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NEAR-OPTIMAL ESTIMATION OF JUMP ACTIVITY IN
SEMIMARTINGALES

BY ADAM D. BULL1

University of Cambridge

In quantitative finance, we often model asset prices as semimartingales,
with drift, diffusion and jump components. The jump activity index measures
the strength of the jumps at high frequencies, and is of interest both in model
selection and fitting, and in volatility estimation. In this paper, we give a
novel estimate of the jump activity, together with corresponding confidence
intervals. Our estimate improves upon previous work, achieving near-optimal
rates of convergence, and good finite-sample performance in Monte-Carlo
experiments.

1. Introduction. In quantitative finance, we often wish to model asset prices,
for example, to price options or evaluate investment strategies. Typically, we as-
sume that asset log-prices are given by a semimartingale; in other words, the sum
of drift, diffusion and jump processes. In the following, we will be interested in
the jump activity index, a parameter which determines the strength of the jump
process at high frequencies.

The jump activity is important for two reasons. First, any semimartingale model
will make claims about the jump activity; typically, the activity is either assumed
known and fixed, or is a free parameter to be estimated. Knowledge of the jump
activity thus informs our choice of model, and may allow us to fit it more accu-
rately.

Second, the jump activity controls the difficulty of estimating another parameter
of interest, the volatility. This parameter measures the strength of the diffusion
component of price movements, and is often a key target for financial modellers. It
is known that under high jump activity, the volatility becomes harder to estimate;
this problem can be avoided using specialised volatility estimates, but at the cost
of making stronger assumptions.

Knowledge of the jump activity is thus important both for the analysis of indi-
vidual price records, to inform the choice of volatility estimate; and more generally
in research, to guide the development of future estimates. In the following, we will
therefore investigate the problem of accurately estimating the jump activity.
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Previous attempts to estimate the jump activity of semimartingales have either
achieved poor rates of convergence, or worked only under restrictive assump-
tions. In this paper, we will describe a new jump activity estimate, which achieves
near-optimal rates of convergence in a general setting, along with improved finite-
sample performance. We will further provide limiting distributions for our esti-
mate, validated by Monte-Carlo experiments.

We begin by discussing in more detail the nature of the problem, and relevant
work in the literature. We will suppose we have a log-price process given by a
semimartingale Xt on [0,1], and make n observations

Xj/n, j = 0, . . . , n − 1.

We then define the jump activity index

β = inf
{
r ∈ [0,2] : S(r) < ∞ a.s.

}
, S(r) = ∑

s∈[0,1]
|�Xs |r ,

letting �Xs = Xs −Xs− denote the jumps of Xt , and using the convention 00 = 0.
As semimartingales have finite quadratic variation, we have S(2) < ∞ almost

surely, and so the jump activity β ∈ [0,2]. When the sample path of Xt has finitely
many jumps, β = 0; when it may have infinitely many jumps, but the jumps are
of finite variation, β ∈ [0,1]; and when the jumps may be of infinite variation,
β ∈ [1,2]. The more activity Xt has in its small jumps, the larger we will have to
choose r to make S(r) finite, and the larger β will be.

From Lemma 3.2.1 of Jacod and Protter (2012), we can equivalently define

β = inf
{
r ∈ [0,2] : I (r) < ∞ a.s.

}
, I (r) =

∫ 1

0

∫
R

1 ∧ |x|rν(dx, ds),

letting ν(dx, ds) denote the compensator of the jump measure of Xt . When Xt is
a Lévy process, β is thus the Blumenthal–Getoor index [Blumenthal and Getoor
(1961)]; for example, if Xt is a stable process, then β is its stability parameter.
More generally, β gives an extension of the Blumenthal–Getoor index to semi-
martingales.

The jump activity β is thus a parameter of interest when choosing models for
the log-price process Xt . Many common models assume either that no jumps are
present, or that there are finitely-many jumps almost-surely; in either case, we
therefore assume that β = 0. This includes all Itô process models, as well as the
Merton, Kou and Bates models, for example.

Some models allow positive values of β; for example, the (time-changed)
normal-inverse Gaussian, Meixner and generalised hyperbolic models assume
β = 1, while the (time-changed) CGMY or tempered-stable model includes β as
a free parameter to be estimated. Knowledge of β thus allows us to better decide
between competing models, and in the latter case also to fit these models to price
data. [For definitions of the models, see Cont and Tankov (2004), Papapantoleon
(2008).]
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Further interest in the jump activity arises from the problem of volatility esti-
mation. Let Xc

t denote the continuous part of Xt . Then the integrated volatility of
Xt over [0,1], given by the quadratic variation [Xc]1, is a parameter of much in-
terest in options pricing or risk modelling, and its estimation has been extensively
studied.

When Xt is continuous, the integrated volatility can be estimated by the ob-
served quadratic variation; however, price data is widely accepted to contain
jumps, which must be accounted for explicitly. Methods for doing so include
thresholding [Mancini (2001, 2009)], bipower variation [Barndorff-Nielsen and
Shephard (2004), Barndorff-Nielsen et al. (2006)], and characteristic functions
[Todorov and Tauchen (2012a, 2012b)].

Unfortunately, the convergence rates of these methods suffer when the jumps are
of infinite variation. While this can be avoided if we assume the jumps are driven
by a stable-like process [Jacod and Todorov (2014)], or that prices are given by
a time-changed process [Bull (2014)], it is known that in general, poor rates are
unavoidable [Jacod and Reiss (2014)].

When estimating volatility, we would therefore like to know whether the jumps
are of infinite variation, and if so, how active they are; equivalently, we would like
to know whether β is greater than 1, and if so, by how much. This question is of
interest both when choosing an estimator to apply to particular price data, and also
more generally when planning research on volatility estimation.

Previous authors have attempted to recover β in a variety of settings, including
when no diffusion component is present [Todorov and Tauchen (2010), Woerner
(2011), Zhao and Wu (2009)], or when testing if β is greater than zero [Aït-Sahalia
and Jacod (2011), Lee and Hannig (2010)] or one [Cont and Mancini (2011)]. In
the following, however, we will concentrate on estimating β in general, when a
diffusion term may also be present.

In this context, Aït-Sahalia and Jacod (2009) provide an estimate of β based
upon jump counting. While Aït-Sahalia and Jacod cannot prove results for all
semimartingales, they do provide convergence rates under the additional assump-
tion that the jumps are dominated by a stochastic integral of a stable-like process.
Similar assumptions have also been considered by Jing, Kong and Liu (2011) and
Jacod and Todorov (2014), for example, and are satisfied by many common models
of price data.

Under these conditions, Aït-Sahalia and Jacod (2009) show that their estimate
of the jump activity β converges at a rate n−β/10. Related estimates have been
considered also by Jing, Kong and Liu (2011), Aït-Sahalia and Jacod (2012) and
Jing et al. (2012); the best convergence is obtained by the latter, who achieve the
rate n−β/8. However, this still falls short of the corresponding lower bound of
n−β/4 log(n)−(1−β/4), given by Aït-Sahalia and Jacod (2012).

If we assume not only stable-like jumps, but also that log-prices are given by
a Lévy process, Reiß (2013) shows we can estimate β at the near-optimal rate
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n−β/4+ε , for any ε > 0. However, the assumption of Lévy behaviour is quite re-
strictive in a financial context, and unfortunately the approach of Reiß does not
easily generalise to semimartingales.

In the following, we will therefore describe a new estimate of the jump activity
β , using a multi-scale jump-counting approach. We will show that by combining
jump-counting estimates across different time-scales, we will be able to cancel out
the bias in these estimates, obtaining improved accuracy.

