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Highlights

• Two efficient models of drillstring dynamics are presented;
• Both models exploit an assumption of spatially localised nonlinearities;
• The models allow for bending and torsional vibration and are in good agreement;
• A test system is shown that exhibits stick-slip; forward whirl and backward whirl;
• Parametric studies reveal conditions of high amplitude vibration.

Abstract

High amplitude vibration regimes can cause significant damage to oilwell drillstrings:
torsional stick-slip oscillation, forward whirl and backward whirl are each associated
with different kinds of damage. There is a need for models of drillstring dynamics
that can predict this variety of phenomena that are: efficient enough to carry out
parametric studies; simple enough to provide insight into the underlying physics,
and which retain sufficient detail to correlate to real drillstrings. The modelling
strategy presented in this paper attempts to balance these requirements. It includes
the dynamics of the full length of the drillstring over a wide bandwidth but as-
sumes that the main nonlinear effects are due to spatially localised regions of strong
nonlinearity, for example at the drillbit cutting interface and at stabilisers where
the borehole wall clearance is smallest. The equations of motion can be formed in
terms of this reduced set of degrees of freedom, coupled to the nonlinear contact
laws and solved by time-domain integration. Two implementations of this approach
are presented, using (1) digital filters and (2) a Finite Element model to describe
the linear dynamics. Choosing a sampling period that is less than the group de-
lay between nonlinear degrees of freedom results in a decoupled set of equations
that can be solved very efficiently. Several cases are presented which demonstrate a
variety of phenomena, including stick-slip oscillation; forward whirl and backward
whirl. Parametric studies are shown which reveal the conditions which lead to high
amplitude vibration regimes, and an analytic regime boundary is derived for tor-
sional stick-slip oscillation. The digital filter and Finite Element models are shown
to be in good agreement and are similarly computationally efficient. The digital
filter approach has the advantage of more intuitive interpretation, while the Finite
Element model is more readily implemented using existing software packages.
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1 Introduction

Vibration problems represent a significant cost to the oilwell drilling industry
due to a wide range of problematic phenomena that can occur [1]. Torsional
vibration can cause fatigue, damage to the drillbit if the direction of rotation
periodically reverses, or even unthreading of the drillpipe segments in extreme
cases. Lateral vibration can lead to high amplitude vibration regimes such
as whirl (forward or backward) or impacts with the borehole wall. Forward
whirl damage is often characterised by localised drillpipe wear (one face of the
drillpipe remains in sliding contact with the borehole wall), while backward
whirl often occurs at many times the rotation frequency and can lead to fatigue
damage. Lateral impact events (transient or sustained) can damage onboard
equipment and unwanted axial vibration is most commonly associated with
damage to the drillbit.

There is a clear need for predictive models of drillstring vibration that can
capture this wide range of phenomena. Ideally, a theoretical model should:
realistically include the key physical effects that affect the system behaviour;
provide clear insight into the effect of essential parameters; and account for
uncertainties. These requirements are in conflict: a high level of model fidelity
is usually at the expense of efficiency and clarity.

A variety of approaches have been taken to modelling drillstring vibration:
from highly idealised lumped parameter models to high resolution finite ele-
ment models. Lumped parameter models tend to be difficult to correlate with
real systems but are computationally efficient (e.g. Richard et al. [2,3], Ko-
valyshen et al. [4], and Depouhon and Detournay [5]). On the other hand
detailed models with many degrees of freedom may be more realistic, but are
computationally expensive and do not necessarily provide clear insight into
the effect of parameters on system behaviour (e.g. Khulief et al. [6], Christo-
forou and Yigit [7], Germay et al. [8], Lui et al. [9]). The literature also reveals
a variety of approaches taken to modelling interfaces between the drillstring
and the borehole, with particular focus on the cutting interface at the drillbit.
The most common approach is to assume that cutting torque is proportional
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to weight-on-bit (WOB), with a friction coefficient that decreases with in-
creasing rotation speed (e.g. [10,11]). There also exists a body of literature
that considers regenerative effects where the surface profile from each cutter
provides the input to the next cutter (e.g. [5,12]). These effects can be de-
scribed using delay-differential equations and have been extensively studied
in the machine-tool literature (e.g. [13,14]). There are many other effects that
could be included in a drillstring model, such as fluid-structure interaction,
the effect of free particles at frictional and cutting interfaces, well-path tortu-
osity, mud-pump excitation, and buckling. It is clear that there are strategic
choices necessary when developing a model.

