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Quantum Monte Carlo study of the phase diagram
of solid molecular hydrogen at extreme pressures
N.D. Drummond1, Bartomeu Monserrat2, Jonathan H. Lloyd-Williams2, P. López Rı́os2, Chris J. Pickard3

& R.J. Needs2

Establishing the phase diagram of hydrogen is a major challenge for experimental and

theoretical physics. Experiment alone cannot establish the atomic structure of solid hydrogen

at high pressure, because hydrogen scatters X-rays only weakly. Instead, our understanding of

the atomic structure is largely based on density functional theory (DFT). By comparing

Raman spectra for low-energy structures found in DFT searches with experimental spectra,

candidate atomic structures have been identified for each experimentally observed phase.

Unfortunately, DFT predicts a metallic structure to be energetically favoured at a broad range

of pressures up to 400 GPa, where it is known experimentally that hydrogen is non-metallic.

Here we show that more advanced theoretical methods (diffusion quantum Monte Carlo

calculations) find the metallic structure to be uncompetitive, and predict a phase diagram in

reasonable agreement with experiment. This greatly strengthens the claim that the candidate

atomic structures accurately model the experimentally observed phases.
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H
ydrogen (H) is the simplest and most abundant of all
elements and yet it displays amazing richness in its phase
behaviour1,2: it is observed to form a quantum crystalline

state and orientationally ordered molecular phases, and it
has been predicted to exhibit a liquid-metal phase at high
pressures and low temperatures3–5, metallic superfluid and
superconducting superfluid states6,7 and high-temperature
superconductivity8–10. Several crystalline phases of solid
molecular H have been observed in diamond anvil cell
experiments carried out at pressures up to over 300 GPa
(refs 11–19). The low-pressure phase I, which is a hexagonal
close-packed structure formed of freely rotating molecules,
transforms to a broken-symmetry phase II, in which the
molecular rotations are restricted, at low temperatures1,2. The
transition pressure decreases strongly with isotopic mass1,20–23

and also depends on the total spin of the molecules1,22. As the
pressure is increased at low temperatures, there is a further
transition from phase II to a phase III at about 160 GPa, with the
transition pressure for deuterium (D) exceeding that for H by
about 12 GPa (ref. 23). Experimental studies have also
demonstrated the existence of a phase IV at temperatures above
a few 100 K and pressures above 220 GPa (refs 12–14,17,16).
Some constraints on the structures of the observed phases have
been obtained from X-ray diffraction experiments24,25, but the
low X-ray scattering cross section of H and the small sample sizes
available limit the possible resolution. Infrared (IR) and
particularly Raman spectroscopic measurements have yielded
valuable information about the vibrational modes of H at high
pressures11–24, but the available experimental data are insufficient
to determine the structures of phases II, III and IV.

Candidate structures for phases II, III and IV have been
suggested by structure searches based on density functional
theory (DFT)26–32, although it should be emphasized that none of
these structures has been identified as being unambiguously
correct. The candidate structures for phase II consist of packings
of molecules with bond lengths almost identical to the zero-
pressure value26,27. We have modelled phase II using a molecular
structure of P21/c symmetry with 24 atoms in the primitive unit

cell, which we refer to as P21/c-24; see Fig. 1a. (We adopt the
convention of labelling structures by their symmetry followed by
the number of atoms per primitive cell.) P21/c-24 is the most
stable structure found to date in static-lattice DFT within the
pressure range appropriate for phase II, and its vibrational
characteristics are also compatible with those of phase II. We
model phase III using a C2/c-24 structure consisting of layers of
molecules whose bonds lie within the planes of the layers,
forming a distorted hexagonal pattern26; see Fig. 1b. This very
stable structure can account for the high IR activity of phase III26.
We also consider a molecular Cmca-12 structure26, which is
similar to C2/c-24, but slightly denser; see Fig. 1c. We model
phase IV by a Pc-48 structure28,29, shown in Fig. 1d, which
consists of alternate layers of strongly bonded molecules and
weakly bonded graphene-like sheets. This type of structure was
predicted by Pickard and Needs26. Pc-48 can account for the
occurrence of stiff and soft vibronic modes in phase IV, and its
stabilization by temperature. Finally, we consider the Cmca-4
structure33, which has weaker molecular bonds than C2/c-24 and
Cmca-12, and is shown in Fig. 1e. The main goals of our present
work are to obtain accurate theoretical results for the relative
stabilities of the P21/c-24, C2/c-24, Cmca-12, Pc-48 and Cmca-4
structures of H at pressures of 100–400 GPa and temperatures of
0–500 K, and to use these data to construct a temperature–
pressure phase diagram of H. We have not considered phase I in
our calculations, which is stable at low pressures, because an
accurate description of this phase would require a full quantum
treatment of the proton spin. Instead we focus our attention on
the phase behaviour at higher pressures, where the candidate
structures are such that the nuclei are highly localized and hence
the motion of the protons is likely to be well-described by
collective bosonic vibrational modes.