In a similar setting to that of Aït-Sahalia and Jacod (2009), with no assumption
of Lévy behaviour, our estimate will obtain the near-optimal convergence rates
n−β/4+ε , as well as improved finite-sample performance. We will also give limit-
ing distributions, validated by Monte-Carlo experiments.

In Section 2, we describe our estimates in full, and in Section 3, discuss their
theoretical properties. In Section 4, we then perform our Monte-Carlo experiments,
and in Section 5, give proofs.

2. Jump activity estimates. We now describe our estimate of the jump activ-
ity β . In the following, we will suppose that β > 0; we note the case β = 0 can be
tested for separately, for example, using the methods of Lee and Hannig (2010) or
Aït-Sahalia and Jacod (2011).

Our approach builds upon the work of Aït-Sahalia and Jacod (2009), who esti-
mate β by counting jumps in Xt . The authors define the jump counts

Ãn(τ ) =
n−2∑
j=0

1τ |X(j+1)/n−Xj/n|≥1,

which for suitable τ > 0, approximate the number of jumps in Xt of size at least
τ−1.

For ρ > 1, Aït-Sahalia and Jacod then estimate β by

β̂AJ
n = logρ

(
Ãn(ρτn)

Ãn(τn)

)
,

using the convention 0/0 = 1. If the jumps of Xt are dominated by a stochastic
integral of a stable-like process, then as n → ∞, for suitable sequences τn, we can
expect

Ãn(τn) ≈ Cτβ
n ,

for some quantity C > 0. We would then have that

β̂AJ
n ≈ logρ

(
C(ρτn)

β

Cτ
β
n

)
= β.

Unfortunately, Aït-Sahalia and Jacod were not able to provide good conver-
gence rates for this method, as the estimates β̂AJ

n are too biased when τn is large.
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In the following, we will therefore provide an improved version of this method,
which corrects for the bias in β̂AJ

n , achieving near-optimal rates of convergence.
We will use three techniques to correct for this bias. First, will we symmetrise

the data, correcting for bias due to high-activity, asymmetrically-distributed jumps.
Second, we will smooth the jump counts, correcting for bias due to the roughness
of the indicator function 1|x|≥1. Finally, and most importantly, we will eliminate
the remaining bias by cancelling between estimates at different time-scales.

We first describe a procedure to symmetrise the process Xt , as given, for exam-
ple, in Jacod and Todorov (2014). For j = 0, . . . , n−3, we define random variables

�Xj,n = (X(j+2)/n − X(j+1)/n) − (X(j+1)/n − Xj/n).

We note that when Xt is a Lévy process, the random variables �Xj,n are sym-
metric, even if the increments of Xt are not. More generally, we may think of
the �Xj,n as symmetrised increments of the process Xt , across time intervals of
length 2/n.

In the following, we will wish to work with increments of Xt across different
time-scales simultaneously. For k = 0,1, . . . , j = 0, . . . , n − 2k − 1, we therefore
also define random variables

�Xj,k,n =
k−1∑
l=0

�Xj+2l,n.

We can similarly consider the �Xj,k,n to be symmetrised increments of Xt , now
across time intervals of length 2k/n.

Next, we will replace the indicator function 1|x|≥1 with a smooth function, sim-
ilarly to Jing et al. (2012). We will use a smooth function 1 − K(x), where the
kernel K : R → [0,1] is an even Schwartz function, equal to one in a neighbour-
hood of the origin. For example, in our experimental results, we will choose

K(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, |x| ≤ 1,(

1 + exp
(

1

2 − |x| − 1

|x| − 1

))−1

, 1 ≤ |x| ≤ 2,

0, |x| ≥ 2.

We will also fix a constant m ∈ N, giving the number of time-scales to use for bias
correction.

For τ > 0, we then define the jump counts

Ân(τ ) = 0 ∨ Â′
n(τ ), Â′

n(τ ) =
n−2m−1∑

j=0

âj,n(τ ),

where for j = 0, . . . , n − 2m − 1, we set

âj,n(τ ) =
m∑

k=1

wk

(
1 − K(τ�Xj,k,n)

)
, wk = (−1)k+1

2k

(
m

k

)
.
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For a constant ρ > 1, and sequence τn > 0, we finally estimate β by

β̂n = 0 ∨ logρ

(
Ân(ρτn)

Ân(τn)

)
∧ 2,

using the convention 0/0 = 1.
When m = 1, this estimate is similar to the jump-counting estimate of Aït-

Sahalia and Jacod (2009): we replace the increments X(j+1)/n − Xj/n with sym-
metrised increments �Xj,n; replace the indicator function 1|x|≥1 with a smooth
function 1 − K(x); and clip the estimate β̂n to the interval [0,2]. When m > 1,
we additionally replace Ân(τ ) with a linear combination of jump counts across
different time-scales, clipped to be nonnegative.

We note the clipping of Ân(τ ) and β̂n ensures that the estimate β̂n is always
reasonable, even when the jump counts A′

n(τ ) may be inaccurate. While this step
makes no contribution to the asymptotic behaviour of β̂n, it does reduce its error
in finite time.

In the following sections, we will show that our changes reduce the bias in the
estimate β̂n, providing both theoretical and experimental improvements to accu-
racy. We will also use these results to motivate the selection of parameters in our
estimate: the number of time-scales m, inverse jump threshold τn, and threshold
ratio ρ.

We will further give limiting distributions for β̂n, allowing us to build confi-
dence intervals for β . Define the constants

Cβ,ρ = Kβ,ρ/ρβ log(ρ)2K2
β,

Kβ =
∫
R

(
1 − K(x)

)|x|−(1+β) dx,

Kβ,ρ =
∫
R

(
K(x) − K(ρx)

)2|x|−(1+β) dx,

and for β̂n ∈ (0,2], the random variables

Ûn(β) = τ
β̂n/2
n (β̂n − β)

σ̂ρ,n

, σ̂ 2
ρ,n = Cβ̂n,ρKβ̂n

τ
β̂n
n

Ân(τn)
.

When β̂n = 0, likewise define

Ûn(β) = −∞.

We note that the random variables Ûn(β) are always well defined, as β̂n must lie
within [0,2].

We will be able to show that, under suitable conditions, the standardised errors

Ûn(β)
d→ N(0,1).
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We will therefore be able to define γ -level confidence intervals for β ,

În(γ ) = {
β ∈ (0,2) : ∣∣Ûn(β)

∣∣ ≤ 
−1(1
2(1 + γ )

)}
,

where 
 denotes the standard Gaussian distribution function.
We note that the integrals Kβ and Kβ,ρ can usually be computed numerically.

In the case where β̂n is very small but nonzero, the integration of Kβ may be slow
to converge, and it may be preferable to instead take β̂n = 0. In our experimental
tests, we did so for β̂n < 10−3.

3. Theoretical results. To describe our theoretical results, we must first state
our assumptions. The assumptions will be very similar to those made by Jacod and
Todorov (2014), and essentially require that the jumps of the log-price process Xt

are dominated by a stochastic integral of a stable-like process. Similar assumptions
have also been made by Aït-Sahalia and Jacod (2009) and Jing, Kong and Liu
(2011), and are satisfied by many common models of price data; we refer to Jacod
and Protter (2012) for definitions and notation.