This paper describes a modelling approach that steers an intermediate path
in terms of complexity. The goal is for a model that includes the essential
features of the system dynamics necessary for realistic predictions, while re-
taining efficiency and clarity. The approach taken is to assume that the most
significant nonlinearities occur at spatially localised regions of the structure
(e.g. the drillbit cutting interface or ‘stabilisers’ where the drillstring radius
is larger). The equations of motion can be formed in terms of this reduced
set of degrees of freedom, coupled to the nonlinear contact laws and solved by
time-domain integration. This style of approach was first developed by McIn-
tyre and Woodhouse [15] in the context of modelling frictional interactions for
bowed-string instruments and in parallel by Clough and Wilson [16]. The con-
stitutive laws for the nonlinear interfaces have been assumed to be as simple
as possible, but still demonstrate the main field-observed phenomena, such as
stick-slip, forward whirl or backward whirl.

Two different implementations are described and compared: (1) using digital
filters to describe the linear parts of the system; and (2) using a finite element
model reduced to the ‘nonlinear’ degrees of freedom. Section 2 describes the
digital filter implementation, which is based on McIntyre and Woodhouse [15]
in modelling the vibration of bowed-string instruments. Here we extend the
method to allow for an arbitrary number of localised nonlinearities. Section 3
presents the finite element formulation which follows the reduction scheme
of Clough and Wilson [16] and results in a similarly efficient computational
scheme to the digital filter approach. Although there is no particular compu-
tational advantage in using digital filters, they provide greater physical insight
into the underlying dynamics. Section 4 presents the interface models used for
nonlinear analysis, and in Section 5 the two nonlinear time-domain models
are shown to qualitatively exhibit many of the phenomena that are observed
in drillstrings, and as such could be a valuable tool for efficient investiga-
tion of drillstring dynamics and other applications where nonlinearities can
be considered to be spatially localised.

The key contributions of this paper are to: extend the digital filter approach to
multiple localised nonlinearities; apply the concept of localised nonlinearities
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and associated model reduction to drillstrings (usually model reduction limits
the number of underlying linear modes included, whereas the assumption of
local nonlinearity is not based on restricting the simulation bandwidth); and to
highlight the similarity between the digital filter and finite element approaches
when this reduction is implemented.

2 Digital filter model

2.1 Summary

The overall strategy is to identify the nonlinear degrees of freedom, then de-
scribe the linear system in terms of a matrix of impulse responses A(t) that
relate those degrees of freedom. In this paper the matrix A(t) is determined
using periodic structure theory to describe a chain of drillpipe sections that
are threaded together. This allows the detailed geometry of the full length
of a drillstring to be included, capturing the detailed dispersion relationships
for both torsion and bending waves. For a more general system, the impulse
response matrix could be estimated by measurement or from a finite-element
model. The structure can be divided into an arbitrary number of subsections
at the points where nonlinearities are known (or suspected) to occur.

The response vector U(t) is given by convolving the impulse response matrix
A with the corresponding external input vector E(t), i.e. U = A ∗ E. The
convolution can be discretised and split into past and current states so that
for the kth time sample U(k) = A(0)E(k)/fs + Uh, where fs is the sampling
frequency and Uh is the remainder of the convolution that depends only on
past states (subscript h for ‘history’ terms). By choosing the sampling period
1/fs to be less than the group delay between the chosen degrees of freedom the
matrix A(0) becomes diagonal. Therefore, the resulting equation is a set of
uncoupled linear load lines that can be solved together with the nonlinear law
at each location independently without any numerical problem in handling
discontinuous impact or friction laws.

The following sections describe the method more fully for torsion and bending
vibration. Axial vibration could readily be included within the framework, but
in the interests of brevity fall beyond the scope of the present paper.

Figure 1 illustrates a single pipe and joint section and provides a definition
of variables: length L1,2, shear modulus G, polar moment of area of the cross-
section J1,2, density ρ, Young’s modulus E, second moment of area I1,2 and
cross-sectional area A1,2 (subscripts {1,2} denote pipe and joint respectively).
Note that material properties for the pipe and joint are assumed to be the
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same (i.e. G1 = G2 = G, ρ1 = ρ2 = ρ, and E1 = E2 = E). The displacements
θ, x, and y are for each end of the nth section (indicated by the subscripts n
and n+ 1), and are functions of axial distance from the surface ξ and time t.

2.2 Torsional vibration

2.2.1 Linear model

The equation of motion for the torsional dynamics of a pipe of uniform cross-
section can be written:

GJ1θ
′′ − ctθ̇ − ρJ1θ̈ = 0. (1)

where θ(ξ, t) is the angular displacement of the drillstring, θ′ = ∂θ/∂ξ, θ̇ =
∂θ/∂t, and ct is a torsional viscous damping term that accounts for distributed
energy loss in the waveguide in a deliberately simplified fashion.

