasia verruciformis, it appears that normal patterns of viral gene expression can become
deregulated, allowing a level of viral gene expression that would not be tolerated in immune competent
individuals (Figure 2) [11].
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Figure 2. Viral gene-expression in adjacent Betapapillomavirus lesions. Immunostaining
for the Betapapillomavirus E4 protein (green) reveals distinct patterns of expression in
different lesions in an immunosuppressed individual. Lesion (a) and (a´ ) are atypical,
and show marked basal and suprabasal staining; This pattern of E4 expression is distinct
from typical E4 pattern of expression, which is usually restricted to the mid/upper epithelial
layers as seen in region (c); Lesions (b) and (b´ ) show an intermediate pattern of E4 staining
with expression close to the basal layer, as well as in the suprabasal cell layers (see also
review [11]).

Interestingly, we have also seen that certain papillomaviruses, which are usually associated with
symptomatic lesions following infection, can persist at the site of infection following immune
regression, with reactivation occurring as the immune environment changes [65,66]. For both α- and
Betapapillomavirus types, this work suggests that the immune system provides an important check
on the extent of viral gene expression, and that overexpression of viral gene products can predispose
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to cancer progression following infection by certain β HPV types as well as for the high-risk
Alphapapillomaviruses. The existence of latent papillomavirus infections remains to be conclusively
validated in humans, but experiments in animal models suggest that this is likely [67,68].

3. Genome Structure and the Classification of Viral Gene Products

As outlined above, papillomaviruses can complete their life-cycle at many different anatomical sites,
including the skin, anogenital tract and the oral cavity, but do not always produce clinically apparent
lesions, sometimes persisting in the epithelium as non-productive latent infections. To progress beyond
these basic observations requires an understanding of viral protein function and the expression patterns of
the viral gene products in the epithelium. The viral genome is a circular double-stranded DNA episome,
which ranges in length from 6953 bp for Cheloniamydas papillomavirus type 1 (CmPV1) to 8607 bp for
Canine papillomavirus type 1 (CPV1). Viral genomes generally contain one regulatory region designated
as the URR (upstream regulatory region) or LCR (long control region), which contains transcription
factor-binding sites and the replication origin, and two groups of ORFs, which are designated early (E)
or late (L) [69]. Some papillomavirus types, such as CPV, contain a second regulatory region between
the end of the early region and the start of the late regions [70,71]. Despite variation in the size and
number of ORFs, all PV members include a URR, along with a group of proteins with a high level of
conservation that are found in all sequenced papillomavirus types (Figure 3A).

These “core” genes include the E1 and E2 proteins necessary for viral replication [72,73], and
the viral late proteins L1 and L2 [24,74]. The remaining viral genes (E6, E7, E5) may be
considered as “accessory” genes that have evolved to facilitate replication in stratified epithelium
(Figure 3B) [56,57,75]. These early gene products are generally more divergent than E1 and E2, both
functionally and at the primary amino acid sequence level, and are not universally present in all
papillomavirus types. Interestingly, the viral E4 protein has some characteristics of a core protein, in that
it is present in most if not all papillomaviruses, but is also variable at the primary amino acid sequence
level, which at first site could suggest a divergent function [76]. It is thought however that E4 plays a key
role in virus escape from the cornified epithelial layers, and that evolution has driven E4 divergence to
allow it to carry out its common function at different anatomical sites where epithelial structure differs.
In general, the viral core genes are thought to have existed early during papillomavirus evolution, and
carry out essential functions during the virus life cycle in the epithelium. L1 encodes primary structural
protein in the virus capsid [77], with the minor capsid protein L2 binding to the circular viral DNA to
facilitate optimal genome encapsidation [78]. E1 encodes a virus-specific DNA helicase [72], while
E2 functions in viral transcription, replication and genome partitioning [73]. The remaining genes
(E6, E7 and E5) encode proteins that modify the cellular environment, and in many cases perform similar
but not necessarily identical functions during the life cycle of different papillomaviruses to support the
production of progeny virions and to affect virulence. As such, it is thought that a major determinant of
virus tropism may lie in the function of these accessory genes as well as in their regulation.
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Figure 3. Alphapapillomavirus genome organization and the function of HPV proteins.
(A) Genome organization typical of the high-risk Alphapapillomavirus types is illustrated
by the genome of HPV16. The early (p97) and late (p670) promoters are marked by arrows.
The six early ORFs (E1, E2, E4 and E5 (in green) and E6 and E7 (in red)) are expressed
from the different promoters at different stages during epithelial cell differentiation. The late
ORFs (L1 and L2 (in yellow)) are expressed from the p670 promoter in the upper epithelial
layers as result of changes in splicing. The LCR/URR also contains the replication origin
as well as post-transcriptional control sequences that contribute to viral gene expression.
(B) The function of viral proteins. All known papillomavirus encodes a group of “core”
proteins that were present early on during papillomavirus evolution, and which are conserved
in sequence and in function between PV types. These include E1, E2, L2 and L1. The
E4 protein may also be a core protein that has evolved to meet papillomaviruses epithelial
specialization. The accessory proteins have evolved in each papillomavirus type during
adaptation to different epithelial niches. The sequence and function of these genes are
divergent between types. In general, these proteins are involved in modifying the cellular
environment to facilitate virus life cycle completion, contributing to the virulence and
pathogenicity. Knowledge of accessory protein function comes primarily from the study
of Alphapapillomavirus types.