ASSUMPTION 1. We first assume we have a probability space (�,F,P), with
filtration Ft , and a jump activity index β ∈ (0,2). We then assume the log-price
process

Xt =
∫ t

0
bs ds +

∫ t

0
cs dBs +

∫ t

0
γ +
s dL+

s +
∫ t

0
γ −
s dL−

s +
∫ t

0

∫
R

δs(x)μ(dx, ds),

where:

(i) Bt is an adapted Brownian motion;
(ii) the adapted Poisson random measure μ(dx, ds) has intensity dx ds, and is

independent of Bt ;
(iii) the Lévy processes

L±
t =

∫ t

0

∫
R

δ±(x)
(
μ(dx, ds) − 1δ±(x)<1 dx ds

)
,

for disjointly-supported functions δ±(x) ≥ 0,
∫
R

1 ∧ δ±(x)2 dx < ∞;
(iv) the predictable processes bs and γ ±

s are locally bounded; and
(v) the predictable function δs(x) has

∫
R

1 ∧ |δs(x)|υ1 dx locally bounded, for
a parameter υ1 ∈ (0, β/2).

We additionally assume the volatility process

ct = c0 +
∫ t

0
bc
s ds +

∫ t

0
Hs dBs +

∫ t

0
H ′

s dB ′
s

+
∫ t

0

∫
R

δc
s (x)

(
μ(dx, ds) − 1|δc

s (x)|<1 dx ds
)
,

where:
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(i) the adapted Brownian motion B ′
t is independent of Bt and μ(dx, ds);

(ii) the predictable processes bc
s , Hs and H ′

s are locally bounded; and
(iii) the predictable function δc

s (x) has
∫
R

1 ∧ δc
s (x)2 dx locally bounded.

We next assume the processes L±
t are close to one-sided β-stable processes. Let

F±(U) =
∫
δ±(x)∈U

dx

denote the Lévy measures of the processes L±
t , and for x > 0, let

F
±
(x) = F±(

(x,∞)
)

denote their upper Lévy distribution functions. We then require that for x ∈ (0,1),∣∣F±
(x) − β−1x−β

∣∣ = O
(
x−υ2

)
,

for a parameter υ2 < β − 1.
Finally, we assume that the characteristics b, H and γ ± are smooth in quadratic

mean: we assume there are stopping times Tn → ∞, such that for V = b, H or
γ ±, and any 0 ≤ t ≤ t + h ≤ 1,

E
[
(V(t+h)∧Tn − Vt∧Tn)

2|Ft

] = O(h),

uniformly in t .

In other words, we assume that the log-price process Xt and volatility process ct

are Itô semimartingales; that the jumps of Xt are dominated by stochastic integrals
against Lévy processes L±

t , whose Lévy distribution functions approach those of
a β-stable process; and that the drift process bt , leverage process Ht , and jump
integrands γ ±

t exhibit smoothness behaviour typical of Itô semimartingales.
We note that the jump processes in our assumptions are all described using a

Grigelionis representation, as integrals against a common Poisson random mea-
sure μ; however, this condition is not restrictive, as any collection of jump pro-
cesses can be expressed in this form [Jacod and Protter (2012), Theorem 2.1.2]. We
likewise note that while our assumptions choose a specific normalisation for the
jump processes L±

t , this is not restrictive, as the processes can always be rescaled
by the terms γ ±

t .
While the driving Lévy processes L±

t must have stable-like behaviour, our
model allows for deviations from stability both in the Lévy distribution functions
F

±
, which must be close to stable only for small jumps; and in the idiosyncratic

jumps described by δt (x), which can account for any additional jump activity. The
presence of two separate one-sided Lévy processes L±

t also allows us to describe
processes with asymmetric jump activity.

We further allow the volatility ct to contain jumps and leverage, and the other
characteristic processes bt , Ht and γ ±

t to display a wide range of semimartingale
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behaviour. Finally, we note that when the processes γ ±
t are not both almost-surely

zero, the parameter β in our assumptions agrees with the jump activity index as
defined in the Introduction.

Under these assumptions, we will be able to provide limiting distributions for
the estimates β̂n, and standardised errors Ûn(β); we begin by defining the appro-
priate notion of convergence. Let Zn ∈ R

d be random variables on a probability
space (�,F,P), and Z ∈ R

d a random variable defined on a suitable extension

(�̃, F̃, P̃). We will say the Zn converge stably in distribution to Z, Zn
sd→ Z, if

E
[
Yf (Zn)

] → Ẽ
[
Yf (Z)

]
,

for all random variables Y ∈R on �, and bounded continuous functions f : Rd →
R [Jacod and Protter (2012), Section 2.2.1].

We note that stable convergence in distribution is stronger than the usual con-
vergence in distribution, and requires convergence to hold even after conditioning
on events in F . Under suitable conditions, this stronger notion of convergence will
allow us to show not only that the estimates β̂n converge to unbiased Gaussian
mixtures, but also that the standardised errors Ûn(β) converge to standard Gaus-
sians.

To be precise, we first define the jump activity processes

�t =
∫ t

0
γ s ds, γ t = 1

2

(∣∣γ +
t

∣∣β + ∣∣γ −
t

∣∣β);
we note that the process γ t measures the instantaneous stable-like jump activity at
time t , while �1 counts the total stable-like jump activity over the interval [0,1].
We then have the following results.

THEOREM 1. Under Assumption 1, let m ∈ N, α = m/2(m + 1), τn = Cnα

for some C > 0, and ρ > 0. Then on the event �1 > 0,

τβ/2
n (β̂n − β)

sd→ σβ,ρZ, σ̂ 2
ρ,n

p→ σ 2
β,ρ, Ûn(β)

sd→ Z,

where the variance

σ 2
β,ρ = Cβ,ρ/�1,

and Z is a random variable defined, on a suitable extension of the probability
space (�,F,P), to be standard Gaussian given F .

COROLLARY 1. In the setting of Theorem 1, let γ ∈ (0,1). If �1 is not almost
surely zero, then

P
(
β ∈ În(γ )|�1 > 0

) → γ,

and on the event �1 > 0, În(γ ) has diameter Op(τ
−β/2
n ).
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We conclude that on the event that Xt includes any stable-like jump activity, the
estimate β̂n converges at a rate

n−βm/4(m+1);
of course, we cannot expect convergence when no stable-like jumps are present.
Furthermore, on this event the În(γ ) are indeed γ -level confidence intervals for β ,
contracting at the correct rate.

A single-scale procedure, with m = 1, can thus converge at a rate n−β/8, re-
covering the results of Jing et al. (2012). Moreover, by choosing m large enough,
a multi-scale procedure can achieve a rate n−β/4+ε , for any ε > 0. Indeed, this rate
is near-optimal: a corresponding lower bound rate of n−β/4 log(n)−(1−β/4) is given
by Aït-Sahalia and Jacod (2012).

Asymptotically, the rate of convergence will always be improved by choosing
m larger, and we should therefore choose m as large as possible. In finite time,
however, a larger choice of m may take longer to reach the asymptotic regime, and
so be less accurate in practice.

The optimal finite-time choice of m may be difficult to compute, and depends on
a number of unknown quantities. However, in our Monte-Carlo experiments, we
found the choice m = 3 performed well, and should already provide improvements
over a single-scale estimate. If more accuracy is desired, users may wish to perform
a simulation study to select m, or compare estimates for a number of different
choices of m.

