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Abstract. We explore transversals of finite index subgroups of finitely gen-
erated groups. We show that when H is a subgroup of a rank n group G
and H has index at least n in G then we can construct a left transversal
for H which contains a generating set of size n for G; this construction is
algorithmic when G is finitely presented. We also show that, in the case
where G has rank n ≤ 3, there is a simultaneous left-right transversal for H
which contains a generating set of size n for G. We finish by showing that
if H is a subgroup of a rank n group G with index less than 3 ⋅ 2n−1, and H
contains no primitive elements of G, then H is normal in G and G/H ≅ Cn

2 .

1. Introduction

Let H be a subgroup of G (written H < G). A left (resp. right) transversal for
H in G is a choice of exactly one representative from each left (resp. right) coset
of H. A left-right transversal for H is a set S which is simultaneously a left,
and a right, transversal for H in G. The existence of a left or right transversal
for subgroups of finitely generated groups is clear, and for general groups this
condition is equivalent to Axiom of Choice ([1, Theorem 2.1]). However, it is
not obvious that a left-right transversal always exists. We gave a short proof
of this in [3] for the case where H is of finite index, as well as a brief historical
discussion of this result.

Transversals are natural objects of study, especially when the index [G ∶ H]

is finite. Moreover, finding generating sets for a group G is a well known
problem in the case when G is finitely generated. Therefore we ask: given a
finitely generated group G and a finite index subgroup H of G, is there a (say)
left transversal for H in G which also generates G? Jain asked Cameron this
question under the added assumption that G is a finite group and H is corefree
in G, meaning that coreG(H) = {e} (where coreG(H) ∶= ⋂g∈G g

−1Hg). Cameron
showed in [4] that in this case a generating left transversal always exists (see
also [5, Problem 100]). The proof is short but relies on a result [13] of Whiston
on minimal generating sets (ones where no proper subset generates) of the
symmetric group which uses the classification of finite simple groups (CFSG).
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A necessary condition for a subgroup H < G to possess a generating left
transversal is that [G ∶ H] must be at least d(G) (the rank of G), defined to
be the minimal number of generators for the finitely generated group G. In
Theorem 3.7 we show that this condition is also sufficient, for G any finitely
generated group and H any subgroup of finite index. We then try to strengthen
this result by examining whether [G ∶H] ≥ d(G) implies that there exists a left-
right transversal for H that generates G. We have not managed to establish
this in general but we have shown in Theorem 3.11 that it is true if d(G) ≤ 3.

Our main method of proof in Section 3 is a new technique which we call
shifting boxes. It involves using the transitive action of a group G on the set
of left (or right) cosets of a subgroup H < G to systematically apply Nielsen
transformations to a generating set of G, such that the resulting generators lie
inside (or outside) particular desired cosets of H. We have found this technique
to be very intuitive for developing proofs. Many of our results can be reduced
to the case of subgroups of free groups (Proposition 3.12). An element of a
rank n group G is primitive if it lies in some generating set of size n for G. The
location of primitive elements relative to cosets of subgroups is already an area
of interest. Parzanchevski and Puder [11] show that if w ∈ Fn is a non-primitive
element then there is a finite index subgroup H < Fn such that the coset wH
does not contain any primitive elements. Taking w = e gives a finite index
subgroup containing no primitive elements.

By applying the technique of shifting boxes developed in Section 3, we show
in Theorem 4.4 that, if G is a rank n group, then the only subgroup of G with
index less than 3 ⋅2n−1 that can contain no primitive elements is [G,G]G2, and
even then this only occurs when G/([G,G]G2) ≅ Cn2 . This gives an exponential
lower bound on the index of subgroups which contain no primitive elements.
We first announced many of the results of this paper in [2].

Acknowledgements: We wish to thank Rishi Vyas, Andrew Glass, Zachiri
McKenzie and the anonymous referee for their useful comments on this work.

2. Coset intersection graphs

A useful tool for studying the way left and right cosets interact, and ob-
taining transversals, is the coset intersection graph. In this section we re-state
important results from our earlier work [3] on this concept. We denote the
complete bipartite graph on (m,n) vertices by Km,n.