Letting θ = θ̄eiωt and rewriting in first-order form for angular velocity gives:

 ¯̇θ′

GJ1θ̄
′′

 =

 0
iω

GJ1

ct + iωρJ1 0


 ¯̇θ

GJ1θ̄
′

 (2)

The choice of states θ̇ and GJθ′ is convenient as Equation 2 relates angular
velocity to torque, which allows straightforward coupling to cutting models
defined in terms of these variables. To simplify notation let T = GJ1θ

′ and
define:

Γ
(t)
1 =

 0
iω

GJ1

ct + iωρJ1 0

 (3)

The torsional degrees of freedom at each end of the nth pipe and joint section
of drillpipe are described by a transfer matrix M(t)

n : ¯̇θn+1

T̄n+1

 = M(t)
n

 ¯̇θn

T̄n

 , (4)

where M(t)
n = eΓ

(t)
2 L2eΓ

(t)
1 L1 . Therefore the states at each end of N sections of

drillpipe are related by:  ¯̇θN

T̄N

 =
N−1∏
n=0

M(t)
n

 ¯̇θ0

T̄0

 . (5)
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The pair of eigenvalues and eigenvectors of M(t)
n correspond to the forward

and reverse travelling waves along the periodic pipe. The magnitude of the
eigenvalues are a reciprocal pair: R and 1/R [17]. Without loss of generality
we choose to define R ≥ 1 so that R also corresponds to the magnitude of
the largest eigenvalue of M(t)

n . For nonzero damping R 6= 1, so the reverse
travelling wave solution appears to grow exponentially with increasing n. For
very long drillpipes, the product of M(t)

n becomes ill-conditioned, which can
be avoided by suitable scaling.

The matrix M(t)
n can be written in terms of its eigenvalues and eigenvectors:

M(t)
n = ΦΛΨT , where Λ is a diagonal matrix of eigenvalues and Φ and Ψ are

the right and left eigenvector matrices respectively. A given solution at the
origin (n=0) can be expressed as a linear combination of these eigenvectors: ¯̇θ0

T̄0

 = ΦΛ0a (6)

where a represents the contribution of each eigenvector (columns of Φ). The
states N sections away are given by: ¯̇θN

T̄N

 = ΦΛNa. (7)

Subdividing Φ such that Φ = [P Q]T allows angular velocity and torque to
be separated: ¯̇θ0

¯̇θN

 =

 PΛ0

PΛN

 a = P̂a , and

 T̄0

T̄N

 =

 QΛ0

QΛN

 a = Q̂a (8)

hence  ¯̇θ0

¯̇θN

 = P̂Q̂−1

 T̄0

T̄N

 , or

 T̄0

T̄N

 = Q̂P̂−1

 ¯̇θ0

¯̇θN

 (9)

This rearrangement allows us to choose a scaling matrix S such that P̂ →
P̂S and Q̂ → Q̂S. The dynamic stiffness matrix is unchanged as Q̂P̂−1 →
Q̂SS−1P̂−1, so S can be chosen to eliminate the ill-conditioning. A suitable
choice is:

S =

R−N 0

0 1

 (10)

where R is the magnitude of the largest eigenvalue of M(t)
n and is taken to be

the first eigenvalue.
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The result is a 2× 2 transfer function matrix Ḡ(iω) relating angular velocity
and torque:  ¯̇θ0

¯̇θN

 =

 Ḡ11 Ḡ12

Ḡ21 Ḡ22


 T̄0

T̄N

 (11)

In order to obtain a time domain impulse response the inverse Fourier Trans-
form of the frequency response can be estimated using the inverse Discrete
Fourier Transform (this is discussed further in Section 2.4). The discrete-time
impulse response gives an approximation to the filter coefficients for a Finite
Impulse Response (FIR) digital filter, allowing the response to arbitrary inputs
to be computed efficiently. It also allows coupling to localised nonlinearities.

2.2.2 Coupling to a single nonlinearity

As a starting point consider a periodic drillstring of N sections, with input
angular velocity at the surface (n = 0) and in frictional contact at the drill-
bit (n = N). Continuing in the frequency domain and eliminating T̄0 from
Equation 11:

¯̇θN = ḠNN T̄N + ḠN0
¯̇θ0 (12)

where

ḠNN =
Ḡ11Ḡ22 − Ḡ12Ḡ21

Ḡ11

, and ḠN0 =
Ḡ21

Ḡ11

. (13)

In the time domain this becomes:

θ̇N = GNN ∗ TN +GN0 ∗ θ̇0 (14)

which can be approximated as a convolution summation, defining θ̇N(k) ≡
θ̇N(k/fs) and where fs is the sampling frequency:

θ̇N(k) =
k∑

n=0

GNN(k − n)TN(n)/fs +
k∑

n=0

GN0(k − n)θ̇0(n)/fs. (15)

By taking out the last term in each convolution sum, and noting thatGN0(0)=0,
this can be written:

θ̇N(k) = GNN(0)TN(k)/fs + θ̇h (16)

where θ̇h represents the ‘history’ terms of the convolution:

θ̇h ≡
k−1∑
n=0

GNN(k − n)TN(n)/fs +
k−1∑
n=0

GN0(k − n)θ̇0(n)/fs. (17)
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Assuming an instantaneous (memoryless) nonlinearity, the torque and angular
velocity are related by some friction law:

TN = f(θ̇N). (18)

At the kth time-step, Equation 16 and 18 must be solved simultaneously to
find the current angular velocity and torque. Equation 16 is simply a linear
relation in the θ̇N − TN plane. The intersection of this with the nonlinear
friction-velocity curve gives the current angular velocity and torque explicitly
in a method directly analogous to the approach developed to model the bow-
string interaction of stringed instruments (McIntyre and Woodhouse [15]).

2.3 Bending vibration

2.3.1 Linear Model

The equation of motion for the bending dynamics of a pipe of uniform cross-
section can be written:

EI1x
′′′′ + Cx′′ + ρA1ẍ+ cbẋ = 0 (19)

where x(ξ, t) is the lateral displacement as a function of distance and time, ρ
is the density, E is the Young’s modulus, A1 is the pipe cross-sectional area,
I1 is the second moment of area, cb is the viscous damping per unit length,
and C is the drillstring pre-compression. Letting x = x̄eiωt gives:

EI1x
′′′′ + Cx̄′′ − (ω2ρA1 − iωcb)x̄ = 0 (20)

and the equivalent first-order equation becomes:



x̄′

x̄′′

−EI1x̄
′′′′ − Cx̄′′

EI1x̄
′′′


=



0 1 0 0

0 0 0
1

EI1

iωcb − ω2ρA1 0 0 0

0 −C −1 0





x̄

x̄′

−EI1x̄
′′′ − Cx̄′

EI1x̄
′′


.

(21)
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To simplify notation let:

 x̄

F̄x

 =



x̄

x̄′

−EI1x̄
′′′ − Cx̄′

EI1x̄
′′


, and Γ

(b)
1 =



0 1 0 0

0 0 0
1

EI1

iωcb − ω2ρA1 0 0 0

0 −C −1 0


(22)

where x̄ and F̄x represent states associated with displacement and force re-
spectively. Note that F̄x(1) is the shear and F̄x(2) is the bending moment.
This allows Equation 22 to be written more compactly: x̄′

F̄′x

 = Γ
(b)
1

 x̄

F̄x

 . (23)

The states relating to bending for the nth section of pipe and joint are governed

by a transfer matrix M(b)
n = eΓ

(b)
2 L2eΓ

(b)
1 L1 : x̄n+1

F̄x,n+1

 = M(b)
n

 x̄n

F̄x,n

 . (24)

Note that the desired form for these equations is in terms of displacement,
rather than velocity as used for torsion. This is because the normal compo-
nent of nonlinear contact laws are usually defined in terms of displacement,
while torsional friction or cutting laws are defined in terms of velocity. This
makes it more straightforward to couple to nonlinearities (as described next
in Section 2.3.2).

The eigenvalues of M(b)
n correspond to the four general solutions of the bending

equations of motion: a forward and reverse travelling wave and two evanescent
solutions of the form x̄ = e±βξ where β is a constant. Scaling is carried out in
the same way as for Section 2.2.1, with S chosen to be:

S =



R−N1 0 0 0

0 R−N2 0 0

0 0 1 0

0 0 0 1


(25)

where R1 and R2 are the eigenvalues of M(b)
n with largest real parts and as-

suming that they correspond to the first eigenvector-eigenvalue pairs.
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The result is a 4 × 4 transfer function matrix H(iω) relating displacements
and rotations (x̄) to shear force and bending moments (F̄): x̄0

x̄N

 = H̄(iω)

 F̄0

F̄N

 (26)

The coefficients for the FIR digital filters can then be computed using the
inverse DFT as before. In the time-domain, displacements can be calculated
using convolutions of the impulse reponses with externally applied loads: x0

xN

 = H(t) ∗

 F0

FN

 (27)