4. Productive Papillomavirus Life Cycle and Non-Productive Infection

Because the study of papillomaviruses has been driven by the association of the high-risk
Alphapapillomavirus types with anogenital and oropharyngeal cancers, our knowledge of these types
is perhaps more complete. However, there are some general principles that extend across the different
genera that are worth overviewing before commenting further on the specific characteristics of different
papillomavirus groups [79]. It is widely accepted that papillomavirus infection occurs once virus
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particles gain access to the epithelial basal cells or stem cells, which in many cases involves some
level of epithelial trauma. In all cases, it is thought that virions bind initially to the glycosaminoglycan
(GAG) chains of heparan sulfate proteoglycan (HSPG) in a charge-based manner, and that this leads
to conformational changes in the virion which expose a furin/proprotein convertase cleavage site
at the amino terminus of L2. It is generally thought that virus entry requires interaction with a
secondary receptor, which still remains to be properly characterised [39]. Importantly, these early
HSPG-dependent events have been shown to occur on the extracellular basement membrane (BM) in
the murine cervico-vaginal model of HPV16 infection [80], close to where the target basal cells reside.

After PV infection, an initial phase of genome amplification takes place prior to maintenance of the
viral episome at low copy number in the infected basal cells (Figure 4A) [81,82].
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Figure 4. Regulation and deregulation of the high-risk Alphapapillomavirus life cycle.
(A) The papillomavirus life cycle is regulated during epithelial cell differentiation and is
shown diagrammatically. Cells that are driven through the cell cycle as a result of E6 and
E7 expression are marked with red nuclei. The up-regulation of viral proteins necessary
for genome amplification (i.e., E1 and E2) requires activation of the viral late promoter
in the upper epithelial layers (cells shown in green with red nuclei), with virus particles
subsequently being released from the epithelial surface; (B) In HPV-associated neoplasia,
late gene expression is retarded, and although the order of events remains the same, the
production of infectious virions is restricted to smaller and smaller areas close to the
epithelial surface. This situation is thought to be accompanied elevated E6/E7 expression,
and represents a non-productive or poorly productive abortive infection. Integration of HPV
DNA into the host cell genome is facilitated by deregulated E6/E7 expression. If integration
disrupts the E1/E2 region this can allow the persistent high-level expression of E6 and E7
and the accumulation of genetic errors in the host genome. Eventually, the productive virus
life cycle is no longer supported and viral episomes are lost (reviewed in [83]).