Definition 2.1. Let H,K < G. We define the coset intersection graph ΓGH,K
as the graph with vertex set consisting of all left cosets of H ({liH}i∈I) and all
right cosets of K ({Krj}j∈J), where I, J are index sets. If a left coset of H and
right coset of K correspond, they are still included twice. Edges (undirected)
are included whenever any two of these cosets intersect, and an edge between
aH and Kb (written aH −Kb) corresponds to the non-empty set aH ∩Kb.

Theorem 2.2. Let H,K < G. Then the graph ΓGH,K is a disjoint union of

complete bipartite graphs. Moreover, suppose that [G ∶ H] = n, [G ∶ K] = m.
Then each connected component of ΓGH,K is of the form Ksi,ti with si/ti = n/m.
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Corollary 2.3. Let H,K < G. Suppose that [G ∶ H] = n and [G ∶ K] = m,
where m ≥ n. Then there exists a set T ⊆ G which is a left transversal for H in
G, and which can be extended to a right transversal for K in G. If H = K in
G, then T becomes a left-right transversal for H.

Under the hypothesis of Theorem 2.2, we see that sets of si left cosets of H
completely intersect sets of ti right cosets of K, with si/ti constant over i. With
this in mind, another way of visualising ΓGH,K is by the following simultaneous
double-partitioning G: draw left cosets of H as columns, and right cosets of K
as rows, partitioning G into irregular ‘chessboards’ denoted Ci, each with edge
ratio n ∶m. Each chessboard Ci corresponds to the connected component Ksi,ti

of ΓGH,K , and individual tiles in Ci correspond to the non-empty intersection

of a left coset of H and a right coset of K (i.e., edges in Ksi,ti). Corollary
2.3 would then follow by choosing one element from each tile on the leading
diagonals of the Ci’s. An example of chessboards is given in [3].

The chessboard pictorial representation of partitioning G into left and right
cosets is extremely useful in the analysis of transversals as generating sets car-
ried out in the next section. Note that the union of all the elements of G in
a single chessboard gives a unique double coset KgH in G, and that a sin-
gle chessboard is simply a double-partitioning of a double coset KgH into its
respective left cosets of H and right cosets of K.

3. Transversals as generating sets

We have developed a technique which we call shifting boxes which, for the
sake of brevity, we will describe here as a systematic way to apply Nielsen trans-
formations to a generating set of a group G, such that the resulting generators
lie inside (or outside) particular desired cosets of a subgroup H < G. We can’t
‘shift’ generators in/out of any coset we like, but we do have a substantial de-
gree of control. For ease of notation, we will often refer to the coset eH as the
identity coset. We begin with the following definitions.

Definition 3.1. Let G be a group, and S ∶= (g1, . . . , gn) a generating n-tuple
of G (where n ∈ N), that is, an element of the direct product Gn such that
{g1, . . . , gn} generates G. A standard Nielsen move on S is the replacement of
some entry gi of S with one of gjgi, g

−1
j gi, gigj or gig

−1
j , where we must have

i ≠ j. A Nielsen move is defined to be either a standard Nielsen move or an
extended Nielsen move, where the latter consists of either replacing an entry
gi by its inverse, or transposing two entries gi and gj for i ≠ j. Note that on
applying any Nielsen move to S, the resulting n-tuple still generates G. Two
generating n-tuples S1, S2 of G are said to be Nielsen equivalent if they differ
by a finite number of Nielsen moves.

Definition 3.2. Let H < G be groups, and S a generating n-tuple of G. We
say a left coset gH is full (with respect to S) if some entry of S lies in gH,
otherwise we say gH is empty (with respect to S). To save on notation, we
usually suppress the term ‘with respect to S’ when there is no ambiguity.
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We now give several techniques, which we rely on heavily for our main results.
Note that in this section we prove our results under very general conditions,
and all techniques are (for now) existential.

Definition 3.3. Let H < G be groups. A n-tuple S′ with entries in G is said
to be left-cleaned if all of its entries lie in distinct left cosets of H, apart from
eH which may contain many entries of S′.

Lemma 3.4. Let H < G be groups, and S a generating n-tuple of G. Then
there is a left-cleaned generating n-tuple S′ of G, Nielsen equivalent to S.