Another practical consideration comes from microstructure noise. When ob-
serving price data at high frequencies, it is now widely accepted that observa-
tions of efficient prices are corrupted by noise. Similarly to Aït-Sahalia and Jacod
(2009), for reasonable choices of τn the estimates β̂n are sensitive only to large
jumps in prices, and so will not be much affected by noise. However, modifica-
tions to account for noise asymptotically are also possible, as in Jing, Kong and
Liu (2011) or Bull (2014), and may be left for future work.

4. Monte-Carlo experiments. We now perform Monte-Carlo tests of our
multi-scale estimates β̂n, comparing them to the jump-counting estimates β̂AJ

n of
Aït-Sahalia and Jacod (2009). We note that as β̂AJ

n can sometimes be very large,
its RMSE can be distorted by the small chance of a large error. To provide a fair
comparison, we will therefore consider the clipped estimates

β̃n = 0 ∨ β̂AJ
n ∧ 2,

defined similarly to β̂n; we note that this clipping can only reduce the error in β̂AJ
n .

We will also compare our confidence intervals În(γ ) to similar ones defined in
terms of β̃n. From Theorem 3 of Aït-Sahalia and Jacod (2009), and arguing as in
our Theorem 1, we have that the

Ĩn(γ ) = {
β ∈ (0,2) : ∣∣Ũn(β)

∣∣ ≤ 
−1(1
2(1 + γ )

)}
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are γ -level confidence intervals for β , where

Ũn(β) = log(ρ)
(
Ãn(τn)

−1 − Ãn(ρτn)
−1)−1/2

(β̃n − β).

We may thus compare the În(γ ) to the Ĩn(γ ).
In each run of our simulation, we will generate n = 23,400 observations, corre-

sponding to observations taken every second of a typical 6.5-hour trading day. Our
observations will be drawn from a log-price process

Xt = Bt + γtRt , t ∈ [0,1],
where Bt is a standard Brownian motion; the deterministic scaling process

γt = (2t − 1) ∨ 0;
and the jump process

Rt = θ1S
β
t + θ2S

β−0.2
t ,

for constants θ1, θ2 > 0, and independent α-stable processes Sα
t .

The process Xt thus models a price process with both diffusion and jump com-
ponents. Its jumps are driven by a β-stable process, with time-varying intensity γt ,
but also contain a nuisance component, with jump activity β − 0.2.

The relative strengths of these jumps are given by the constants θ1 and θ2, which
we will set in terms of a parameter p ∈ (0,1). To set θ1, we will require that an in-
crement θ1(S

β
j/n −S

β
(j−1)/n) contains a jump larger than 0.2 with probability p. To

set θ2, we will likewise require this condition holds for θ2S
β−0.2
t , with probability

0.05p.
To model the microstructure noise present at one-second time scales, we will

generate observations

Zj = Xj/n + 0.01εj , j = 0, . . . , n − 1,

where the independent noises εj ∼ N(0,1). As noted in Aït-Sahalia and Jacod
(2009) and in Section 3, the estimates β̃n and β̂n can be expected to be robust to
the presence of such noise, and we will compute them as though the observations
Zj were noiseless.

The estimates β̃n and β̂n then depend on a number of parameters; we begin by
considering the inverse thresholds τn = Cnα . As noted in Aït-Sahalia and Jacod
(2009), τn should be chosen to ensure our jump counts Ãn or Ân will be zero when
no jump is present; the constant C should thus be chosen relative to the size of the
diffusion component of Xt , as measured for example by its integrated volatility.

In our simulations, we know that the integrated volatility of Xt is equal to one,
and so we may choose our parameters accordingly. In general, the volatility will
not be equal to one; however, we can achieve a similar effect by first renormalising
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TABLE 1
Simulated means and standard deviations of the estimates β̃n and β̂n, as well as coverages of the

95% confidence intervals Ĩn(0.95) and În(0.95)

˜β ̂β

β p 0.5% 1% 2% 0.5% 1% 2%

0.4 mean 0.39 0.39 0.39 0.39 0.39 0.39
std. dev. 0.18 0.13 0.09 0.13 0.09 0.07
95% cov. 0.90 0.91 0.93 0.91 0.92 0.91

0.8 mean 0.85 0.82 0.80 0.81 0.80 0.79
std. dev. 0.49 0.34 0.23 0.26 0.18 0.13
95% cov. 0.88 0.92 0.93 0.92 0.93 0.93

1.2 mean 1.13 1.21 1.23 1.22 1.22 1.20
std. dev. 0.75 0.59 0.46 0.40 0.29 0.21
95% cov. 0.80 0.90 0.93 0.93 0.94 0.92

1.6 mean 0.91 1.26 1.44 1.54 1.58 1.57
std. dev. 0.92 0.80 0.63 0.43 0.36 0.31
95% cov. 0.53 0.77 0.89 0.93 0.93 0.92

the observations to have estimated integrated volatility equal to one. Such an esti-
mate could be provided by the method of Podolskij and Vetter (2009), for example,
although we will not pursue this further here.

In any case, we may now choose our parameters without worrying about issues
of scale. With β̃ , Aït-Sahalia and Jacod (2009) recommend a threshold rate α =
1/5; with β̂ , we will instead use the rate α given by Theorem 1. It remains to
choose the constants C, ρ, and for β̂ also m; in our tests, we found the values
C = 0.05, ρ = 2, and m = 3 worked well.

Table 1 then gives the mean and standard deviation of 10,000 simulated esti-
mates β̃n or β̂n, for a number of choices of β , p and m. The table also gives the
simulated coverage of the 95% confidence intervals Ĩn(0.95) or În(0.95). We see
that the multi-scale estimate β̂n has reduced bias and variance compared with the
single-scale estimate β̃n, while the confidence intervals În(0.95) retain good cov-
erage, improving upon Ĩn(0.95) when β is large.

Figure 1 plots the RMSE of the estimates β̃n and β̂n; in the case p = 1%, Fig-
ure 2 further gives the full simulated distribution of β̂n. Again, we can see the
multi-scale estimate β̂n is more accurate than the single-scale estimate β̃n. While
the accuracy of β̂n suffers when β is large, it remains good enough to distinguish
between different values of β .

Finally, Figure 3 plots the simulated distribution of the standardised errors Ûn,
together with the density of a standard Gaussian distribution, shown as a solid line.
We can see that even in the finite-sample case, for β = 0.4,0.8,1.2, the errors Ûn

show good agreement with their asymptotic distributions.
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FIG. 1. Simulated RMSEs of the estimates β̃n and β̂n.

In the case β = 1.6, we see a strong deviation from Gaussian on the right tail of
Ûn, due to the clipping of β̂n at 2. This clipping, however, serves only to reduce
the error in the estimate β̂n, and so does not harm the coverage of the confidence
intervals În(γ ). Furthermore, the effect can be expected to disappear as n tends to
infinity.

FIG. 2. Simulated distributions of the estimates β̂n, p = 1%.
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FIG. 3. Simulated distributions of the standardised errors Ûn, p = 1%.

5. Proofs. We now give a proof of Theorem 1. In Section 5.1, we will state
the technical results we require; in Section 5.2, prove our main results; and in the
supplementary material [Bull (2015b)], give the remaining technical proofs.

5.1. Technical results. We begin with a technical lemma bounding various
stochastic integrals, similarly to Jacod and Protter (2012).

LEMMA 1. Let Bs be a Brownian motion, μ(dx, ds) a Poisson jump measure
with intensity dx ds, as a predictable process, fs(x) a predictable function, t ∈
[0,1], and κp > 0 denote constants depending only on p ≥ 1.

(i) If
∫ t

0 |as |ds < ∞,∣∣∣∣∫ t

0
as ds

∣∣∣∣p ≤ tp−1
∫ t

0
|as |p ds.