2.3.2 Coupling to nonlinearities

Coupling these filters in the x − y plane to nonlinearities (see Figure 2) can
be achieved in much the same way as for the torsional filters, though there is
a subtle difference. A driving point velocity impulse response for a torsional
waveguide has an initial delta function equal to the system impedance, so
the first coefficient of the torsional velocity filter (multiplied by the sampling
period) is equal to the torsional impedance at that point. The bending wave
filters are in terms of displacement, and the dispersion relation for Euler-
Bernoulli beams results in the first coefficient of the displacement impulse
response being close to zero (in the limit as the sampling frequency tends to
infinity, this coefficient equals zero). For the test system studied and for the
chosen sampling frequency, the first filter coefficient was found to be approx-
imately 10% of the maximum value of the driving point impulse responses,
therefore this coefficient was not neglected in order to preserve numerical
stability when the nonlinear feedback loop is closed. This has an interesting
numerical implication: normally it is numerically problematic to model an
Euler beam undergoing impact with an infinite-stiffness contact (a rigorous
discussion can be found in [18]), however this non-zero (albeit small) first
coefficient allows the kc → ∞ limit to be modelled without difficulty. An al-
ternative viewpoint is that the chosen mapping from continuous to discrete
time introduces an effective local compliance in the structure which prevents
a singularity in the contact force.

For a simple system with free-free boundary conditions, the downhole displace-
ment at the k-th time-step can be written in terms of an externally applied
downhole lateral force in the y-direction:
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xN(k) =H33(0)Fx(k)/fs +
k−1∑
n=0

H33(k − n)Fx(n)/fs (28)

=H33(0)Fx(k)/fs + xh (29)

where xh is defined to be the ‘history’ term representing the convolution with
the previous force history.

The general set of equations needed to describe the behaviour of the drillstring
with a single nonlinearity at the drillbit is as follows:

x(k) = H(0)Fx(k)/fs + xh(k) (30)

y(k) = H(0)Fy(k)/fs + yh(k) (31)

θ̇(k) = G(0)T (k)/fs + θ̇h (32)FN
FT

 =
1√

x2 + y2

 x y

−y x


Fx
Fy

 (33)

FN = FR + FI.er (34)

FT = FF + FI.eθ (35)

T = R0FF + f1(θ̇, ...) (36)

FF
FR

= f2(θ̇, ẋ, ẏ, ...) (37)

FR = f3(x, y, ...). (38)

Equations 30 to 32 are the filter equations that represent the linear dynam-
ics (bending in x and y together with torsion). Equation 33 is a coordinate
rotation from cartesian force components (Fx, Fy) to normal and tangential
components (FN , FT ). Equations 34 and 35 relate the total external forces (FN ,
FT ) to the reaction forces (FR, FF ) in polar coordinates assuming an input
force vector FI applied at the centre of the drillpipe cross-section. Equation 36
gives the torque due to friction for side-contact with the borehole wall, which
may also incorporate a nonlinear cutting law, for example to accomodate ream-
ers. Equations 37 and 38 depend on the contact model chosen. The geometry
and definition of variables is summarised in Figure 2. External input forces FI

could for example represent forces due to transient disturbances or noise from
frictional or cutting contacts.

2.4 Computing filter coefficients

It turns out that computing the filter coefficients by direct application of the
inverse Discrete Fourier Transform to the frequency responses results in a num-
ber of problems: numerical instability; filter end-effects; and non-preservation
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of the drillstring’s static properties. These are a result of mapping from a con-
tinuous to a discrete domain: i.e. sampling the continuous frequency response
at discrete frequencies. First consider the torsional driving-point admittance,
which should be positive-real. The full frequency response of the discrete-time
filters does not satisfy this property even though its Discrete Fourier Trans-
form does. This results in numerical instability, which is made apparent by
considering the system illustrated in Figure 3. Downhole torque TN is related
to downhole angular velocity θ̇N by friction. This can be represented as a
nonlinear gain Knl with linearised worst case occurring during sticking when
Knl → −∞. The system stability is then determined by the Nyquist stability
criterion applied to KnlḠNN(iω). The numerical model will only be stable if
the frequency response of ḠNN(iω) is positive real, such that the ‘-1’ point is
never enclosed by the locus of KnlḠNN(iω) for arbitrarily large Knl.

One solution is to apply a low-pass filter to make the high-frequency compo-
nents very small as it is the high-frequency components of ḠNN(iω) that have
a negative real part so this has the desired effect on stability. Unfortunately
this increases the amplitude of end-effects: wrap-around artefacts from the
Discrete Fourier Transform where the end of the filter starts to ‘anticipate’
the beginning. These in turn can be eliminated by windowing, but this affects
the zero-frequency component of the filter (the unit step response should con-
verge to ‘1’ so that the drillbit angular velocity tends to the surface angular
velocity). This can be compensated for by applying a suitable offset. Finally,
during a ‘sticking’ phase of a simulation the downhole angular velocity is zero
but, if the surface angular velocity is constant, the downhole torque should
ramp up in proportion to the drillstring stiffness. This is equivalent to saying
that the ramp response of GNN(t) should settle to the inverse of the effective
stiffness of the drillstring. This can also be corrected for by applying a suitable
correction function, though this can result in non-physical drift behaviour.