Proof. We call the following process left-cleaning an n-tuple. Let S = (g1, . . . , gn).
We can assume that there is gi, gj with i ≠ j both lying in the same non-identity
left coset of H, so that giH = gjH ≠ eH. Then g−1j gi ∈ H so we can apply the

standard Nielsen move on S which replaces gi with g−1j gi to obtain S1. Then
S1 has fewer entries lying in this left coset of H, and the same number in all
other non-identity left cosets. Iterating this procedure and then moving to other
non-identity left cosets, we eventually reach a left-cleaned n-tuple S′. �

Lemma 3.5. Let H < G be groups, and S a generating n-tuple of G. If there
exists at least one empty left coset of H, then there are entries sj , sk of S
(possibly the same entry) and ε ∈ {±1} such that sεjskH is an empty left coset.
That is, there is some full left coset of H which is taken to some empty left
coset of H by left multiplication under some entry of S or its inverse.

Proof. Recall that G acts transitively on the set of left cosets by left multipli-
cation. Assume that no entry of S or its inverse sends a full left coset to an
empty left coset. Then, as the entries of S generate G, the collection of full left
cosets is invariant under this action. Seeing as there exists at least one empty
left coset, this contradicts the transitive action of G. �

Lemma 3.6. Let H < G be groups, and S a generating n-tuple of G. Suppose
that at least one entry of S lies in H, and moreover that there exists an empty
left coset of H with respect to S. Then there is a finite sequence of Nielsen
moves on some entry s of S which is contained in H such that s is taken into
an empty left coset of H.

Proof. By Lemma 3.5 there are (possibly identical) entries s1, s2 of S, and
ε ∈ {±1}, with sεjskH an empty left coset of H with respect to S. We consider
all possible cases:
1. The case sj , sk ∈H never occurs, as then sεjskH =H which is a full left coset
by hypothesis.
2. In the case sj ∉H,sk ∈H, the subcase s+1j skH can’t occur, as then s+1j skH =

s+1j H which is clearly full. In the subcase s−1j skH, we replace sk with s−1j sk
lying in s−1j skH which is empty.
3. In the case sj ∈H,sk ∉H, we replace sj with sεjsk, as sεjskH is empty.
4. In the case sj , sk ∉ H, take some si ∈ H and replace si with sεjsksi, which
lies in sεjsksiH = sεjskH which is empty. As si is a different entry from sj and

sk, this is a composition of two Nielsen moves on the entry si (even if sj = sk).
We call this replacement process a left-extraction of an entry of S from H. �
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Using these techniques, we state the condition below for a finite index sub-
group of a group to possess a left transversal which generates the whole group.
For simplicity, when S is an n-tuple, we write S̃ for the set of entries of S.

Theorem 3.7. Let G be a finitely generated group, and H a subgroup of finite
index in G. Then the following are equivalent:
1. [G ∶H] ≥ d(G).
2. There exists a left transversal T for H in G which contains a generating set
X for G of size ∣X ∣ = d(G).

Proof. That 2⇒ 1 is immediate. We show 1⇒ 2:
Let n = d(G), and let S be a generating n-tuple for G. Use Lemma 3.4 to
produce an n-tuple S′′ Nielsen-equivalent to S which is left-cleaned. Now re-
peatedly apply Lemma 3.6 to begin left-extracting elements from inside H (thus
Nielsen-transforming S′′). As n ≤ [G ∶ H], we can keep left-extracting until we
reach S′ which is Nielsen-equivalent to our original S, and for which no two
entries of S′ lie in the same left coset of H. Now simply choose one element
from each left coset of H which is empty with respect to S′, and add these to
S̃′ to form the set T . Then T is a left transversal for H, and contains S̃′. �

A slight variant of the above proof also shows the following result: when
[G ∶H] ≤ d(G) then there is a generating set for G of size d(G) which contains
a set of left coset representatives for H.

Note that all preceeding definitions and results in this section carry over to
right transversals, which for the sake of brevity we do not re-state explicitly.

For ease of writing, we will often refer to the overall process of cleaning and/or
extracting elements (either left, or right) as shifting boxes, and will usually just
write this follows by shifting boxes to mean that it follows by the process of
cleaning and/or extracting elements. Our remarks in this section give sufficient
conditions for cleaning and/or extracting to be algorithmic.

The most natural question to ask now is ‘When does a finite index subgroup
have a left-right transversal which generates the whole group?’ This requires
a deeper understanding of how cosets intersect, as discussed in Section 2. We
urge the reader to consider the discussion of ‘chessboards’ given after Corollary
2.3, and to consult [3] for an example. These are vital in proving what follows.