The viral replication proteins E1 and E2 are thought to be essential for this initial amplification, but E1
may be dispensable for maintenance-replication once copy number has stabilised at 50–100 [65]. E2 has
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an established role in genome partitioning, replication and viral gene expression. Experimental systems
have shown at least a two-log increase in viral copy number during genome amplification [65], with E1,
E2 and cellular DNA replication proteins being crucial for viral genome amplification in vitro [72,73,84].
The extent of genome amplification may be higher (four-log increase) during infection in vivo, as
suggested from laser capture analysis of productive infections in rabbits [65]. The essential role of
E6 and E7 in the viral lifecycle is primarily to modify the cellular environment to allow viral genome
amplification, mainly by driving S-phase re-entry in the upper epithelial layers. Genome amplification
occurs as the infected cell moves from an S to a G2-like phase before committing to full differentiation.
In the case of high-risk types, E6 and E7 appear also to drive cell proliferation in the basal and parabasal
layers [83]. By contrast, in the case of low-risk types (HPV6, HPV11 or other HPV types that have
a tendency to cause benign lesions), the precise role of these proteins in the infected basal cells is
unclear. In fact, functional differences in E6 and E7 represent a major determinant of HPV disease
pathogenicity between HPV types [85]. During the virus life cycle, E5 also contributes to viral genome
amplification as a result of its ability to stabilize epidermal growth factor (EGF) receptor and to enhance
mitogen-activated protein (MAP) kinase activity. E5 also modulates both extracellular-signal-regulated
kinase 1/2 (ERK 1/2) and p38 independently of EGF receptor [75]. Interestingly, the nuclear localisation
and export signals in E1 are phosphorylated by these MAP kinases, which in turn enhances the nuclear
localisation of E1 protein which is necessary for genome amplification [86,87]. In the upper layers of the
epithelium, amplified viral genomes are packaged into virus particles produced from the major (L1) and
minor (L2) virus coat proteins. The E4 protein, which accumulates at very high levels in cells supporting
virus synthesis [76], appears to have a primary function in virus release and/or transmission, but acts
also to optimise the success of virus genome amplification. In high-risk HPV types, the E4 protein
assembles into amyloid fibrils that can disrupt keratin structure and compromise the normal assembly of
the cornified envelope [88,89]. Although not yet precisely defined, E4 amyloid fibres may contribute to
virion release from the upper epithelial layers, and therefore infectivity and transmission.

Although high-risk HPV infection is common, cervical cancer arises rarely as a result of infection,
with most infections being cleared by the host without clinical symptoms. Regression of anogenital warts
is accompanied by a CD4+ T cell-dominated Th1 response, which is also seen in animal models [90–95].
In general, HPV infections evade both the adaptive and innate immune response, with the life cycle
being totally intra-epithelial, without viraemia, cell lysis or inflammation. During persistent infection,
pro-inflammatory cytokines are not released, and the signals for Langerhans cell and dendritic cell
activation and recruitment are largely absent [96]. In fact, cells supporting viral late gene expression,
and which may contain high levels of viral proteins, are shed from the surface of the epithelium away
from immune surveillance. In general, a failure to develop an effective host immune response correlates
with persistent infection and an increased probability of progression toward invasive cancer.

In HPV-associated neoplasias, the ordered expression of viral gene products necessary for virus
synthesis does not occur, leading to a non-productive or abortive infection rather than a productive
infection (Figure 4B). In this situation, the deregulated expression of the high-risk E7 protein can
stimulate host genome instability through deregulation of the centrosome cycle, with the deregulated
expression of the high-risk E6 protein contributing to the accumulation of cellular mutations as a result of
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inhibition or loss of E6 function. This deregulation and the subsequent effects on the cell can eventually
lead to the development of cancer (reviewed in [2]).

5. Epithelial Stem Cells and Their Postulated Role in Papillomavirus-Associated Disease

Current thinking suggests that the development of papillomavirus-associated disease requires the
infection not just of an epithelial basal cell, but more specifically an epithelial tissue stem cell at a
pluristratified cutaneous or mucosal site [97–99]. In general, papillomavirus-associated lesions often
persist for many years. Epithelial tissue renewal is achieved by proliferation of stem or stem-like cells in
the basal layer, to produce transit amplifying cells that have a limited proliferative capacity, and which
subsequently go on to terminally differentiate [100]. Once committed to differentiate, these cells are
pushed towards the cell surface by the production of new cells beneath them, and are eventually lost from
the epithelial surface as terminally differentiated squames. This movement comprises the “epidermal
flow”, which occurs over a shorter time period than the life span of a papillomavirus infection [101].
Thus, we assume that papillomaviruses target basal cells with stem cell-like properties [97], or in the
case of the high-risk papillomaviruses, they confer such properties on the cells that they infect. The
idea that papillomaviruses generally reside in an epithelial stem cell following infection, is compatible
with our understanding of latency and reactivation from latency [68], and the clonal origin of papillomas
which was established several decades ago [102]. Indeed, studies on animal models have shown that
CRPV primarily targets the bulge region of the hair follicle, where epithelial stem cells reside [103], and
in cervical neoplasia, the epithelial reserve cells have long been considered the target cell from which
cervical disease arises [99,104]. However, the cellular targets of infection have not yet been mapped
more precisely, and this still remains a hypothesis, albeit a plausible one.

