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This paper presents the first overview of recent developments

in techniques and methods that enable closed-loop

optimization, also sometimes called ‘self optimization’, as well

as discovery in different areas of molecular sciences. The

closed-loop experimental platforms offer tremendous new

opportunities by significantly increasing productivity, as well as

enabling completely new types of experiments to be

performed. Such experiments involve three main enabling

technology areas: automated experimental systems, analytical

instruments connected to automated chemoinformatics

software and optimization or decision-making algorithms. We

review the most exciting developments concerning robotic

experiments, 3D printed lab-ware, experimental systems with

multiple analytical instruments and advanced optimization

algorithms based on machine learning approaches. A range of

different chemical problems is described, which show the

breadth of potential applications of this emerging experimental

approach.
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Introduction
Recent advances in laboratory equipment automation and

in new analytical methods rapidly transform the way in

which experiments in molecular sciences are performed.

These changes indicate a remarkable transition, which

profoundly affects the research and development process-

es, and scientific methodologies across many areas of

molecular sciences, as well as creating new business

opportunities and new business models. Several pioneer-

ing studies have recently demonstrated a range of possi-

bilities in automatic optimization of process conditions

[1,2,3�,4–6], exploring new chemical structures [7�] and in

the search for new bio-active compounds [8].
www.sciencedirect.com 
Technical underpinnings of this transition could be

traced to the emergence in recent years of several new

capabilities:

� rapid in situ or in line analysis of the outcomes of

chemical transformations,

� chemoinformatics tools for treating large amounts of

analytical data from data-rich experiments,

� miniaturization of experiments to perform reactions in

microreactors and in microdroplets,

� automation of experiments and ubiquity of computing,

which enable the development of closed loop systems

with advanced design-of-experiments algorithms,

� and, finally, the emergence of additive manufacturing

as a method of producing reaction ware.

Thus, the transition to the new experimental paradigm is

a nexus of several scientific and technical developments

that came to maturity at a more or less the same time.

Here we give a concise overview of the techniques and

methods that underpin the new experimental platforms,

and focus on the emerging trends and gaps in our techni-

cal capabilities and knowledge. The focus of this paper is

on new experimental and software platforms that open

completely new opportunities in optimization and dis-

covery. The highly active and exciting area of automation

and control of large-scale chemical processes is out of

scope of this paper.

Hardware for self-optimization of closed-loop
systems
Labware

The new experimental platforms for optimization and

discovery require very different lab-ware from the con-

ventional round bottom flasks or even simple flow micro-

reactors. Such experimental systems combine automation

of reaction ware and of analytical instruments to create a

closed-loop control system, schematically shown in

Figure 1. The control algorithm in this case is implement-

ing a specific strategy of experimental design (DoE).

An example of a highly automated and instrument-rich

reaction ware is the Automatic Continuous Online Mon-

itoring of Polymerization Reactions (ACOMP) system,

which included a recirculation loop with automated

sampling and sample preparation (dilution) to allow

measurements of refractive index, UV–vis, viscosity,

multi-angle light scattering and gel-permeation chroma-

tography (GPC), all connected in series [9��]. This reac-

tor system was made for close to real-time monitoring of
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A schematic diagramme of elements of a closed-loop experimental system.
polymerization reactions without human interaction and

was able to operate in batch, semi-batch and continuous

experiments [10–12].

The important feature of such a system is a combination

of analytical techniques that provide complementary

information for a complex chemical system and largely

include fast analytical methods based on optical and

spectroscopic measurements, but also include more slow

methods, such as GPC. ACOMP represents an example of

an automated reaction system with several in-line analyt-

ical instruments, but it lacks two other necessary compo-

nents for a closed-loop optimization: chemoinformatics

and design of experiments.

The ACOMP system was built using a conventional

approach to laboratory automation, using signal condi-

tioning on data acquisition National Instruments platform

and LabVIEW software interface. A similar approach has

been followed in most systems reported to date, in which

self-optimization has been implemented. These systems

cover different areas of chemistry: polymerization reac-

tion [13�,14��], heterogeneous catalytic processes [1,2,5],

droplet formation [15,16] assembly of nanoparticles [17]

and even multi-step syntheses [4,18–21]. As we shall

show below, this approach to automation is readily ex-

tendable to include chemoinformatics and design of

experiments, using data exchange standards, such as
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OPC. This brings the developed automated optimization

and discovery systems very close to industrial production

systems with respect to control hardware architectures.