Useful theoretical descriptions of solid H require very accurate
calculations with an energy resolution of a few meV per atom.
Various studies have shown that DFT currently cannot provide
such accuracy for H structures, as evidenced by the disagreement
of results obtained with different exchange-correlation functionals
and the fact that DFT predicts H to be metallic at pressures
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Figure 1 | Atomic structures of the five H phases considered in this work. (a) P21/c-24, (b) C2/c-24, (c) Cmca-12, (d) Pc-48 and (e) Cmca-4.

The blue dumbbells indicate short bonds between atoms (o0.8 Å). The white dumbbells indicate long bonds between atoms (o 0.9 Å). The red lines

indicate close contacts between atoms (o1.2 Å) in the layered structures. P21/c-24 consists of molecules arranged on a distorted hexagonal close-packed

lattice. C2/c-24, Cmca-12 and Cmca-4 consist of layers of molecules whose bonds lie within the planes of the layers, forming distorted hexagonal patterns,

and we show top–down views of single layers. Pc-48 consists of alternate layers of isolated strongly bonded molecules and weakly bonded graphene-like

sheets, and we show a top–down view of four layers. The structures are shown at a common DFT–PBE pressure (250 GPa).
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above 300 GPa, in contradiction with experiment26,28,29,34–36. We
have instead used the diffusion quantum Monte Carlo (DMC)
method37 to calculate static-lattice energy–volume relations for
the different H phases. DMC is generally regarded as the most
accurate first-principles method available for carrying out such
studies38–40. Furthermore, the low mass of the H atom means
that a full treatment of quantum nuclear vibrational motion,
including anharmonic effects35,40, is crucial for an accurate
description of the energetics. We have therefore used a
DFT-based vibrational self-consistent field approach41 to calculate

anharmonic vibrational energies. We find that the use of DMC
(and to a lesser extent the treatment of phonon anharmonicity)
renders the metallic Cmca-4 structure that is favoured in DFT
energetically uncompetitive, leaving us with a phase diagram in
reasonable quantitative agreement with experiment.

Results
Relative enthalpies. Figure 2 shows the static-lattice enthalpies of
the structures relative to C2/c-24. In Fig. 2a,b we report DFT
enthalpies calculated using the Perdew-Burke-Ernzerhof (PBE)42
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Figure 2 | DFT and DMC static-lattice enthalpy–pressure relations for the different H structures relative to C2/c-24. (a) DFT–PBE, (b) DFT–BLYP

and (c) DMC. The relative DFT enthalpies are converged to better than 0.1 meV per atom. The widths of the DMC lines indicate the estimated uncertainties

in the enthalpies due to single-particle finite-size errors, which are greater than the uncertainties due to random sampling in the Monte Carlo algorithm,

as explained in Supplementary Note 2.
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Figure 3 | DFT–PBE vibrational contributions to the enthalpies of the H structures. (a) Harmonic zero-point (ZP) contributions to enthalpies,

(b) anharmonic ZP corrections to enthalpies, (c) harmonic ZP enthalpies relative to C2/c-24, and (d) anharmonic ZP corrections relative to C2/c-24.

P21/c-24 is destabilized by both harmonic vibrations and anharmonic corrections, relative to C2/c-24. Cmca-12, Cmca-4, and Pc-48 are all stabilised by

harmonic vibrations but destabilized by anharmonic corrections, relative to C2/c-24.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8794 ARTICLE

NATURE COMMUNICATIONS | 6:7794 | DOI: 10.1038/ncomms8794 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


and Becke–Lee–Yang–Parr (BLYP) density functionals43,44. The
relative DFT enthalpies are converged to better than 0.1 meV per
atom with respect to k-point sampling and plane wave cutoff
energy. The difference between the DFT–PBE and DFT–BLYP
relative enthalpies arises chiefly from the energetics and not
from the slightly different structures obtained from geometry
optimization calculations performed at fixed external pressures
using the two different functionals: see Supplementary Note 1 and
the accompanying Supplementary Fig. 1. In Fig. 2c, we report
DMC enthalpies, which were obtained by fitting polynomials to
the extrapolated infinite-system-size DMC energies as a function
of volume, and differentiating the polynomials to obtain
pressures. The structures used for the DMC calculations were
obtained from DFT–PBE geometry optimization calculations. We
truncate the DMC enthalpy curves at the highest and lowest
pressures at which we have performed calculations.