6. Local Epithelial Structure and Sites of Papillomavirus Infection

Epithelial tissue is composed of three components; epidermis, dermis and subepidermal tissue
(subcutaneous tissue at skin sites). The epidermis is composed of multiple keratinocyte layers, and
is the component that papillomaviruses target. In addition, the skin also consists of various functional
appendages, including hair follicles, sebaceous glands, eccrine and apocrine sweat glands, finger and
toe nails, as well as the inter-appendageal epidermis. Specialised epithelial sites contain additional
appendages, such as the salivary glands of the oral cavity and the tonsillar crypts of the oropharynx.
For papillomaviruses, these “specialist” structures represent particularly vulnerable sites, as they lack
the highly structured barrier function usually associated with the epithelium. An additional level
of complexity resides at transformation zone regions, where stratified epithelium abuts columnar
epithelium, and it is generally accepted that high-risk HPV-associated neoplasias develop primarily
at these sites [105]. High-risk HPV types are associated with the vast majority of cervical cancers
(>99%), most of which arise at the cervical transformation zone, as well as the more than 90% of
cancers that arise at the anal transformation zone. It is reasonable to suspect that transformation zones
at other anatomical sites, such as at the boundary between the oesophagus and the stomach, may also
be susceptible to HPV-associated neoplasia, but that these sites only rarely become infected because of
their location. At the cervix, the transformation zone is maintained by a specialised type of cell known
as the reserve cell [104], and possibly also by a cluster of cuboidal cells localised more precisely at
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the squamo-columnar junction [98]. Our current thinking suggests that these cell types represent the
stem cells that maintain either the columnar epithelium of the endocervix, or the stratified epithelium
of the transformation zone depending on their extracellular environment. These cells are thought to
respond differently to signals from neighbouring epithelial cells and from the dermis, when compared to
the more conventional epithelial stem cells that populate the stratified layers of the ectocervix. Indeed,
our current model suggests that cervical neoplasia develops primarily at the squamo-columnar junction
because these cells fail to properly regulate viral gene expression, leading to a non-productive or abortive
infection rather than a productive infection (Figure 5) [59,106].
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Figure 5. The difference of host cells (the site of infection) affects viral pathogenicity.
Most cervical cancers arise at the cervical transformation zone. The transformation zone
is maintained by a specialized type of tissue stem cell known as the reserve cell (shown in
purple in the transformation zone), and possibly also by a cluster of cuboidal cells (yellow)
localized more precisely at the squamo-columnar junction. These cells can maintain either
the columnar epithelium of the endocervix or the stratified epithelium of transformation
zone depending on their extracellular environment. In the ectocervix, the epithelium is
populated by conventional epithelial tissue stem cells (purple in the ectocervix). The
different characteristics of the various tissue stem cells that HPV infects are thought to
influence the pattern of viral gene expression differently [41]. Current thinking suggests
that productive infection is favoured at the ectocervix, while a non-productive or abortive
infection is more likely at the endocervix. In the immunostains, MCM expression (red)
indicates the expression of viral E7 protein. E4 expression (green) indicates the productive
infection [59].
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In this situation, deregulated viral gene expression facilitates the accumulation of genetic errors in the
infected cell that no longer supports a productive infection (as described previously), leading eventually
to the development of cancer.

By comparison with the cervical reserve cells, the stem cells that populate cutaneous epithelial
sites are better characterised, and are known to reside in the bulge region of the hair follicle
(Figure 6A) [107,108].
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Figure 6. Epithelial tissue sites and tissue stem cells as targets for HPV infection. HPVs
infect a variety of epithelial tissue sites, and can cause lesions in the vicinity of hair follicles,
eccrine and apocrine sweat apparatus), nails, and also the inter-appendageal epidermis.
Specialized epithelial sites contain other appendages, such as the salivary glands of the oral
cavity and the tonsillar crypts of the oropharynx, where oropharyngeal cancers arise. The
transformation zone regions, where stratified epithelium abuts columnar epithelium such as
the cervical (Figure 5) or anal transformation zones, are other target sites where infection is
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thought to be facilitated. (A) The bulge region of the hair follicle is a well characterized
region where the stem cells that populate cutaneous epithelial sites reside. HPV virions
are thought to gain access to the epithelial stem cells (coloured purple), either through
a wound or possibly through the hair follicle; (B) Between the hair follicles, the tissue
stem cells are thought to reside in both rete ridge and over the dermal papilla, and are not
thought to be clustered at any specific location in the basal component [109]. With the
sweat apparatus, at least two distinct stem cell populations have been identified that may be
accessible for infection, either in the gland or the duct. These are able to repair damaged
epidermis. HPV virions are thought to gain access to these stem cells (coloured purple),
either through a wound or maybe through the eccrine duct; (C) The tonsillar crypts are a
highly specialized lymphoepithelial tissue. A dense lymphocyte infiltrate generally obscures
the junction between the lymphoid and epithelial components and splinters the epithelial
sheath into irregular nests and cords. This reticulated epithelium may facilitate viral access
to tissue stem cells at an immune-privileged site, which can inhibit virus-specific T cell
activity and thereby facilitate immune evasion during initial HPV infection and subsequent
virus-induced malignant transformation.