Let H < G be groups, and S a generating n-tuple of G. Then by Lemma 3.4
we can first perform a left-cleaning of S to form S′, followed by a right-cleaning
of S′ (which will remain left-cleaned) to obtain S′′. It follows that S and S′′

are Nielsen-equivalent, and that S′′ is both left-cleaned and right-cleaned.

Lemma 3.8. Let H < G be of finite index in G, and S a generating n-tuple
of G. Then S is left-right-cleaned if and only if one can draw chessboards for
H in G with distinct entries of S lying in distinct diagonal tiles of chessboards,
except for the chessboard corresponding to the double coset HeH =H which may
contain several elements of S.

Proof. This is immediate from the fact that columns in chessboards correspond
to left cosets of H, and rows correspond to right cosets. Thus, a column
(resp. row) in the chessboards contains multiple entries of S if and only if the
corresponding left (resp. right) coset of H contains multiple entries of S. �
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Note that we can obtain a left-right transversal for H by taking one element
from each diagonal tile of each chessboard (Corollary 2.3). In fact, by left-right-
cleaning and choosing an element from each unused diagonal we have:

Lemma 3.9. Let H < G be of finite index in G, and S a generating n-tuple of
G with at most one entry in H. If S is left-right-cleaned, then there is a set T
containing all the entries of S which is a left-right transversal for H in G.

Proof. Given that columns in chessboards correspond to left cosets of H, and
rows correspond to right cosets, we have that no column or row in any chess-
board contains more than one entry from S. Thus we can re-arrange the posi-
tioning of the columns and rows in each chessboard so that the entries of S are
all in tiles which lie on leading diagonals. Now simply choose one element from
each lead-diagonal tile which does not contain an entry of S, and add these to
the set S to form the set T . Then T contains precisely one element from each
lead-diagonal tile of each chessboard, and no other elements. Thus T contains
precisely one element in each left coset of H, and precisely on element in each
right coset of H. So T is our desired left-right transversal which contains S̃. �

Combining our shifting boxes technique with the properties of the coset in-
tersection graph from Theorem 2.2, we are able to show the following:

Theorem 3.10. Let H < G be of finite index in G, and S a generating n-
tuple of G with n ≤ [G ∶ H]. If n ≤ 3 then there is a generating n-tuple S′

Nielsen-equivalent to S, and a left-right transversal T for H in G with S̃′ ⊆ T .

Proof. The case when n = 1 is trivial. The case when n = 2 is done as follows:
Left-right-clean S to form S′ = (a, b). Clearly we can’t have a, b ∈ H, or else
[G ∶ H] < 2. So at most one of a, b lies inside H. But then by Lemma 3.9 we

can extend S̃′ to a (generating) set T which is a left-right transversal for H.
The case n = 3 is complicated, and we consider several sub-cases. So, left-

right-clean S to form S′ = (a, b, c). Clearly we can’t have a, b, c ∈ H, or else
[G ∶H] < 3. If at most one of a, b, c lies inside H then we can apply Lemma 3.9
as before. So we are left with the case where two of a, b, c lie inside H (re-label
them as h1, h2 ∈H and g ∉H).
Case 1. g2 ∉HgH ∪H (i.e., g2 lies in a different chessboard to g and h1, h2).
Make the Nielsen moves h1 ↦ g2h1; this clearly lies in the same left coset (and
hence same chessboard) as g2 (see Figure 1).

h h

g g

g

1 2

2

2
h1

Figure 1

So now each of g, h2, g
2h1 lie in different chessboards, thus the triple S′′ ∶=

(g, h2, g
2h1) is left-right cleaned. As only h2 lies inside H, we can use Lemma
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3.9 to extend S̃′′ to a set T which is a left-right transversal for H. Seeing as T
contains S̃′′, then it generates G.
Case 2. g2 ∈HgH (i.e., g2 lies in the same chessboard as g).
Clearly g2H ≠ gH and Hg2 ≠ Hg; otherwise we would have g ∈ H which
contradicts our initial hypothesis. So g2 lies in a different left coset and different
right coset to g (i.e., in a different column and row to g in HgH). Consider
h1g