The use of the DMC method has significant consequences for
the static-lattice relative enthalpies of the candidate structures.
Compared with both DFT–PBE and DFT–BLYP, Cmca-4
and Cmca-12 are destabilized with respect to C2/c-24, whereas
P21/c-24 is stabilized with respect to it, but in each case the
DFT–BLYP results are closer to the DMC enthalpies, as also
found in ref. 36. For Cmca-4 and P21/c-24 the difference between
the DMC and the DFT–BLYP results is greater than the
difference between the DFT–BLYP and DFT–PBE results, while
for Cmca-12 these differences are of similar size. Although
DFT–BLYP happens to be relatively accurate in the pressure
range of interest, it is clear that DFT is unable to provide a
consistent, quantitative description of the relative enthalpies of
the phases of H.

Vibrational results. The harmonic zero-point contributions to
the enthalpies of the H phases increase sublinearly with pressure,
as shown in Fig. 3a, while the anharmonic corrections tend to
decrease with pressure; see Fig. 3b. The harmonic zero-point
enthalpies are roughly 30 times larger than the anharmonic
corrections. However, the differences between the harmonic
zero-point energies of the five phases considered at fixed pressure
are similar in magnitude to the differences between the
anharmonic corrections, both being about 10 meV per atom, as
shown in Fig. 3c,d. This demonstrates that the variations in the
anharmonic vibrational corrections are as important as those of
the harmonic contributions to the enthalpies in determining the
relative stabilities of phases in this system.

Structural phase transitions. Figure 4 shows the two structural
phase transitions that we have determined in this work, and
our theoretical temperature–pressure phase diagram for solid
molecular H is shown in Fig. 5. At 0 K, we find a transition from
P21/c-24 to C2/c-24 at around 235±10 GPa. The corresponding
transition pressure for D is 13 GPa higher (note that the
difference between H and D is purely due to the DFT vibrational
free energy and hence the difference in transition pressures
between H and D is relatively precise). Our transition pressure is
around 75 GPa greater than those observed experimentally for the
transition between phases II and III, but the 13 GPa difference
between the transition pressures for H and D agrees well with the
experimentally measured value23. We note that the theoretical
transition pressures between H and D would only differ by
around 6 GPa without the inclusion of anharmonic effects.

As shown in Fig. 4, we also find a temperature-driven
transition from C2/c-24 to Pc-48 at pressures above 250 GPa
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Figure 4 | Relative Gibbs free energies of the different H structures. (a) 0 K, (b) 150 K, (c) 300 K and (d) 400 K. The Gibbs free energies were

calculated using static-lattice DMC calculations together with DFT–PBE harmonic and anharmonic vibrational calculations. The transition from P21/c-24

to C2/c-24 occurs at around 235±10 GPa between 0 and 150 K. Pc-48 is stabilised by temperature with respect to C2/c-24. The complete set of

relative enthalpies is shown in Supplementary Fig. 2.
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and temperatures above 300 K, in good agreement with the
experimentally observed transition between phases III and IV. In
Fig. 4 we show the relative free energies of C2/c-24 and Pc-48 at
300 and 400 K. At the lower temperature, C2/c-24 is marginally
more stable, but at 400 K, Pc-48 has clearly become the more
stable structure. The variation in the transition temperature with
pressure is smaller than the uncertainty in that quantity, and so
we report the C2/c–24 to Pc–48 transition temperature as
320±20 K.

Discussion
Our theoretical H phase diagram is in reasonable quantitative
agreement with experiment, indicating that the P21/c-24, C2/c-24,
and Pc-48 structures provide satisfactory models for phases II, III,
and IV. These model structures reproduce the experimental
Raman and IR spectra quite well. However, there is a significant
disagreement of about 75 GPa between the experimental and
theoretical phase II–III transition pressure at 0 K. There are
several possible reasons for our substantially larger phase II–III
transition pressure. First, the actual structure of phase III may be
more stable than the C2/c-24 model structure. However, C2/c-24
is the most stable non-metallic structure found in DFT searches
over a wide range of pressures, and it is compatible with the
Raman and infrared spectra of the observed phase III. If a
significantly more stable structure than C2/c-24 were to be found
for phase III, the excellent description of the transition from
phase III to IV with increasing temperature obtained with our
calculated data would be spoilt. Another possible explanation for
the discrepancy with experiment regarding the phase II–III
transition pressure could be that we have neglected a significant
contribution to the energy of P21/c-24 (our model for phase II).
In particular, our calculations do not account for nuclear
exchange effects, which are known to have a significant effect
on the phase I-II transition pressure22. However, reliable
estimates of the size of nuclear exchange effects in solid H at
high pressure are not currently available. Furthermore, nuclear
exchange effects are expected to be much smaller in D than H,
because deuterons are bosons, whereas protons are fermions,
and each deuteron has twice the mass of a proton. This suggests
that nuclear exchange effects cannot be entirely responsible for
the discrepancy in the phase II–III transition pressure in both
H and D. Our analysis of different finite-size corrections
in Supplementary Note 2 (see also the accompanying
Supplementary Figs 3 and 4) indicates that finite-size effects in
our relative enthalpies are well-controlled, but it is always possible
that finite-size effects may be larger than anticipated. Finally, the
fixed-node approximation is an uncontrolled source of error in
our DMC calculations and, although fixed-node errors should
largely cancel when relative energies are calculated, it cannot be
ruled out that fixed-node errors may be larger in one phase than
another.