(ii) If as is locally bounded,

E

[∣∣∣∣∫ t

0
as dBs

∣∣∣∣p]
≤ κpE

[(∫ t

0
a2
s ds

)p/2]
.

(iii) If
∫
R

fs(x)2 dx is locally bounded, and p ∈ [1,2], then

E

[∣∣∣∣∫ t

0

∫
R

fs(x)
(
μ(dx, ds) − dx ds

)∣∣∣∣p]
≤ κpE

[∫ t

0

∫
R

∣∣fs(x)
∣∣p dx ds

]
.
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(iv) If
∫
R

1 ∧ |fs(x)|dx is locally bounded, then

E

[
1 ∧

∣∣∣∣∫ t

0

∫
R

fs(x)μ(dx, ds)

∣∣∣∣p]
≤ κpE

[∫ t

0

∫
R

1 ∧ ∣∣fs(x)
∣∣dx ds

]
.

(v) If as and
∫
R

1 ∧ fs(x)2 dx are locally bounded, p ∈ [1,2], and α ≥ 0, then

E

[
1 ∧

∣∣∣∣t−α
∫ t

0
as

∫
R

fs(x)
(
μ(dx, ds) − 1|fs(x)|<1 dx ds

)∣∣∣∣p]
≤ κpE

[∫ t

0

∣∣t−αas

∣∣p ∫
|fs(x)|<tα

∣∣fs(x)
∣∣p dx ds +

∫ t

0

∫
|fs(x)|≥tα

dx ds

+ tp−1
∫ t

0

∣∣∣∣t−αas

∫
tα≤|fs(x)|<1

fs(x) dx

∣∣∣∣p ds

]
.

PROOF. Parts (i) and (ii) are immediate from the Hölder and Burkholder–
Davis–Gundy inequalities, respectively. Part (iii) follows from Lemma 2.1.5 of
Jacod and Protter (2012), and part (iv) likewise follows from their Lemma 2.1.8,
noting that the left-hand side is decreasing in p.

Finally, let W denote the left-hand side of part (v). We make the decomposition

W ≤ κpE

[∣∣∣∣∫ t

0

∫
R

g1,s(x)
(
μ(dx, ds) − dx ds

)∣∣∣∣p
+ 1 ∧

∣∣∣∣∫ t

0

∫
R

g2,s(x)μ(dx, ds)

∣∣∣∣p +
∣∣∣∣∫ t

0

∫
R

g3,s(x) dx ds

∣∣∣∣p]
,

where the terms

gi,s(x) = t−αasfs(x)1Ji

(∣∣fs(x)
∣∣),

for intervals

J1 = [
0, tα

)
, J2 = [

tα,∞)
, J3 = [

tα,1
)
.

We deduce that

W ≤ κpE

[∫ t

0

∫
R

∣∣g1,s(x)
∣∣p dx ds +

∫ t

0

∫
R

1 ∧ ∣∣g2,s(x)
∣∣dx ds

+ tp−1
∫ t

0

∣∣∣∣∫
R

g3,s(x) dx

∣∣∣∣p ds

]
,

using parts (i), (iii) and (iv). The desired result follows. �

Next, we give a technical result on the characteristic exponents of one-sided
stable processes.
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LEMMA 2. Let F[f ](u) = ∫
Rd exp(i〈u,x〉)f (x) dx denote the Fourier trans-

form, �(x) the gamma function, β ∈ (0,2), u ∈ R, and

Cβ =
{−2�(−β) cos(βπ/2), β �= 1,

π, β = 1.

We then have:

(i)
∫ ∞

0 (1 − cos(ux))x−(1+β) dx = 1
2Cβ |u|β ; and

(ii) Cβ

∫
R
F[K](u)|u|β du = 2πKβ.

PROOF. We show each result in turn.

(i) This is a well-known result on stable processes; see, for example, Lem-
ma 14.11 of Sato (1999).

(ii) For β �= 1, using generalised functions, we have

Cβ

∫
R

F[K](u)|u|β du = Cβ

∫
R

K(x)F
[|u|β]

(x) dx

= 2π

∫
R

(
1 − K(x)

)|x|−(1+β) dx,

since K is symmetric, and K(0) = 1. For β = 1, the same holds by analytic con-
tinuation. �

Using these lemmas, we will be able to prove several Lévy approximations to
the behaviour of random variables

∫ t+h
t as dXs . These approximations will hold

under a localisation assumption; by standard techniques, we will be able to assume
the following.

ASSUMPTION 2. Assumption 1 holds, the processes bt , bc
t , ct , Ht , H ′

t , γ ±
t ,∫

R
1 ∧ |δt (x)|υ1 dx and

∫
R

1 ∧ δc
t (x)2 dx are uniformly bounded, and the stopping

time T1 = ∞.

We now state our Lévy approximation results; proofs of these results will be
given in the supplementary material [Bull (2015b)]. Our first result bounds the
error in approximating variables

∫ t+h
t as dXs by Lévy integrals.

LEMMA 3. Under Assumption 2, let 0 ≤ t ≤ t + h ≤ 1, set

ξt+h =
∫ t+h

t
as dXs,

for a deterministic real-valued process as satisfying |as | ≤ 1, and define the Lévy
approximation

ξ t+h =
∫ t+h

t
as

(
bt ds + ct dBs + γ +

t dL+
s + γ −

t dL−
s

)
.
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Then the approximation error

ξt+h − ξ t+h = Y1 + Y2,

where the random variable

Y1 =
∫ t+h

t
as

(
HtBs +

∫ s

t
H ′

r dB ′
r +

∫ s

t

∫
|δc

r (x)|<1
δc
r (x)

(
μ(dx, dr)−dx dr

))
dBs,

and for α ∈ (0, 1
2), u = O(h−α), and some ε > 0, we have

E
[|uY1|2|Ft

] = O
(
h1+ε), E

[
1 ∧ |uY2||Ft

] = O
(
h1+ε−αβ/2)

,

uniformly over as and t .

Next, we state a result on the characteristic functions of random variables∫ t+h
t as dXs . Our argument will follow Lemmas 11 and 12 of Jacod and Todorov

(2014), although we give a tighter bound than in those results.

LEMMA 4. In the setting of Lemma 3, suppose also that |as | = 1, and∫ t+h
t as ds = 0. Then for some ε > 0, we have

E
[
cos(uξt+h)|Ft

] = exp
(
−

∫ t+h

t
θt (asu) ds

)
+ O

(
h1+ε−αβ/2)

,

uniformly over as and t , where

θt (u) = 1
2(ctu)2 + Cβγ t |u|β.

Our final technical result gives a large-jump approximation to functions of inte-
grals

∫ t+h
t as dXs .

LEMMA 5. In the setting of Lemma 3, suppose |as | = 1, let t ′ ∈ [t, t + h],
and set h′ = t + h − t ′. Also let f be a bounded even function, constant in a
neighbourhood of the origin, whose derivative f ′ is a Schwartz function. Then

E
[
f (uξt+h)|Ft ′

] = f (uξt ′) + h′|u|βγ t ′
∫
R

(
f (x) − f (0)

)|x|−(1+β) dx + Y,

for a term Y satisfying E[|Y ||Ft ] = o(h1−αβ), uniformly in as, t and t ′.

5.2. Main proofs. We now prove our main results. In the following, we will
use the shorthand

tj = j/n, tj,k = (j + 2k)/n.