All of these problems can in fact be solved more elegantly. The real and imag-
inary parts of the frequency response of a causal filter should form a discrete
Hilbert transform pair:

real(Ḡmn) = hilb
{

imag(Ḡmn)
}

imag(Ḡmn) = −hilb
{

real(Ḡmn)
} (39)

Computing the imaginary part from the real using this relationship preserves
the positive-real property of the continuous frequency response. Taking the
real part of the inverse Discrete Fourier Transform gives a new FIR filter,
which happens to very closely satisfy each of the properties required above
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without needing artificial compensation:

GN(t) = real

{
IDFT

[
real

(
Ḡmn(iω)

)
− i hilb

{
real

(
Ḡmn(iω)

) }]}
(40)

This method does not guarantee to preserve the conditions, but it provides
a natural method for converting from the continuous system (which intrinsi-
cally satisfies the equivalent properties) to its discrete approximation so these
properties are not unduly distorted.

Similar issues arise when computing the filter coefficients for the bending dy-
namics of the system. The difference is that the frequency response matrix
for bending is displacement-based rather than velocity-based. Rather than
driving point frequency responses being positive-real as was true for velocity
(dissipative only), these driving point transfer functions should always have
a negative imaginary part. Again, this is important for numerical stability as
external nonlinear forces are a function of displacement creating a feedback
loop. The most reliable way to maintain these properties was to first make the
frequency response velocity-based by multiplying by iω, then calculate the
real part from the imaginary using Equation 39. The real part of the inverse
DFT gives the velocity-based filter, and the cumulative sum brings us back to
the displacement-based filter that satisfies the frequency-response criteria.

It is important to choose the sampling frequency and resolution appropriately.
The sampling frequency needs to be sufficiently high to capture the bandwidth
of interest, but too high and the filters become long and convolution speed
limits the overall efficiency. Similarly the frequency resolution should be high
enough to reasonably approximate resonant peaks, such that the total time
duration of the filter is long enough to capture most of the decay envelope
of all modes. A common sampling frequency is required for both torsion and
bending filters, so this is set by the higher requirement. Their lengths need not
be the same, so the frequency resolutions can be different. For an individual
section, the first torsion natural frequency is significantly higher than the first
bending mode. These modes indicate the stop-band spacing, so to include two
torsion stop-bands, the method found to work well in most situations was to
choose the sampling frequency as four times the first torsional mode of an
individual section of drillpipe. The frequency resolution was chosen by taking
approximately five points to resolve each resonant peak, different for torsion
and bending. However, this was not fully automatic and some manual choice
sometimes proved necessary. In addition, when high frequency resolutions for
bending filter calculations were necessary as well as a high sampling frequency
the filter lengths became unmanageable. In this situation the bending filters
were calculated over a lower bandwidth, and interpolated in the time-domain
to equate sampling frequencies: this did not have an adverse effect on the
stability properties discussed above.
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2.5 Coupling torsion and bending to multiple nonlinearities

The model so far allows coupling of a linear drillstring to arbitrary nonlin-
earities at the drill-bit. This is now extended to include a discrete number of
nonlinearities at arbitrary locations.

2.5.1 Torsion

Dividing the drillstring into P sections, the decoupled torsional frequency
responses can be written as a block diagonal matrix:

T̄01

T̄N1

T̄02

T̄N2

...

T̄0P

T̄NP



=



Ḡ
(1)
11 Ḡ

(1)
12 · · · 0

Ḡ
(1)
21 Ḡ

(1)
22

...

Ḡ
(2)
11 Ḡ

(2)
12

Ḡ
(2)
21 Ḡ

(2)
22

. . .
... Ḡ

(P )
21 Ḡ

(P )
22

0 · · · Ḡ
(P )
21 Ḡ

(P )
22





¯̇θ01

¯̇θN1

¯̇θ02

¯̇θN2

...

¯̇θ0P

¯̇θNP



. (41)

The equilibrium condition between joints n and n+ 1 is:

T̄Nn + T̄ (ext)
n = T̄0(n+1), (42)

where T (ext)
n is an external torque, and by compatibility:

¯̇θNn = ¯̇θ0(n+1). (43)

Redefining ¯̇θj ≡ ¯̇θNj for compactness, Equation 41 becomes:



T0

T
(ext)
1

T
(ext)
2

...

T
(ext)
P−1

T
(ext)
P


=



Ḡ
(1)
11 Ḡ

(1)
12 · · · 0

−Ḡ(1)
21 Ḡ

(2)
11 − Ḡ

(1)
22 Ḡ

(2)
12

...

−Ḡ(2)
21 Ḡ

(3)
11 − Ḡ

(2)
22

. . .
... Ḡ

(P )
11 − Ḡ

(P−1)
22 Ḡ

(P )
12

0 · · · −Ḡ(P )
21 −Ḡ(P )

22





¯̇θ0

¯̇θ1

¯̇θ2

...