A significant departure from this approach is the use of

dedicated robotic experimental systems, which could

either involve parallel batch or flow experiments. Such

systems are developed for high-throughput experiments

and enable rapid discovery of new reactions [22,23,24�], or

optimization of process conditions of known reactions

[25,26]. A flow array system has been used to discover

a new inorganic cluster [7�]. A recent example from

Merck & Co. Inc. shows that high throughput robotic

experiments could be performed with very small quanti-

ties of reagents, making this technology highly appealing

as a platform for chemical discovery [27].

Another significant recent development is the ability to

reproduce labware through additive manufacturing, such

as 3D printing [28��]. This enables not only rapid devel-

opment of ideas for new reactor types, but also sharing of

ideas across many laboratories through universal access to

identical labware. The uptake of this technology strongly

depends on the continuing decrease in the cost of 3D

printing equipment, the ability to print chemically resis-

tant and thermally stable devices, and on the develop-

ment of user resources and user communities with an

open innovation philosophy.
www.sciencedirect.com
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On-line, in situ and in-line analytical methods

Spectroscopic methods are providing fast and non-de-

structive chemical and process information about reacting

systems, which is critical for the implementation of self-

optimization experiments. The use of in-line optical

spectroscopy methods for real time sensing and control

has been studied intensively over the last decade

[2,29��,30�,31��,32]. Major drawbacks of most spectro-

scopic analytical methods include relatively low sensitiv-

ity (excluding fluorescence spectroscopy) and the need

for calibration models for multi-component reaction sys-

tems.

The problem of low sensitivity is particularly acute for

tasks requiring quantification of minor components, such

as optimization of medicinal syntheses. It is less of an

issue when large variations in the measured variables are

monitored, such as moisture (e.g. to enable real-time

optimization of drying), pH, conductivity, etc. The latter

methods carry less ‘chemical’ information compared to

spectroscopic methods that provide evidence of molecu-

lar structure and concentration. The significant advantage

of in-line or in situ spectroscopic methods over off-line

methods is revealed in the case of unstable samples, when

degradation of the substance of interest makes off-line

analysis highly unreliable [33]. This highlights the im-

portance of sampling time in the range of applications of

interest for the new reaction platforms, and allows to

further differentiate from the conventional applications

of sensors in real-time control.

Here the aim is to either determine if a reaction outcome

satisfies the criteria set out for a new process (in the

process optimization/discovery scenario) or for a new

product function (in the product discovery scenario). In

this case, one can imagine that experimental system may

be kept in steady state or idle till analysis results are

available, prior to a new set of input conditions is estab-

lished. This is rather different from real-time process

control, when sampling time must be commensurate with

the system’s response time to allow predictive control.

More recently the use of in-line NMR spectroscopy in

flow chemistry has been demonstrated [34��,35�,36]. This

represents a significant step forward, since NMR is a

direct technique and significantly simpler calibration

methods are required. At present, low sensitivity of

bench-top NMR instruments is a significant limitation.

Besides optical and NMR spectroscopy, other analytical

techniques were implemented as online analytical

methods in new experimental set-ups, such as online

HPLC [3�], GC [2], or MS [37�,38]. Key challenges for

these techniques are the speed of sampling, as well as

robustness and reliability during the online monitoring.

However, significant reductions in sampling time could

be attained with multiplexing samples even for the
www.sciencedirect.com 
traditionally slow methods, such as liquid chromatogra-

phy. For LC–MS the sampling time could be reduced to

5–22 s per sample, using multiple injections in a single

run technique [27].

A summary of different analytical techniques currently

applied for in-line and in situ analysis in closed-loop

optimization/discovery applications with the correspond-

ing typical issues is shown in Table 1. Here, the stated

characteristics of the techniques do not span all their

capabilities as off-line methods!

Most studies on closed-loop optimization published to

date use rather primitive search or optimization algo-

rithms, that require significant numbers of experiments

and are only suitable for cheap experiments and simple

problems with very few input variables, that is, low

dimensionality of experimental space. The recently

emerged techniques of machine learning offer a tremen-

dous opportunity to develop highly efficient self-optimi-

zation experimental systems [39�].