2 and h2g
2 (which both lie in the same right coset as g2, and hence in a

different right coset to g). If hig
2H ≠ gH for some i ∈ {1,2}, then make the

Nielsen moves hi ↦ hig
2 which lies in a different left and different right coset

to g (but in the same chessboard) (see Figure 2).

h h1 2

g

g h
2

g
2

i

Figure 2

If on the other hand h1g
2H = h2g

2H = gH, then h−12 h1g
2H = g2H and so we

make the Nielsen moves h1 ↦ h−12 h1g
2 which lies in a different left and different

right coset to g (but in the same chessboard) (see Figure 3).

h h1 2

g

h1g
2

h2g
2 h2

−1
h1g

2
g2

Figure 3

Either way, we now have a triple S′′ for which, after permutation of some
rows and columns, has entries which lie along diagonal tiles of the chessboards.
We conclude as in case 1.
Case 3. g2 ∈H.
By the transitivity of the action of G on left (and right) cosets of H, there must
be some hi (i ∈ {1,2}) and some ε ∈ {±1} with hεigH ≠ gH, and similarly some

hj (j ∈ {1,2}) and some δ ∈ {±1} with Hghδj ≠ Hg. If i ≠ j, then we make the

Nielsen move hi ↦ hεig followed by the Nielsen move g ↦ ghδj (see Figure 4).

If on the other hand i = j (say i = j = 1, without loss of generality), then
consider the element h2gh

δ
1. If h2gh

δ
1H ≠ gH, then h2gh

δ
1 lies in a different
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h h1 2

g

g2

gh j

δ

h i

ε

g

Figure 4

left coset and different right coset to g, and so we make the Nielsen moves
h2 ↦ h2gh

δ
1 (see Figure 5).

h h1 2

g

g2

gh
δ

h
ε

g

1

1

h2gh1

δ

Figure 5

If however h2gh
δ
1H = gH, then h2gh

δ
1 lies in a different left coset and different

right coset to hε1g, and so we make the Nielsen moves h2 ↦ h2gh
δ
1 followed by

g ↦ hε1g (see Figure 6).

h h1 2

g

g2

h
ε

g1

h2gh1

δ
gh 1

δ

Figure 6

In all the subcases considered here, we end up with a triple S′′ for which, after
permutation of some rows and columns, has entries which lie along diagonal tiles
of the chessboards. We conclude as in case 1. �

We note that all previous results in this section are algorithmic, in that we
have explicitly constructed the relevant transversals and generating sets.

Theorem 3.11. Let G be a group with d(G) ≤ 3, and H a subgroup of finite
index in G. Then the following are equivalent:



TRANSVERSALS AS GENERATING SETS IN FINITELY GENERATED GROUPS 9

1. There exists a left-right transversal T for H in G with ⟨T ⟩ = G.
2. [G ∶H] ≥ d(G).

Proof. That 1⇒ 2 is immediate; that 2⇒ 1 can be seen from Theorem 3.10. �

This leads us to pose the following question:

Question 1. Does Theorem 3.11 hold if we change the hypothesis ‘d(G) ≤ 3’
to ‘d(G) finite’?

We have not yet been able to extend the proof of Theorem 3.10 to the case
n ≥ 4, as the number of scenarios to consider becomes very large and complex.
However, we believe this should be possible, with some sort of more general
technique of left-right-extraction.

We note that, in any extension of Theorem 3.11 to groups needing more than
three generators, we need only consider free groups, as the following shows:

Proposition 3.12. Theorem 3.11 holds for all finite rank groups (and not just
groups of rank at most 3) if and only if it holds for all finite rank free groups.

Proof. Suppose Theorem 3.11 holds for all Fn. Let G be a group with d(G) = n,
and H < G have index [G ∶ H] = k ≥ n. Then there is a surjection f ∶ Fn ↠ G,
and it is a standard fact that the preimage f−1(H) also has index k in Fn. By
hypothesis, there is a left-right transversal T of f−1(H) which generates Fn; it
follows that f(T ) is a left-right transversal of H which generates G. �

4. An application of shifting boxes: finding primitive elements

Recall that a primitive element of a finite rank free group Fn is one which
lies in some generating set of size precisely n, which is equivalent to being an
element of a free basis for Fn. If G is an arbitrary group of finite rank n, then
we say a primitive element in G is an element lying in some generating set of
size n for G. This coincides with the definition of primitive elements in Fn.