¯̇θP−1

¯̇θP


,

(44)
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or more compactly, defining the dynamic stiffness matrix for torsion K̄(t):

T̄(ext) = K̄(t) ¯̇θ. (45)

This can easily be inverted to give output angular velocities in terms of exter-
nal torques, but this is not exactly what is needed. Usually the surface angular
velocity is considered as an input, so only part of the matrix needs inverting.
Dropping superscript (t) for clarity and partitioning gives: T̄0

T̄(ext)

 =

 K̄11 K̄12

K̄21 K̄22


 ¯̇θ0

¯̇θ

 (46)

hence outputs can be expressed in terms of inputs: T̄0

¯̇θ

 =

 K̄11 − K̄12K̄
−1
22 K̄21 K̄12K̄

−1
22

−K̄−1
22 K̄21 K̄−1

22


 ¯̇θ0

T̄(ext)

 , (47)

and more compactly by defining D(t): T̄0

¯̇θ

 = D̄(t)

 ¯̇θ0

T̄(ext)

 . (48)

Using the Hilbert transform to map to the discrete domain and the inverse
DFT (see Equation 40), the time-domain response can be computed using:T0(k)

θ̇(k)

 = diag {D(0)}

 θ̇0(k)

T(ext)(k)

+

 θ̇h

T
(ext)
h

 (49)

where subscript h represents the convolution of the history of inputs with
the digital filters. Note that this is in the same form as Equation 16, but
for an arbitrary number of nonlinearities. At a given time-step, the spatially
separated nonlinearities do not couple as the first coefficient of all off-diagonal
terms in D(0) is zero. Therefore the coupling of each degree of freedom to
nonlinearities at a particular time-step can be solved exactly as in the case of
a single nonlinearity.

2.5.2 Bending

The same principles can be used to extend the bending model to allow multiple
nonlinearities. Again dividing the drillstring into P sections, the decoupled
bending frequency responses can be written as a block diagonal matrix:
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

S̄01

M̄01

S̄N1

M̄N1

S̄02

M̄02

S̄N2

M̄N2

...

S̄0P

M̄0P

S̄NP

M̄NP



=




H̄(1)




H̄(2)


. . . 

H̄(P)







x̄01

x̄′01

x̄N1

x̄′N1

x̄02

x̄′02

x̄N2

x̄′N2

...

x̄0P

x̄′0P

x̄NP

x̄′NP



. (50)

The boundary conditions between joints n and n+ 1 are:

xNn = x0(n+1) (51)

x′Nn = x′0(n+1) (52)

SNn + S(ext)
n = S0(n+1) (53)

MNn +M (ext)
n = M0(n+1) (54)

where x is lateral displacement in the x direction, S is the shear force, S(ext)
n is

an external lateral force and M is the bending moment. This allows alternate
rows and columns to be combined appropriately. The full matrix equation is
somewhat long-winded but the structure of the resulting matrix is:

16





S̄01

M̄01

S̄
(ext)
1

M
(ext)
1

S̄
(ext)
2

M
(ext)
2

...

S̄
(ext)
P

M
(ext)
P



=



• • • • · · · 0

• • • • ...

• • • • • •

• • • • • •

• • • •

• • • •
. . .

... • • • •

0 · · · • • • •





x̄01

x̄′01

x̄1

x̄′1

x̄2

x̄′2
...

x̄P

x̄′P



, (55)

or more compactly, defining the dynamic stiffness matrix for bending K̄(b):

F̄(ext)
x = K̄(b)x̄. (56)

Defining D̄(b) = K̄−1, and duplicating the analysis for the y degrees of freedom
gives:

x̄ = D̄(b)F̄(ext)
x (57)

ȳ = D̄(b)F̄(ext)
y (58)

This simplifies further if we only take displacements as outputs (neglecting
to calculate x′) and assume that external bending moments are zero on the
basis that where impacts occur the borehole wall does not exert a significant
moment. This eliminates alternate rows and columns, reducing the number of
matrix elements to a quarter of the original.

An FIR filter can be calculated for each term in the resulting frequency re-
sponse matrix and, as before, can be coupled to each nonlinearity.