Our next lemma then bounds the means of our jump counts âj,n(τ ).
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LEMMA 6. Under Assumption 2, for m and τn as in the statement of Theo-
rem 1, we have

E
[
âj,n(τn)|Ftj

] = τβ
n Kβn−1γ tj

+ o
(
n−(1−αβ/2)),

uniformly in j = 0, . . . , n − 2m − 1.

PROOF. We can equivalently define the constants wk by

wk =
m∑

l=k∨1

(−1)k+1(2l)−1
(

l

k

)
,(1)

letting the above also define a new constant w0. We then have

2πâj,n(τn) = 2π

m∑
k=0

wk

(
1 − K(τn�Xj,k,n)

)
,

since the summand vanishes for k = 0,

= −2π

m∑
k=0

wkK(τn�Xj,k,n),

since
∑m

k=0 wk = −∑m
l=1(2l)−1(1 − 1)l = 0,

= −
∫
R

F[K](u)

m∑
k=0

wk cos(uτn�Xj,k,n) du,

by Fourier inversion,

= −
∫
|u|≤nε

F[K](u)

m∑
k=0

wk cos(uτn�Xj,k,n) du + O
(
n−1)

,

for any ε > 0, since K is Schwartz.
For small enough ε, setting θj,n(u) = n−1θtj (τnu), we deduce

2πE
[
âj,n(τn)|Ftj

]
= −

∫
|u|≤nε

F[K](u)

m∑
k=0

wk exp
(−2kθj,n(u)

)
du + o

(
n−(1−αβ/2)),

using Lemma 4,

=
∫
|u|≤nε

F[K](u)

m∑
l=1

(2l)−1(
1 − exp

(−2θj,n(u)
))l

du

+ o
(
n−(1−αβ/2)),



76 A. D. BULL

from (1),

=
∫
|u|≤nε

F[K](u)
(
θj,n(u) + O

(
θj,n(u)m+1))

du + o
(
n−(1−αβ/2)),

considering the Taylor series of log(1 − x),

=
∫
R

F[K](u)θj,n(u) du + o
(
n−(1−αβ/2)),

since K is Schwartz, and for |u| ≤ nε , θj,n(u) = O(n−(1−2(α+ε))),

= n−1τβ
n γ tj

Cβ

∫
R

F[K](u)|u|β du + o
(
n−(1−αβ/2)),

since K is constant in a region of the origin, and so F[K] is orthogonal to polyno-
mials vanishing at the origin,

= 2πτβ
n Kβn−1γ tj

+ o
(
n−(1−αβ/2)),

using Lemma 2(ii). �

We next prove a lemma giving the variance of terms like K(τn�Xj,k,n). To
begin, for β ∈ (0,2), ρ > 0, we define the constants

Kβ,ρ = ρ−β/2
∫
R

(
1 − K(x)

)(
1 − K(ρx)

)|x|−(1+β) dx.

We then have the following result.

LEMMA 7. Under Assumption 2, for m and τn as in the statement of The-
orem 1, let j, j ′ = 0, . . . , n − 2m − 1, and k, k′ = 1, . . . ,m. Also let as, a

′
s

be deterministic processes with |as | = |a′
s | = 1, let max(tj , tj ′) ≤ t ≤ t + h ≤

min(tj,k, tj ′,k′), and set

ξt ′ =
∫ t ′

tj

as dXs, ξ ′
t ′ =

∫ t ′

tj ′
a′
s dXs,

V = E
[
K(τnξtj,k )|Ft+h

]
, V ′ = E

[
K

(
ρτnξ

′
tj ′,k′

)|Ft+h

]
.

Then

Cov
[
V,V ′|Ft

] = hτβ
n ρβ/2Kβ,ργ t + Y,

for a term Y satisfying E[|Y ||Fmin(tj ,tj ′ )] = o(n−(1−αβ)), uniformly.

PROOF. In the following, let Y denote any term satisfying

E
[|Y ||Fmin(tj ,tj ′ )

] = o
(
n−(1−αβ)).
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Repeatedly applying Lemma 5, we have

E
[
V V ′|Ft

]
= E

[(
K(τnξt+h) − (tj,k − t − h)τβ

n γ t+hKβ

)
× (

K
(
ρτnξ

′
t+h

) − (tj ′,k′ − t − h)(ρτn)
βγ t+hKβ

)|Ft

] + Y

= E
[
K(τnξt+h)K

(
ρτnξ

′
t+h

)|Ft

]
− (

(tj,k − t − h) + ρβ(tj ′,k′ − t − h)
)
τβ
n γ tKβ + Y

= K(τnξt )K
(
ρτnξ

′
t

)
− hτβ

n γ t

∫
R

(
1 − K(x)K(ρx)

)|x|−(1+β) dx

− (
(tj,k − t − h) + ρβ(tj ′,k′ − t − h)

)
τβ
n γ tKβ + Y.

Again applying Lemma 5, we deduce that

Cov
[
V,V ′|Ft

]
= E

[
V V ′|Ft

] −E[V |Ft ]E[
V ′|Ft

]
= hτβ

n γ t

((
1 + ρβ)

Kβ −
∫
R

(
1 − K(x)K(ρx)

)|x|−(1+β) dx

)
+ Y

= hτβ
n ρβ/2γ tKβ,ρ + Y. �

Next, we prove a lemma bounding the covariation of terms K(τn�Xj,k,n) with
other martingales.

LEMMA 8. Under Assumption 2, for m and τn as in the statement of Theo-
rem 1, let t ∈ [0,1], and k = 1, . . . ,m. Then

�nt�−2m∑
j=0

E
[(

1 − K(τn�Xj,k,n)
)
(Mtj,k − Mtj )|Ftj

] = op

(
nαβ/2)

,

where M is either:

(i) equal to B; or
(ii) a bounded martingale orthogonal to B .

PROOF. We prove each claim in turn.

(i) For p,q > 1, 1/p + 1/q = 1, we have∣∣E[(
1 − K(τn�Xj,k,n)

)
(Btj,k − Btj )|Ftj

]∣∣
≤ E

[∣∣1 − K(τn�Xj,k,n)
∣∣p|Ftj

]1/p
E

[|Btj,k − Btj |q |Ftj

]1/q
,
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using Hölder’s inequality,

= O
(
n−1/2)

E
[
1 − K(τn�Xj,k,n)|Ftj

]1/p
,

using Lemma 1(ii), and since K takes values in [0,1],
= O

(
n−1/2−(1−αβ)/p)

,

using Lemma 5,

= o
(
n−(1−αβ/2)),

for small enough p. Summing this result, we conclude that

�nt�−2m∑
j=0

E
[(

1 − K(τn�Xj,k,n)
)
(Btj,k − Btj )|Ftj

] = o
(
nαβ/2)

.