Software for self-optimization of closed-loop system

Automated design of experiment, or a decision-making

algorithm, is the third necessary component of a closed-

loop optimization system. Conventional DoE algorithms

familiar to most experimental scientists are based on the

ideas of factorial design of experiments and linear opti-

mization. For a number of input variables a range of

values to be tested is defined, a matrix of experiments

is generated and the complete matrix of results is ana-

lyzed after experiments are performed either in parallel or

one-by-one. This leads to a problem of explosion in the

number of required experiments when the number of

input parameters that must be tested is large.

Self-optimization instrumentation and experimental phi-

losophy differs from such classical DoE in the sense that

there is an opportunity to learn from each experiment and

update a DoE model in a sequential fashion. In this case a

DoE algorithm may take the form of an optimization

algorithm. This strategy has been implemented in several

studies. Thus, simple linear algorithms have been used

for optimization of flow and temperature in catalytic

reactions [3�,4,5]. In the case of the more complex pro-

blems with a large number of independent input variables

such linear algorithms, for example a simplex algorithm

[40,41], would lead to an unreasonably large number of

experiments.

A more advanced approach to sequential design of

experiments is to use machine learning optimization

algorithms that allow taking advantage of the results

of the previous experiments. The class of algorithms that

are suitable for this task are either global or target

optimization algorithms. One of the most prominent

algorithms for such sequential optimization is the
Current Opinion in Chemical Engineering 2015, 9:1–7
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Table 1

A summary of sensors and analytical techniques used in closed-loop optimization

Technique Type of information Sensitivity Speed of

acquisition

Limitations

Mid-IR Chemical identity,

concentration, gas,

liquid or solid samples

�10�1 mol% �1 s Short fibres.

Intolerant to water

Near-IR Chemical identity,

concentration

�10�1 mol% �1 s Less informative than Mid-IR, tolerant to

water

Raman Chemical identity,

crystal structure,

concentration. Solid

and liquid samples.

�10�1 mol%

Potentially, to individual

molecules in the case

of SER(R)S

�1–100 s Fluorescence masking Raman signal.

UV–vis Chemical identity,

concentration

10�4 mol% <1 s Limited number of species

NMR Molecular structure,

identification of

unknown compounds,

concentration

�10�3 mol% �10 s At present flow method is limited in

sensitivity and resolution due to low field.

GC Concentrations >10�6 mol% 10–1500 s Typically – slow. Cannot identify unknown

compounds. Difficult to automate.

HPLC Concentrations >10�6 mol% 200–1500 s Long method development times. Must be

combined with MS for proof of molecular

identity.

MS MS/MS Concentration

Chemical identity

>10�8 mol% �5–20 s Requires chemoinformatics expertise. MS/

MS is more informative, but few process

instruments on the market. Difficult method

development on more advanced methods.

Process sensors: Pressure

Temperature

pH Sensor fouling

Conductivity Sensor fouling

Viscosity Requires specific in-line cell

Dynamic light scattering Difficult for in-line, requires dilution

Ultrasound Presently used only for level.

Underdeveloped.
efficient global optimization  (EGO) algorithm [42].

Since its introduction, the algorithm has been adapted

for different types of optimization problems, including

target optimization. One idea is to make use of the

concepts of desirability [43] and virtual observations

[44] to construct an algorithm capable of identifying

and, with each iteration, improving on a cluster of

solutions that best associate with target values [45].

Even though the algorithm undoubtedly explores

globally throughout the search, it is not designed to

actively search for solutions that would allow one to

gain the most information about the underlying pro-

cess (i.e. solutions optimal in terms of experimental

design).

Machine learning algorithms require construction of a

statistical surrogate model, which is then used to predict

the outcomes of the future experiments, the decision

making process. Gaussian Process is a popular surrogate

model type as it provides a principled way of assessing

uncertainty of the model and has successfully been used

in many optimization problems, including chemistry-

related problems [46–48]. The advantage of using

Gaussian Processes is in the ability to deal efficiently
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with both demands on the sampling criterion: explora-

tion and exploitation. A similar approach is to use a

surrogate based online evolutionary algorithm

[39�,42,49�,50�,51–54]. The attractive features of this

algorithm are that (i) it has an evolutionary algorithm

at the core, capable of solving multi-dimensional multi-

modal problems, and (ii) attempts to strike a balance

between the need to reduce the amount of expensive

evaluations and the need to improve on the quality of

the surrogate model. Although unfamiliar to most prac-

ticing chemists, such advanced optimization methods

have already been applied in several chemical processes.