Because these cells can mediate the repair of damaged interfollicular epidermis, the interfollicular
stem cells were for some time, thought to be supplied by follicular stem cells routinely [110]. However,
recent work has shown that stem cells in the hair follicle do not contribute to epidermal homeostasis,
but points instead to the presence of a distinct population of interfollicular epidermal stem cells [111].
This idea is supported by several observations [112], including the visualisation of discrete slow-cycling
cells that are interspersed throughout the basal layer in mouse interfollicular epidermis [113] and in
monkey palm epidermis [114], as well as the visualisation of clonal regenerating units of interfollicular
epidermis (Figure 6B) [115]. In human skin, however, our inability to mark slow-cycling cells using
in situ approaches, coupled with a lack of specific stem cell markers, has meant that the identification
and location of interfollicular epidermal stem cells remains uncertain. Although it is generally accepted
that eccrine sweat duct-derived cells can repair damaged epidermis [116], little attention has been paid
to the sweat gland as an additional location of epidermal stem cells. Recently, stem cell populations in
sweat glands and ducts have however been identified by lineage-tracing (Figure 6B) [117].

7. Examples of Papillomavirus Niche-Adaptation and Tropisms

Given the genotype-specific tropisms of papillomaviruses and the varied pathologies associated with
infection, it is not unreasonable to think that different papillomaviruses have become well adapted to
their respective epithelial niches. Although this has already been overviewed to some extent in the
preceding paragraphs, the diversity of niche-adaptation can perhaps be appreciated by reference to
particular examples that are outlined below.

Schmitt et al. [103] have shown that the primary target cells of CRPV co-localize with the hair follicle
stem cells. In this study, E6 and E7 transcripts were detected at 11 days post-infection, despite the
absence of apparent disease, with expression of these genes representing an early marker of infection.
The subsequent finding that viable keratinocyte clones isolated from these infected follicles were CRPV
mRNA-positive, suggests infection of a replication competent cell, which given the location, is suspected
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to be a bulge stem cell. A similar cellular target and epithelial tropism has also been suggested for the
HPV types associated with epidermodysplasia verruciformis (EV). These HPV types usually come from
the Genus Betapapillomavirus, and can be detected in plucked hair from different body sites. EV is a rare
autosomal recessive genodermatosis associated with a high risk of skin carcinoma [11,118,119]. In many
cases, the disease is linked to mutations in two genes (EVER1 and EVER2) that are expressed in the
endoplasmic reticulum, and which form a complex with zinc-transporter-1 (ZnT-1), thereby controlling
zinc balance [120]. Lesions generally start on the dorsa of the hands and the forehead, and spread
progressively to the limb, neck and trunk. However, the mucous epithelium is not involved. EV skin
lesions are hardly seen on the palmoplantar skin, even though they are frequently productive in nearby
epithelium. At a clinical level, it is very clear that the Betapapillomavirus types associated with EV
precisely “select” their preferential anatomical sites. The frequent detection of EV-PV in plucked hairs
points to the hair follicle as an important site of infection for EV-PV [121,122].

HPV1 and 63 are members of the Genus Mupapillomavirus, and appear to target eccrine ducts in the
palmoplantar skin. HPV1 causes typical myrmecia warts on the palms and soles [27,123], and it is quite
rare for this HPV type to infect and cause lesions at extra-palmoplantar sites. The most characteristic
histological feature is eosinophilic granular intracytoplasmic inclusion bodies (Gr-ICBs), which are
larger and more numerous in the upper layer of the epidermis, and which are pathognomonic of infection
by this virus. HPV1 infection provided a good example of how the site of infection influences clinical
features and can affect viral gene expression [43]. Lesion development occurs on the skin surface ridges
on the palms or soles. Histopathological studies and in situ hybridization analysis of early lesions have
revealed that both HPV1-associated disease-pathology and in situ DNA-positivity are closely associated
with eccrine ducts (Figure 7A, and our unpublished data).