(ii) Using Lemma 3, for fixed k and n, we can write

�Xj,k,n = ξ
(j)
tj,k

+ Y
(j)
1 + Y

(j)
2 ,

for a Lévy approximation ξ
(j)
t , and error terms Y

(j)
1 , Y

(j)
2 . We can then write

�nt�−2m∑
j=0

E
[(

1 − K(τn�Xj,k,n)
)
(Mtj,k − Mtj )|Ftj

]

=
�nt�−2m∑

j=0

E
[(

K
(
τnξ

(j)
tj,k

) − K(τn�Xj,k,n)
)
(Mtj,k − Mtj )|Ftj

]

+
�nt�−2m∑

j=0

E
[(

1 − K
(
τnξ

(j)
tj,k

))
(Mtj,k − Mtj )|Ftj

]
,

where we will bound separately the two sums on the right-hand side.
For the first sum, we have

�nt�−2m∑
j=0

E
[(

K
(
τnξ

(j)
tj,k

) − K(τn�Xj,k,n)
)
(Mtj,k − Mtj )|Ftj

]

= O(1)

�nt�−2m∑
j=0

E
[(

1 ∧ ∣∣τn

(
Y

(j)
1 + Y

(j)
2

)∣∣)|Mtj,k − Mtj ||Ftj

]
since K(x + y) = K(x) + O(1 ∧ |y|),

= O(1)

�nt�−2m∑
j=0

(
E

[∣∣τnY
(j)
1

∣∣2|Ftj

]1/2
E

[
(Mtj,k − Mtj )

2|Ftj

]1/2

+E
[
1 ∧ ∣∣τnY

(j)
2

∣∣|Ftj

])
,
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by Cauchy–Schwarz, and since M is bounded,

= op

(
n−1/2) �nt�−2m∑

j=0

E
[
(Mtj,k − Mtj )

2]1/2 + o
(
nαβ/2)

,

using Lemma 3,

= op(1)

(�nt�−2m∑
j=0

E
[
(Mtj,k − Mtj )

2])1/2

+ o
(
nαβ/2)

,

using Cauchy–Schwarz,

= op(1)E
[
(M1 − M0)

2]1/2 + o
(
nαβ/2)

,

as M is a martingale,

= op

(
nαβ/2)

,

as M is bounded.
It remains to bound the second sum. Given Ftj , ξ

(j)
t is a function of the Brown-

ian motion B and Poisson random measure μ, so we may apply Theorem III.4.34
of Jacod and Shiryaev (2003). We deduce that

K
(
τnξ

(j)
tj,k

) −E
[
K

(
τnξ

(j)
tj,k

)|Ftj

]
=

∫ tj,k

tj

G(j)
s dBs +

∫ tj,k

tj

∫
R

G′
s
(j)

(x)
(
μ(dx, ds) − dx ds

)
,

for a predictable process G
(j)
s , and predictable function G′

s
(j)

(x). Likewise, by
their Lemma III.4.24, we have

Mt − M0 =
∫ t

0
G′′

s (x)
(
μ(dx, ds) − dx ds

) + Mt,

for a predictable function G′′
s (x), and a martingale Mt orthogonal to B and μ.

Now, as K is bounded, so is G′
s
(j); furthermore, by considering the quadratic

variation, we have

E

[∫ tj,k

tj

∫
R

G′
s
(j)

(x)2 dx ds
∣∣∣Ftj

]
≤Var

[
K

(
τnξ

(j)
tj,k

)|Ftj

]
(2)

= O(1)
(
Var

[
K(τn�j,k,n)|Ftj

] +E
[
1 ∧ ∣∣τn

(
Y

(j)
1 + Y

(j)
2

)∣∣2|Ftj

])
= O

(
n−(1−αβ)),
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using Lemmas 3 and 7. We likewise have

E

[∫ 1

0

∫
R

G′′
s (x)2 dx ds

]
≤ E

[
(Mt − M0)

2]
(3)

= O(1),

as M is bounded.
Setting εn = n−αβ/4, we thus obtain

E
[(

1 − K
(
τnξ

(j)
tj,k

))
(Mtj,k − Mtj )|Ftj

]
= E

[∫ tj,k

tj

∫
R

G′
s
(j)

(x)G′′
s (x) dx ds

∣∣∣Ftj

]
,

applying Itô’s lemma,

≤ E

[∫ tj,k

tj

∫
R

G′
s
(j)

(x)2 dx ds
∣∣∣Ftj

]1/2

×E

[∫ tj,k

tj

∫
|G′′

s (x)|≤εn

G′′
s (x)2 dx ds

∣∣∣Ftj

]1/2

+ O(1)E

[∫ tj,k

tj

∫
|G′′

s (x)|>εn

∣∣G′′
s (x)

∣∣dx ds
∣∣∣Ftj

]
,

using Cauchy–Schwarz, and since G′
s
(j) is bounded,

= O
(
n−(1−αβ)/2)

E

[∫ tj,k

tj

∫
|G′′

s (x)|≤εn

G′′
s (x)2 dx ds

∣∣∣Ftj

]1/2

+ O
(
nαβ/4)

E

[∫ tj,k

tj

∫
|G′′

s (x)|>εn

G′′
s (x)2 dx ds

∣∣∣Ftj

]
,

using (2). We thus have

�nt�−2m∑
j=0

E
[(

1 − K
(
τnξ

(j)
tj,k

))
(Mtj,k − Mtj )|Ftj

]

= Op

(
nαβ/2)

E

[∫ 1

0

∫
|G′′

s (x)|≤εn

G′′
s (x)2 dx ds

]1/2

+ Op

(
nαβ/4)

E

[∫ 1

0

∫
|G′′

s (x)|>εn

G′′
s (x)2 dx ds

]
,

using Cauchy–Schwarz again,

= op

(
nαβ/2)

,

using (3). �



NEAR-OPTIMAL ESTIMATION OF JUMP ACTIVITY 81

We now prove a limit theorem for our jump counts Â′
n(τ ).

LEMMA 9. In the setting of Theorem 1, for l = 0,1, set

ηn,l = τ
β/2
n,l

(
τ

−β
n,l Â′

n(τn,l) − Kβ�1
)
, τn,l = ρlτn.

Then the random vector

ηn
sd→ �

1/2
1 Z̃,

where the random variable Z̃ is defined, on a suitable extension of the probability
space (�,F,P), to satisfy

Z̃|F ∼ N

(
0,

(
Kβ,1 Kβ,ρ

Kβ,ρ Kβ,1

))
.

PROOF. We first make a localisation argument, allowing us to work under
Assumption 2. Since we wish to bound both ct and its characteristics, we will
localise explicitly. For k = 1,2, . . . , let φk be a smooth bounded function with
bounded derivatives, equal to the identity on [−k, k].

Without loss of generality, we may assume that the stopping times Tk also lo-
calise the processes bt , b

c
t ,Ht ,H

′
t , γ

±
t ,

∫
R

1 ∧ |δt (x)|υ1 dx and
∫
R

1 ∧ δc
t (x)2 dx.

We can then write

X
(k)
t =

∫ t

0
bs∧Tk

ds +
∫ t

0
φk

(
c(k)
s

)
dBs +

∫ t

0
γ +
s∧Tk

dL+
s +

∫ t

0
γ −
s∧Tk

dL−
s

+
∫ t

0

∫
R

δs∧Tk
(x)μ(dx, ds),

where

c
(k)
t = c0 +

∫ t

0
bc
s∧Tk

ds +
∫ t

0
Hs∧Tk

dBs +
∫ t

0
H ′

s∧Tk
dB ′

s

+
∫ t

0

∫
R

δc
s∧Tk

(x)
(
μ(dx, ds) − 1|δc

s∧Tk
(x)|<1 dx ds

)
.

We note that X(k) = X eventually almost-surely, so it suffices to prove our result
instead for the processes X(k); an application of Itô’s lemma shows that these pro-
cesses satisfy Assumption 2.

