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ABSTRACT
Summary: DamID is a powerful technique for identifying regions
of the genome bound by a DNA-binding (or DNA-associated)
protein. Currently no method exists for automatically processing
next-generation sequencing DamID (DamID-seq) data, and the use
of DamID-seq datasets with normalisation based on read-counts
alone can lead to high background and the loss of bound signal.
DamID-seq thus presents novel challenges in terms of normalisation
and background minimisation. We describe here damidseq pipeline,
a software pipeline that performs automatic normalisation and
background reduction on multiple DamID-seq FASTQ datasets.
Availability and implementation: Open-source and freely
available from http://owenjm.github.io/damidseq pipeline. The
damidseq pipeline is implemented in Perl and is compatible with any
Unix-based operating system (e.g. Linux, Mac OSX).
Contact: o.marshall@gurdon.cam.ac.uk

1 INTRODUCTION
DamID is a well-established technique for discovering regions
of DNA bound by or associated with proteins (van Steensel and
Henikoff, 2000). It has been used to map the genome-wide binding
of transcription factors, chromatin proteins, nuclear complexes
associated with DNA and RNA pol II (for e.g. Choksi et al., 2006;
Filion et al., 2010; Southall et al., 2013; Singer et al., 2014). The
technique can be performed in cell culture, whole organisms (van
Steensel and Henikoff, 2000) or with cell-type specificity (Southall
et al., 2013), and requires no fixation or antibody purification.

DamID involves the fusion of a bacterial DNA adenine methylase
(Dam) to any DNA-associated protein of interest. The bacterial
Dam protein methylates adenine in the sequence GATC and, given
that higher eukaryotes lack native adenine methylation, the DNA
binding footprint of the protein of interest is uniquely detectable
through isolating sequences flanked by methylated GATC sites.
However, a major consideration with DamID is that any Dam
protein within the nucleus will non-specifically methylate adenines
in GATC sequences at accessible regions of the genome. For this
reason, DamID is always performed concurrently with a Dam-only
control, and the final DNA binding profile is typically presented as
a log2(Dam-fusion/Dam-only) ratio.

Although the majority of published DamID experiments
have used tiling microarrays for data analysis, next-generation
sequencing (NGS) allows greater sensitivity and higher accuracy.
While several recent studies have used NGS with DamID (Wu

∗to whom correspondence should be addressed

and Yao, 2013; Lie-A-Ling et al., 2014; Clough et al., 2014;
Carl and Russell, 2015), these have relied upon a comparison
of peak binding intensities between read-count-normalised Dam-
fusion and Dam samples. Depending on the characteristics of the
Dam-fusion protein (see below) this approach may lead to real
signal being lost, and correct normalisation of the datasets is
required to detect all binding by many Dam-fusion proteins. Here,
we describe a software pipeline for the automated processing of
DamID-sequencing (DamID-seq) data, including normalisation and
background reduction algorithms.

2 ALGORITHMS
Although DamID-seq data can be aligned and binned as per all
NGS data, two issues arise that are specific to DamID. The first
major consideration is the correct normalisation of the Dam-fusion
and Dam-control samples. The greatest contribution to many Dam-
fusion protein datasets is the non-specific methylation of accessible
genomic regions (e.g. Fig. 1B), with a mean correlation between
Dam alone and Dam-fusion datasets of 0.70 (n=4, Spearman’s
correlation). Representing the data as a (Dam-fusion/Dam) ratio
in theory negates such non-specific methylation. However, strong
methylation signals at highly bound regions in the Dam-fusion
dataset will reduce the relative numbers of reads present at
accessible genomic regions in this dataset (see, for example, the
occupancy of Dam-RNA Pol II over the eyeless gene in Fig.
1), and normalising the data based on read counts alone can
therefore produce a strong negative bias to the ratio file (Fig. 1B
(iii), Fig. S5A). Depending on the characteristics of the fusion
protein, this negative bias can lead to real signal being lost (Fig.
1). Although microarray data inadvertently overcame this bias
through the manual adjustment of laser intensities during microarray
scanning, until now no method has existed for correctly normalising
DamID-seq datasets.