HPV63, which is the second Mupapillomavirus type, induces tiny punctate warts (0.5 to 2 mm)
characterised by the presence of heavily-stained tonofibril-like structures referred to as filamentous
inclusion bodies [27,29]. To date, HPV63-induced warts have only been reported on the sole, with
HPV63 DNA being detected both in keratinocytes around acrosyringiums (Figure 7B) and also in the
uppermost portion of the eccrine dermal duct, which was hypertrophied with the HPV infection [124].

The final example focuses on HPV6 and 11, which share 85% sequence identity and belong to
same HPV species (Alphapapillomavirus 2). Interestingly, in contrast to EV-HPVs from the Genus
Betapapillomavirus, and which are both detectable in plucked pubic and eyebrow hairs, HPV6 and 11
could be detected only in hair plucked from pubic and perianal regions of patients with genital warts,
but not in eyebrow hairs of the same patients. It has been suggested that HPV6 and 11 have a more
limited epithelial distribution [125]. In contrast to this, Kocjan et al. [126], showed the presence of
four genital HPVs (HPV6, 11 31 and 58) in plucked eyebrow hairs from immunocompetent individuals,
suggesting that these viruses may sometimes be more widely distributed, but that they develop lesions
preferentially at anogenital or oral sites. Since HPV6 and 11 are well-known causative agents for
condyloma acuminatum, and can be detected in pubic and perianal hairs, a follicular distribution for
this virus may exist. In fact, hair follicle-associated papules are sometimes observed in conjunction
with the larger more prominent lesions at anogenital sites, with hair follicles being present widely at
many epithelial sites. Interestingly, histological studies show that HPV6/11 DNA can also be detected in
association with hair follicles as well as the vicinity of sweat apparatus or inter-appendageal epidermis,
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along with associated histological changes (Figure 7C, and our unpublished data). HPV6 and 11 are also
causative agents of laryngeal papillomatosis, although in this instance the target cells remain unclear.
The vocal cord, where HPV6 and 11 can also produce papillomatosis consists of squamous epithelium,
pseudostratified epithelium and a transitional zone, which may facilitate access to stem-like cells at
this site.

Viruses 2015, 7 16 

 

 

detected in association with hair follicles as well as the vicinity of sweat apparatus or inter-appendageal 

epidermis, along with associated histological changes (Figure 7C, and our unpublished data). HPV6 

and 11 are also causative agents of laryngeal papillomatosis, although in this instance the target cells 

remain unclear. The vocal cord, where HPV6 and 11 can also produce papillomatosis consists of 

squamous epithelium, pseudostratified epithelium and a transitional zone, which may facilitate access to 

stem-like cells at this site. 

A 

 

B 

 

C 

 

Figure 7. Examples for HPV targeting cutaneous appendages. (A) Haemotoxylin & eosin 

stain (left) of a horizontal section of a tiny wart. An eccrine (Ec)-centered distribution of 

histological changes is observed. HPV1 DNAs are identified within the pathology changes 

following DNA in situ hybridization (right); (B) HPV63 DNA is identified in resident 

keratinocytes in the vicinity of eccrine ducts (Ec) in a ridge of the plantar skin following 

DNA in situ hybridization; (C) HPV6/11 histopathological changes are identified in the 

resident keratinocytes in and around the hair follicle (arrow) by haemotoxylin & eosin 

staining (left) and DNA in situ hybridization (right). 

Figure 7. Examples for HPV targeting cutaneous appendages. (A) Haemotoxylin & eosin
stain (left) of a horizontal section of a tiny wart. An eccrine (Ec)-centered distribution of
histological changes is observed. HPV1 DNAs are identified within the pathology changes
following DNA in situ hybridization (right); (B) HPV63 DNA is identified in resident
keratinocytes in the vicinity of eccrine ducts (Ec) in a ridge of the plantar skin following DNA
in situ hybridization; (C) HPV6/11 histopathological changes are identified in the resident
keratinocytes in and around the hair follicle (arrow) by haemotoxylin & eosin staining (left)
and DNA in situ hybridization (right).
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8. High-Risk Mucosal HPV Types