An obvious question to ask is which subgroups of Fn (or more generally,
rank n groups) contain a primitive element (we can ask this for both finite and
infinite index subgroups). We first consider the case of normal subgroups.

The following is immediate by considering the image under the quotient map
of a generating set of minimal size containing the relevant primitive element:

Lemma 4.1. Let G be a group of finite rank n, and N a normal subgroup of
G. If N contains some primitive element of G, then d(G/N) < n.

The converse statement is not true, even in the special case that G = Fn, as
was shown in [7, 9]. It is currently open if N has finite index and here we briefly
mention the connection with product replacement graphs. More can be found
in the survey [10] of Pak which contains a range of references.

Given a finitely generated group G and an integer n ≥ d(G), the product
replacement graph Γn(G) has vertices the generating n-tuples of G with edges
between two vertices if one is the image of another under a standard Nielsen
move. A big area of study in this topic is the connectivity of Γn(G). It can
happen that Γn(G) is disconnected when n = d(G) (for instance finite abelian
groups) but no example is known of a finite group G and an integer n > d(G)
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where Γn(G) is disconnected. The relation with primitive elements is that
if N is a normal subgroup of Fn containing no primitive element but G =

Fn/N has d(G) < n then Γn(G) is disconnected. Hence there are examples of
infinite finitely generated groups G with Γn(G) disconnected by [7, 9], but a
normal subgroup N of finite index containing no primitive element and with
d(Fn/N) < n would give rise to a finite group G and integer n > d(G) with
Γn(G) disconnected; the existence of which is currently unknown.

Our shifting boxes technique enables us to explore the location of primitive
elements relative to cosets of finite index subgroups, in the following ways. We
write [n] for the set of integers {1, . . . , n}, and X∆Y for symmetric difference.

Lemma 4.2. Let G be any group with d(G) = n, and H a subgroup of finite
index in G with [G ∶ H] < 3 ⋅ 2n−1. If H contains no primitive elements of G,
then H contains the square of every primitive element of G.

Proof. Let S = (g1, . . . , gn) be any left-cleaned generating n-tuple for G. For
any ∅ ≠M = {i1, . . . , ik} ⊆ [n], ordered so i1 < . . . < ik, define the unique word
wM ∶= gikgik−1⋯gi1 . Define the disjoint sets of words A ∶= {wM ∣ ∅ ≠ M ⊆

{2, . . . , n} or M = {1}}, B ∶= {wMg1 ∣ ∅ ≠ M ⊆ [n]}. Now set T ∶= A ⊔B, and
thus ∣T ∣ = 3 ⋅ 2n−1 − 1. By construction, the only element in T which might
not be primitive is g21, and the rest are primitive by Nielsen transformations:
for any wMg1 ∈ B with M ≠ {1} we take some 1 ≠ i ∈ M and perform the
Nielsen transformation gi ↦ wMg1 (gi appears precisely once in wMg1), a similar
argument works for any wM ∈ A.

We claim that, for any pair of distinct words x, y ∈ T , if xH = yH then either
H contains a primitive element or g21 ∈H (possibly both). We consider all cases:
1. x, y ∈ A, so x = wM , y = wM ′ , with M ≠M ′. Then w−1

MwM ′ ∈ H is primitive
as there is some i ∈M∆M ′, so Nielsen transform gi ↦ w−1

MwM ′ .
2. Precisely one of x, y lie in A (say x ∈ A), so x = wM and y = wM ′g1. We
consider all subcases: 2A) 1 ∉M,M ′. In this case, w−1

MwM ′g1 ∈ H is primitive
(Nielsen transform g1 ↦ w−1

MwM ′g1). 2B) 1 ∈ M ′, 1 ∉ M , and M ′ = M ∪ {1}.
In this case, w−1

MwM ′g1 = g21 ∈ H. 2C) 1 ∈ M ′, 1 ∉ M , and there is some
1 < j ∈ M∆M ′. In this case, w−1

MwM ′g1 ∈ H is primitive (Nielsen transform
gj ↦ w−1

MwM ′g1). 2D) M = {1}. If M ′ = {1} then w−1
MwM ′g1 = g1 ∈ H is

primitive. Otherwise, there is some 1 ≠ j ∈M ′, in which case w−1
MwM ′g1 ∈ H is

primitive (Nielsen transform gj ↦ w−1
MwM ′g1).