Thus, Gaussian Processes has been used in prediction of

quality of polypropylene [55�], in simulation of catalytic

batch etherification reaction [56], in real-time prediction

of properties for industrial rubber mixing processes [57]

and in screening of new additives for a Friedel–Crafts

catalyst [58��].

Recently a new combination of Gaussian Processes, mu-

tual information and a genetic algorithm for multi-target

optimization has been published — a multi-objective ac-

tive learner (MOAL) algorithm [39�]. This algorithm

outperformed another published algorithm, the surrogate
www.sciencedirect.com
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based on-line evolutionary algorithm (SOEA) [59,60�,
61,62], compared on the basis of in silico tests with

different mathematical functions. Due to its objective

of multi-target optimization, the MOAL algorithm can be

used as a decision making software in discovery of pro-

ducts with specified properties or new chemical reaction

routes with a specified target.

MOAL algorithm was recently applied as a decision

making element of a closed-loop system in a process of

experimental discovery of recipes for semi-batch emul-

sion co-polymerization [63]. For this the algorithm was

extended to incorporate a Gaussian Process (GP) binary

classification model [64]. The task of the classification

model is to learn the regions of feasible experiments,

assuming that the experiments are done for a problem

with unknown bounds of experimental input variables.

The classification was performed in reduced space via

application of a dimensionality reduction technique. Nor-

mally this can be done by principal component analysis

(PCA) [65] or multidimensional sealing (MDS) [66] tech-

niques. These techniques are limited by their global

linearity. To use classification model in a highly dimen-

sional nonlinear case, manifold learning techniques, such

as locally linear embedding (LLE) [67] and Isomap [68�]
can be used. In the MOAL algorithm the SIsomap [69]

was incorporated as a classification model to speed up the

process of identification of the feasible experimental

range. This system was able to find a feasible recipe

for a two-monomer semi-batch co-polymerization within

20 experiments. The result is important in the context of

the large number of input variables — in this case 14 input

variables were treated as independent and used in the

optimization.

Outlook
Closed-loop experimental systems have recently

emerged as a powerful tool for optimization of process

conditions and as a potential discovery platform. This

platform thus far was only developed for sequential

experiments, where advantage is taken of the knowledge

obtained in previous experiments. Here, the more sophis-

ticated statistical algorithms are capable to design experi-

ments and minimize the number of experiments required

for optimization or discovery. The area of automated

experimental discovery is still in its nascent state. How-

ever, the range of the already demonstrated applications

shows the potential significance of this approach: optimi-

zation of heterogeneous and homogeneous catalytic reac-

tions, synthesis of new materials, synthesis of new bio-

actives, discovery of new process recipes for semi-batch

reactions.

Current state of technology is characterized by several

limitations, mainly in its analytical and decision making

components. At present a narrow range of analytical

techniques can be used in automated experiments.
www.sciencedirect.com 
Development of fast and cheap in-line LC–MS and

NMR techniques, as well as methods of observing

product properties (particulates properties, for example)

in real time and under reaction conditions, would sig-

nificantly broaden the range of applications. The robotic

experimental platforms available on the market are

already better than what can at present be realistically

used in closed-loop systems due to limitations of both

the analytical instrumentation and in the design of

experiments algorithms. A serious current limitation of

the decision-making algorithms is the lack of use of a
priori knowledge of the chemical systems in design of

experiments. These current limitations are all being

addressed simultaneously and, undoubtedly, the tech-

nology of automated optimization  and discovery in mo-

lecular systems will see rapid development over the next

few years.
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Blümich B, Casanova F: On-line monitoring of chemical
reactions by using bench-top nuclear magnetic resonance
spectroscopy. ChemPhysChem 2014, 15:3060-3066.

This is the first paper in which on-line monitoring of chemical reactions by
bench-top NMR was presented. The following paper (34) also shows how
to include flow NMR measurements into a closed-loop experimental
system.

35.
�

Sans V, Porwol L, Dragone V, Cronin L: A self optimizing
synthetic organic reactor system using real-time in-line NMR
spectroscopy. Chem Sci 2015, 6:1258-1264.
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