The high-risk mucosal HPVs, such as HPV16, 18, 31 and 33 appear to have evolved a number of
additional characteristics that are not shared by low-risk papillomaviruses. These relate primarily to the
function of the E5, E6 and E7 gene products, and the regulatory mechanisms that govern their expression
(reviewed in [2]). Many functional studies have however focused on the contribution of these viral
proteins to cancer development rather than life-cycle completion, and a detailed comparison of the role of
these proteins in the life cycles of high and low-risk papillomaviruses remains to be done. A prominent
characteristic of high-risk E6 proteins is the presence of a C-terminal PDZ-binding motif [127–131],
along with an ability to bind and degrade the cellular p53 protein [132–134]. In addition, the high-risk
HPV types have been shown to express their E6 and E7 proteins from a single promoter, with the levels
of these two proteins being regulated by differential splicing [1,135]. This contrasts with the presence
of separate promoters that regulate E6 and E7 expression in low-risk HPV types, such as those from the
Alphpapillomavirus genus. Although there are additional key differences between these broad groups
of papillomaviruses, these properties in themselves are known to have a major impact on high-risk virus
pathogenesis. Although the precise advantage that the high-risk HPV types gain from these additional
functions remains unclear, it is very likely to be related to particular sites of infection and their different
strategies for productive infection at these sites. Clearly, the high-risk viruses have an ability to drive
cell cycle entry as well as cell proliferation, which may be an important part of their normal life cycle at
mucosal sites [83]. High-risk HPV-associated cancers occur predominantly within the cervical and anal
transformation zone, as well as in the crypts of the oropharynx (Figure 6C) [136], which are thought
to be sites where viral gene expression is poorly controlled. Given the preferential tissue distributions
of different papillomaviruses, it is not surprising that particular HPV types may sometimes infect sites
where full productive infection is either not supported or supported only poorly. The different cancer
risk at the penis, vagina and vulva, when compared to the cervix or anus, illustrates this well [137]. In
addition, the different risk of cancer progression associated with different HPV types (e.g., HPV16, 18
and 45) must reflect the different basic tropisms or tissue-specificities of the species Alphapapillomavirus
7 and Alphapapillomaviru 9 [138], and the different ways in which their genes are expressed and achieve
their effects at these different epithelial sites. In addition to infection at these genital sites, some high-risk
types can be found at other cutaneous sites where they cause “Bowenoid papulosis” [139,140].

9. Conclusions

Papillomaviruses have evolved over many millions of years to propagate themselves in a range of
different species including humans. The evolution of skin glands, hair follicles and other ecological
niches has provided papillomaviruses with new opportunities for infection. These have been followed
by niche-adaptation, and it is thought that through this route, the great diversity of papillomaviruses
has arisen. In general, β- and Gammapapillomavirus types have evolved a strategy of causing chronic
asymptomatic infections accompanied by long-term virion-production and shedding from infected
epidermis. This strategy minimises the risk of immune clearance, and depends on a balance between
immune suppression and virus synthesis without any marked effect on host-fitness. By contrast,
other papillomaviruses, such as those from the Genus Alphapapillomavirus, have evolved an array of
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sophisticated immune evasion strategies that allow them to cause prominent and persistent papillomas,
even in immune competent individuals. Immune clearance of such lesions can however lead to
asymptomatic or latent infections, with the possibility of an increase in viral copy number upon
immunosuppression. Thus, both the cellular environment and the site of infection are important
determinants of viral gene expression and virus activity. HPV pathogenicity, however, also reflects
differences in viral gene function, which is evidenced most significantly when high and low-risk
HPV types are compared. The genotype-specific association with disease, and more specifically with
neoplasia, provides the basis for the recent introduction of DNA testing in cervical screening, and
underlies the introduction of HPV 16/18 vaccines to protect against cervical cancer. High-risk mucosal
HPVs do however have different cancer associations at different sites, prompting a detailed analysis
of site-specific patterns of gene expression and gene function at different epithelial sites, such as the
endocervix, the cervical transformation zone and the ectocervix, as well as the tonsillar crypts and other
oropharyngeal sites where HPV-associated neoplasia can develop. An understanding of the site-specific
aspects of HPV infection should facilitate the development of better strategies for disease treatment (e.g.,
target antivirals, immunotherapeutics) and disease management (e.g., risk assessment), and is very likely
to provide new insight into epithelial biology and immunology.
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