3. x, y ∈ B. In this case, x = wMg1, y = wM ′g1 (M ≠ M ′). If there is some
1 ≠ i ∈ M∆M ′, then the element g−11 w−1

MwM ′g1 ∈ H is primitive. Otherwise,
M ′ =M ∪{1} (or M =M ′∪{1}), in which case g−11 w−1

MwM ′g1 = g
−1
1 w−1

MwMg1g1 =
g1 ∈H (or g−11 w−1

MwM ′g1 = g
−1
1 g−11 w−1

M ′wM ′g1 = g
−1
1 ∈H) is primitive.

Suppose that H contains no primitive element. Since ∣T ∣ = 3⋅2n−1−1 ≥ [G ∶H]

then either two elements of T lie in the same coset (so by the claim above, g21 ∈H
as H contains no primitive element), or one element of T lies in H (which must
be g21, as all other elements of T are primitive). So g21 ∈H.

Now, take any primitive element x ∈ G, which is part of some generating set
{x, y2, . . . , yn} for G (which must be left-cleaned, otherwise H would contain a
primitive element). Using the exact same argument above, with g1 ∶= x, gi ∶= yi
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for all 2 ≤ i ≤ n, we see that if H contains no primitive element then x2 ∈H. So
H contains the square of every primitive element. �

Lemma 4.3. Let G be any group with d(G) = n, and H a subgroup of finite
index in G with [G ∶ H] < 3 ⋅ 2n−1. If H contains no primitive elements of G,
then H is normal in G and G/H ≅ Cm2 for some m ≤ n.

Proof. Suppose H contains no primitive element. Then, by Lemma 4.2, H con-
tains the square of every primitive element. Set T ∶= {g2 ∣ g is primitive in G}.
Then T is a normal subset of G, since the conjugate of a primitive element is
again a primitive element (conjugation is an automorphism). Thus ⟨T ⟩ ⊲ G; the
(normal) subgroup generated by all the squares of primitive elements of G. So
by hypothesis, T <H. Now take any generating set {t1, . . . , tn} for G, then t−1i tj
is a primitive element, for any pair i, j with i ≠ j. Thus t2i , t

2
j , (t

−1
i tj)

2 lie in ⟨T ⟩,

and hence so will t2i (t
−1
i tj)

2t−2j = [ti, tj]. So G/⟨T ⟩ is abelian as ⟨T ⟩ is normal

and contains the commutator of every pair in the generating set {t1, . . . , tn} for
G. So ⟨T ⟩, and hence H, contain the commutator subgroup [G,G]. Thus H is
normal in G and G/H is generated by the images of {t1, . . . , tn}, all of which
have order 2 in this quotient. So G/H ≅ Cm2 for some m ≤ n. �

We now give the following complete characterisation of finite index subgroups
of a group of rank n which contain primitive elements, up to index 3 ⋅ 2n−1 − 1.

Theorem 4.4. Let G be any group with d(G) = n and let H be a subgroup of
finite index in G with [G ∶H] < 3 ⋅2n−1. Then H contains no primitive elements
of G if and only if H is normal in G and the quotient G/H is isomorphic to
Cn2 , whereupon every coset distinct from H contains a primitive element of G.

Proof. First, if H is normal and contains an element g of a generating n-tuple
for G, then the image of this n-tuple gives rise to a generating (n − 1)-tuple of
G/H, just as in Lemma 4.1, but d(Cn2 ) = n.

Now suppose that H does not contain a primitive element of G and let
q ∶ G↠ G/H be the quotient homomorphism, where we know H is normal in
G and G/H ≅ Cm2 for some m ≤ n by Lemma 4.3. Given a generating n-tuple
(g1, . . . , gn) for G, let Fn be the free group on x1, . . . , xn and set θ ∶ Fn↠ G to
be the homomorphism extending the map xi ↦ gi. Note that if we have k ≤ n
and integers 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n then xi1xi2⋯xik is primitive in Fn and
θ(xi1xi2⋯xik) = gi1gi2⋯gik is primitive in G.