In order to correct for this negative bias we use the read counts
from accessible genomic regions—as determined from the Dam-
only dataset—as the basis for normalisation, while avoiding regions
likely to contain real signal in the Dam-fusion sample. We use the
following algorithm to adjust the Dam-fusion dataset.

1. Given the GATC-site resolution of DamID, we divide the read
counts into GATC fragments.

2. All GATC fragments lacking read counts are excluded. The
remaining GATC fragments are divided into deciles.
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Fig. 1. Results of the damidseq pipeline. (A) The gene eyeless (ey) (highlighted) is expressed in D. melanogaster laval neural stem cells (Southall et al., 2013)
and previously-published microarray DamID in these cells (i) shows RNA polymerase II occupancy (Southall et al., 2013). (B) Performing DamID-seq in the
same cell type illustrates the high correlation between Dam-Pol II (i) and Dam alone (ii) in terms of RPM (read counts/million mapped reads). Taking the
ratio of the two RPM-normalised datasets fails to show significant RNA pol II occupancy at ey (iii); however, processing via the damidseq pipeline software
successfully recovers the RNA pol II occupancy profile while minimising background (iv). See Supplementary methods for experimental details.

3. Given the high probability that the highest 10% of Dam-fusion
read counts represent bound signal rather than background
signal, we exclude fragments that have scores in this decile.

4. The first 3 deciles of the Dam sample can generate inconsistent
normalisation values if included (Table S2), so we exclude
fragments that lie within this range.

5. The distribution of the log2(Dam-fusion/Dam) ratio
(x1, x2, . . . , xn) for all remaining fragments is
determined via the gaussian kernel density estimate

f̂h(x) = 1
nh

n∑
i=1

1√
2π

exp
(
− (xi−x)2

2h2

)
, where h is

the bandwidth, estimated via the method of Silverman
(1986): h = 0.9min(σ,IQR)

1.34
n−1/5 (where σ is the standard

deviation of the sample and IQR the interquartile range).
For speed considerations, we estimate kernel density
over 300 equally spaced points within the interval
[max (−5,min (x)) ,min (5,max (x))].

6. The point of maximum kernel density represents the point
of maximum correspondence between Dam-fusion and Dam
values; if both samples are correctly normalised this value
should equal 0. We therefore normalise all Dam-fusion values
by 1/

(
2argmax(f̂h(x))

)
.

In addition to ensuring correct normalisation, a second important
consideration is the reduction of background noise. Regions without
specific methylation will have randomly distributed background
counts that, when a ratio file is generated, will generate a large
degree of noise. Such noise can potentially obscure peak detection.
In order to mitigate this effect we add pseudocounts to both datasets.
In order to maintain equivalence between replicates with differing
numbers of reads (assuming that genomebound≪genomeunbound) the
number of pseudocounts added is proportional to the sequencing
coverage, thus c reads

bins
, where c is a constant. (see Table S1 for

a comparison of gene calls with different read-depths). Adding
pseudocounts increases the number and the total genomic coverage
of detected peaks and increases the signal:noise ratio (Fig. S1-4).

The combination of these two methods compares favorably with
previously published microarray data (Fig. 1B (iv)) or DamID-seq
data (Fig. S1-4; Fig. S5).

3 IMPLEMENTATION
The damidseq pipeline software is implemented in Perl, and will
process multiple single-end read sequencing files in FASTQ or
BAM format. The pipeline can match sequencing adaptors to
sample names, automatically identifies the Dam-only control,
and performs alignment, read-length extension, normalisation,
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damidseq pipeline

background reduction and ratio file generation. (See Supplementary
Methods for details.)

A large number of user-configurable options are provided,
including the ability to adjust the normalisation algorithm
parameters, generate read-count normalised files and add a user-
specified number of pseudocounts. Parameters specified on the
command-line can be saved as defaults if the user desires.

The damidseq pipeline software is open-source and freely
available at http://owenjm.github.io/damidseq pipeline. A detailed
set of installation and usage instructions are provided at the above
website, along with a small example dataset.
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