The results we obtain by combining our DMC static-lattice
energies and harmonic and anharmonic vibrational energies
resolve a discrepancy between DFT and experiment for the
transition between phases III and IV. The Pc-48 structure was
proposed as a candidate for phase IV in refs 28,29 because its
Raman spectrum agrees well with the experimental one and
because its weakly bonded layers lead to soft vibrational modes
that thermally stabilize it. However, DFT static-lattice calculations
together with the harmonic approximation for nuclear
motion (used in refs 28,29) predict the Cmca-4 structure to be
energetically favoured at all temperatures in the relevant pressure
range (note that Cmca-4 is stabilised significantly by harmonic
zero-point energy; at the static-lattice DFT level it is not
competitive, as shown in Fig. 2). The metallic nature of Cmca-4

contradicts experiment, in which insulating structures containing
strong molecular bonds are found up to pressures in excess of
300 GPa. The phase diagram predicted by DFT is shown in
Supplementary Fig. 5. The use of static-lattice DMC energies and
anharmonic vibrational energies destabilizes Cmca-4, and we find
that it is thermodynamically unstable over the entire pressure and
temperature range considered here. Our results establish that
DFT does not provide even a qualitatively correct description of
the phase behaviour of hydrogen. We also find that Cmca-12 is
unstable at the pressures and temperatures studied in this work.
We have found an important discrepancy between our calculated
phase II–III transition pressure and experiment, which is
currently unresolved, although we have described possible
physical reasons for the disagreement. Our calculations demon-
strate that anharmonic vibrational effects are crucial for
determining the relative stabilities of the phases.

Methods
Quantum Monte Carlo calculations. The DMC method37,45 is capable of
delivering much higher accuracy than DFT, and the scaling of the computational
cost with system size enables the simulation of the hundreds of atoms required for
accurate calculations. We have used the DMC method to calculate static-lattice
energies using H structures relaxed within DFT–PBE at a given external pressure.
In DMC, the ground-state component of a trial wave function is projected out by
simulating the Schrödinger equation in imaginary time, subject to the constraint
that the nodal surface of the wave function is fixed to be that of the trial wave
function37,45. We used Slater–Jastrow wave functions as implemented in the
CASINO code46. Full technical details of our calculations can be found in
Supplementary Note 2. The single-particle orbitals were obtained from the
CASTEP code47 using the PBE exchange-correlation functional. The nuclei were
represented by bare Coulomb potentials and appropriate cusp corrections were
applied to the orbitals. We used a flexible Jastrow factor48 whose parameters were
optimized using variational Monte Carlo49. Variational Monte Carlo and DMC
simulations were performed using 96 and 768 atoms, and the results were
extrapolated to infinite system size. Using the resources of the Oak Ridge
Leadership Computing Facility, we achieved statistical error bars of o0.3 meV per
atom in all our DMC calculations.

Anharmonic vibrational calculations. We have calculated harmonic vibrational
free energies by using the finite-displacement method to construct the matrix of
force constants and diagonalising the corresponding dynamical matrices over a fine
vibrational Brillouin-zone grid, as described in Supplementary Note 3 (with
accompanying data presented in Supplementary Figs 6 and 7). We determined
anharmonic corrections to the harmonic free energies using a vibrational
self-consistent field method40,41,50, sampling the low-energy part of the DFT–PBE
Born–Oppenheimer energy surface along harmonic normal modes to large
amplitudes. The resulting anharmonic Schrödinger equation for the nuclear
motion was solved by expanding the wave function in a basis of simple harmonic
oscillator eigenstates. Thermal occupation of excited states allowed us to calculate
free energies at arbitrary temperatures. The vibrational free energy differences
between the structures were converged to better than 1 meV per atom. Our
approach does not describe possible melting.

Data availability. All relevant data present in this publication can be accessed at:
http://www.repository.cam.ac.uk/handle/1810/248864.
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