Assume that m < n and consider the map q ○ θ ∶ Fn ↠ Cm2 , which factors
through Cn2 via the abelianisation map ab ∶ Fn↠ Cn2 and the map ψ ∶ Cn2 ↠ Cm2 .
That is, the following diagram commutes, and all maps are surjections:

Fn
ab //

θ
��

Cn2

ψ

��
G q

// Cm2

As ψ is now a linear map from an n dimensional vector space over F2 to an
m dimensional space, we have a non-trivial element (v1, . . . , vn) of Cn2 in the
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kernel of ψ. Now we can assume that each vi takes the value 0 or 1, so we form
the primitive element x = xv11 x

v2
2 ⋯x

vn
n of Fn which maps to the identity under

ψ ○ ab, thus gv11 g
v2
2 ⋯g

vn
n = θ(x) is a primitive element of G which maps to the

identity under q and so is in H; a contradiction. Similarly, if n = m, then for
any (w1, . . . ,wn) ∈ Fn2 ∖ {0} the coset of H in G corresponding to this point
contains the primitive element gw1

1 gw2
2 ⋯gwn

n of G. �

Thus if G is a group with d(G) = n we have two possibilities: either Cn2 is not
a quotient of G in which case all subgroups of G having index less than 3 ⋅ 2n−1

contain primitive elements, or G surjects to Cn2 in which case there is a single
subgroup of index less than 3 ⋅ 2n−1 which fails to contain a primitive element.
The uniqueness in the second case comes about because a homomorphism from
a rank n group G to an abelian group of exponent 2 must factor through
G/[G,G]G2. As G/([G,G]G2) ≅ Cm2 for m ≤ n, we see that when n = m any
exceptional subgroup must be equal to [G,G]G2.

Note that the inequality [G ∶ H] < 3 ⋅ 2n−1 in Theorem 4.4 is somewhat
necessary: here is an example of what occurs when the inequality doesn’t hold.

Example 4.5. Take the (free) subgroup H ∶= [Fn, Fn]F
2
n < Fn of index 2n with

no primitive elements of Fn. Then H itself has several normal subgroups of
index 2, none of which contain primitive elements of Fn. In Fn, these subgroups
have index 2 ⋅ 2n > 3 ⋅ 2n−1, so this is not a counterexample to Theorem 4.4.

We remark that the number of subgroups of Fn with index less than 2n is
vast; bounded below by ((2n)!)n−1 (see [8, Corollary 2.1.2]).

It would be interesting to find a closed form expression for M(n), which we
define to be the smallest number i such that Fn has a subgroup other than
[Fn, Fn]F

2
n of index i which contains no primitive elements. By Theorem 4.4,

and the example immediately proceeding it, we have 3 ⋅ 2n−1 ≤ M(n) ≤ 2 ⋅ 2n.
In particular, consider any quotient map f ∶ F2↠ S3; the kernel N of this map
has index 6 = 3 ⋅ 22−1, and moreover N contains no primitive elements of F2 by
Lemma 4.1. So M(2) = 6. Moreover, it is straightforward to see that M(1) = 3.
We do not know M(n) for any other values of n.

Our analysis of finite index subgroups of Fn containing no primitive elements
was motivated by the following result of Parzanchevski and Puder in [11]:

Theorem 4.6 ([11, Corollary 1.5]). The set P of primitive elements in Fn is
closed in the profinite topology.

Corollary 4.7. Given Fn, and w ∈ Fn a non-primitive element, there is a finite
index subgroup H < Fn such that the coset wH does not contain any primitive
elements. Taking w = e gives a finite index subgroup with no primitive elements.

We finish by remarking that a recent result of Clifford and Goldstein [6]
proves there is an algorithm to determine which finitely generated subgroups of
Fn contain primitive elements, although they say that they do not expect it to be
implemented in practice. One of our overall aims is to give a characterisation of
such subgroups that leads to computationally-efficient recognition. A classical
result of Whitehead [14] gives an algorithm for determining if an element of Fn
is primitive; Roig et. al. [12] refine this to a polynomial time algorithm.



TRANSVERSALS AS GENERATING SETS IN FINITELY GENERATED GROUPS 13

References

[1] A. Blass, Injectivity, Projectivity, and the Axiom of Choice, Trans. Amer. Math. Soc.
255, 31–59, (1979).

[2] J. Button, M. Chiodo, M. Zeron-Medina Laris, Coset intersection graphs, and transver-
sals as generating sets for finitely generated groups, J. González-Meneses et al. (eds.),
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