We next define random variables

ζj,n,l = τ
−β/2
n,l E

[ j∧(n−2m−1)∑
j ′=(j−2m+1)∨0

âj ′(τn,l)
∣∣∣Ftj+1

]

− τ
−β/2
n,l E

[ j∧(n−2m)−1∑
j ′=(j−2m+1)∨0

âj ′(τn,l)
∣∣∣Ftj

]

− τ
β/2
n,l Kβn−1γ tj

1j<n−2m,
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so we may write

ηn,l =
n−1∑
j=0

ζj,n,l + ψn,l,

where the term

ψn,l = −τ
β/2
n,l Kβ

∫ 1

0
(γ s − γ �ns�/n1s<1−2m/n) ds.

Since

E[ψn,l] = O
(
nαβ/2)(∫ 1−2m/n

0
E

[|γ s − γ �ns�/n|
]
ds +

∫ 1

1−2m/n
E

[|γ s |
]
ds

)

= O
(
nαβ/2)( ∑

∗∈{+,−}

∫ 1

0
E

[∣∣γ ∗
s − γ ∗�ns�/n

∣∣2](1∧β)/2
ds + n−1

)
,

as the function x �→ |x|β is (1 ∧ β)-Lipschitz, and γ s is bounded,

= O
(
n−(1∧β−αβ)/2)

,

as the γ ±
s are smooth in quadratic mean,

= o(1),

we deduce that

ηn,l =
n−1∑
j=0

ζj,n,l + op(1).

The desired result then follows from Theorem 2.2.15 of Jacod and Protter
(2012), provided that for t ∈ [0,1], l = 0,1:

(i)
∑n−1

j=0 |E[ζj,n,l|Ftj ]|
p→ 0;

(ii)
∑�nt�−1

j=0 Var[ζj,n,l|Ftj ]
p→ Kβ,1�t ;

(iii)
∑�nt�−1

j=0 Cov[ζj,n,0, ζj,n,1|Ftj ]
p→ Kβ,ρ�t ;

(iv)
∑n−1

j=0 E[|ζj,n,l|p|Ftj ]
p→ 0, for some p > 2; and

(v)
∑�nt�−1

j=0 E[ζj,n,l(Mtj+1 − Mtj )|Ftj ]
p→ 0, where M is either:

(a) equal to B; or
(b) a bounded martingale orthogonal to B .

We now prove each claim in turn.

(i) From Lemma 6, we have that for j = 0, . . . , n − 2m − 1,

E[ζj,n,l|Ftj ] = τ
−β/2
n,l E

[
âj,n(τn,l)|Ftj

] − τ
β/2
n,l Kβn−1γ tj

= o
(
n−1)

.
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From the definitions, we also have that for j = n − 2m, . . . , n − 1,

E[ζj,n,l|Ftj ] = 0.

We conclude that
n−1∑
j=0

∣∣E[ζj,n,l|Ftj ]
∣∣ = o(1).

(ii) From Lemma 7, we have that for j = 2m − 1, . . . , n − 2m − 1, and terms
Yj,n,l satisfying E[|Yj,n,l|] = o(n−1),

Var[ζj,n,l|Ftj ] = τ
−β
n,l

m∑
k′,k′′=1

wk′wk′′

×
j∑

j ′=j−2k′+1

j∑
j ′′=j−2k′′+1

Cov
[
E

[
K(τn,l�Xj ′,k′,n)|Ftj+1

]
×E

[
K(τn,l�Xj ′′,k′′,n)|Ftj+1

]|Ftj

]
= n−1

(
2

m∑
k=1

kwk

)2

Kβ,1γ tj
+ Yj,n,l

= n−1Kβ,1γ tj
+ Yj,n,l,

since

2
m∑

k=1

kwk = 1 −
m∑

k=0

(−1)k
(

m

k

)
= 1 − (1 − 1)m(4)

= 1.

For j = 0, . . . ,2m − 2 or j = n − 2m, . . . , n − 1, by a similar argument, we have
the same result for terms Yj,n,l satisfying E[|Yj,n,l|] = O(n−1). We deduce that

�nt�−1∑
j=0

Var[ζj,n,l|Ftj ] = n−1Kβ,1

�nt�−1∑
j=0

γ tj
+

�nt�−1∑
j=0

Yj,n,l

= Kβ,1�t + op(1) + Op

(�nt�−1∑
j=0

E
[|Yj,n,l |]

)

= Kβ,1�t + op(1).

(iii) The result follows similar to part (ii).
(iv) Since ζj,n,l = O(n−αβ/2), the result is trivial for large enough p.
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(v) In either case (a) or (b), we have

�nt�−1∑
j=0

E
[
ζj,n,l(Mtj+1 − Mtj )|Ftj

]

= τ
−β/2
n,l

�nt�−1∑
j=0

j∧(n−2m−1)∑
j ′=(j−2m+1)∨0

E
[
âj ′(τn,l)(Mtj+1 − Mtj )|Ftj

]
,

since M is a martingale,

= τ
−β/2
n,l

�nt�−2m∑
j=0

E
[
âj (τn,l)(Mtj,m − Mtj )|Ftj

] + op(1),

since âj,n(τ ) is bounded,

= τ
−β/2
n,l

�nt�−2m∑
j=0

m∑
k=1

wk

×E
[(

1 − K(τn,l�Xj,k,n)
)
(Mtj,k − Mtj )|Ftj

] + op(1),

from the definition of âj,n(τ ),

= op(1),

using Lemma 8. �

Finally, we can prove a limit theorem for β̂n.

PROOF OF THEOREM 1. We begin by defining the variables

β̂ ′
n = logρ

(
A′

n(ρτn)

A′
n(τn)

)
, Û ′

n(β) = τ
β̂ ′

n/2
n (β̂ ′

n − β)

σ̂ρ,n

.

From Lemma 9, on the event �1 > 0, we have that

A′
n(τn,l)

p→ τn,lKβ�1, β̂ ′
n

p→ β.

Hence, with probability tending to one,

β̂ ′
n = β̂n, Û ′

n(β) = Ûn(β).

It thus suffices to prove limit theorems for the quantities β̂ ′
n and Û ′

n(β).
Next, we note we may equivalently define σ 2

β,ρ by

σ 2
β,ρ = ((

1 + ρ−β)
Kβ,1 − 2ρ−β/2Kβ,ρ

)
/ log(ρ)2K2

β�1.
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Again using Lemma 9, on the event �1 > 0, we also have

β̂ ′
n = logρ

(
Â′

n(ρτn)/Â
′
n(τn)

)
= β + logρ

(
1 + ηn,1/(ρτn)

β/2Kβ�1
) − logρ

(
1 + ηn,0/τ

β/2
n Kβ�1

)
= β + (

ρ−β/2ηn,1 − ηn,0
)
/ log(ρ)τβ/2

n Kβ�1 + op

(
n−αβ/2);

we deduce that

τβ/2
n

(
β̂ ′

n − β
) sd→ σβ,ρZ.

Similarly, we have that σ̂ 2
ρ,n

p→ σ 2
β,ρ . Using equation (2.2.5) of Jacod and Protter

(2012), we thus obtain(
τβ/2
n

(
β̂ ′

n − β
)
, σ̂ 2

ρ,n

) sd→ (
σβ,ρZ,σ 2

β,ρ

)
.

By continuous mapping, we deduce that

Û ′
n(β)

sd→ Z. �

We have thus proved Theorem 1; we note that Corollary 1 then follows directly.

Acknowledgments. We thank the anonymous referees for their valuable sug-
gestions and comments. All research data was randomly generated using software
given in Bull (2015a).

SUPPLEMENTARY MATERIAL

Supplement to “Near-optimal estimation of jump activity in semimartin-
gales” (DOI: 10.1214/15-AOS1349SUPP; .pdf). We provide proofs of our techni-
cal results.
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