2.6 Combined digital filter model

The final form of the digital filter equations combining torsion and bending
degrees of freedom can be written:

U(t) = A(t) ∗ E(t) (59)
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where U =
[
θ̇0 T(ext) x y

]T
, E =

[
T0 θ̇ Fx Fy

]T
and A is the block diag-

onal matrix of corresponding impulse responses (digital filter coefficients):

A =



D
(t)
11 D

(t)
12 0 0

D
(t)
21 D

(t)
22 0 0

0 0 D(b) 0

0 0 0 D(b)


(60)

At a given time step, the nonlinearities are instantaneously decoupled and the
response can be written:

U(k) = diag {A(0)}E(k)/fs + Uh. (61)

3 Finite element model

A finite element model was implemented in order to verify the digital filter
model. The element mass and stiffness matrices for bending and torsion are
taken from Rao [19]. Assuming an initially straight drillpipe allows straightfor-
ward assembly into consistent global mass and stiffness matrices. The damping
matrix was approximated by lumped viscous dashpots (one per element for
torsion and two per element for bending) as a simple method for obtaining
approximate equivalence with the digital filter model. Converged frequency
responses over the bandwidth of interest were obtained using 20 cubic beam
elements per segment of drillpipe resulting in approximately 104 degrees of
freedom for a 1 km drillstring. The equations of motion can be written in the
usual form:M(t) 0

0 M(b)


 θ̈

z̈

+

C(t) 0

0 C(b)


 θ̇

ż

+

K(t) 0

0 K(b)


θ

z

 =

T

F̄

 (62)

where M, C and K are the assembled global mass, damping and stiffness
matrices with superscript (t) for torsion and (b) for bending, θ is a vector of
angular displacements, z is a combined displacement vector z = [x y]T , T are
the external torques and F are the external lateral forces F = [Fx Fy]

T . Using
the Newmark-Beta integration scheme, the equation at the kth time step can
be written in the form (e.g. [20]):K

(t)
eff 0

0 K
(b)
eff


θ(k)

z(k)

 =

Teff (k)

Feff (k)

 , (63)
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where Teff (k) and Feff (k) depend on the external force at the current time-
step and the displacement and velocity at the previous time-step. For torsion
this can be written:

Teff (k) = T(k) + c1θ̈ (k − 1) + c2θ̇ (k − 1) + c3θ (k − 1) (64)

and the coefficients ci for the Newmark-Beta scheme are:

c1 =

(
1

2β
− 1

)
M(t) +

1

fs

(
α

2β
− 1

)
C(t)

c2 =
fs
β

M(t) +

(
α

β
− 1

)
C(t)

c3 =
f 2
s

2β
M(t) +

αfs
β

C(t)

(65)

The parameter values initially chosen were: α = 0.5 and β = 0.25.

The reduction scheme of Clough and Wilson [16] was implemented to reduce
the computational cost of numerical integration. Partitioning Equation 63 with
respect to the nonlinear interface nodes (n) and internal nodes (i) for torsion
gives: K

(t)
ii K

(t)
in

K
(t)
ni K(t)

nn


 θi(k)

θn(k)

 =

 Ti,eff (k)

Tn,eff (k)

 . (66)

Eliminating θi results in:

θn(k) =
(
Knn −K

(t)
ni K−1

ii Kin

)−1 (
Tn,eff (k)−KniK

−1
ii Ti,eff (k)

)
(67)

If all non-zero external forces are included within the ‘nonlinear’ partition
then from Equations 63 and 67 this can be written in the form:

θn(k) = BTn(k) + θh (68)

where B =
(
Knn −K

(t)
ni K−1

ii Kin

)−1
, and θh is a ‘history’ term that depends

only on previous solutions. This is reminiscent of the digital filter formulation
of Equation 16, and inspection of B reveals that it tends towards a diagonal
matrix as the sampling frequency fs is increased and the spatial separation of
nonlinear nodes n increases. This is expected because there can be no instan-
taneous coupling between spatially separated degrees of freedom. The same
partitioning scheme can be carried out for the bending vibration equations,
again assuming that impact with the borehole wall does not exert any moment.

A lagrange multiplier was used to implement the surface angular velocity in-
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put. The velocity state vector and damping matrix were augmented as follows:

C(t) →

C(t) v

vT 0

 , θ̇ →

 θ̇
λ

 , T→

T

θ̇(surface)

 (69)

where the first element of v is one and is zero otherwise.

In summary, at each time step the history term θh(k) needs to be evaluated
(which involves matrix multiplications that reconstruct all the states and re-
duce them again) in order to construct the load lines of Equation 68, which
can then be solved together with the nonlinear contact laws. Therefore the
numerical complexity of the solution scheme is very similar to the digital filter
method, and it should come as no surprise that the reduced finite element
model is similarly computationally efficient.

4 Interface Models

The question remains as to how to appropriately define the nonlinear interface
laws when the drillstring makes contact with the borehole wall or at the drill-
bit. These interactions are the subject of a great deal of research (e.g. [2,21–23])
and a detailed investigation is beyond the scope of the present study. We have
chosen a simple model that is in keeping with the premise of developing a
lightweight model that is simple but captures the main effects.

4.1 Borehole wall contact

The forces acting on the drillstring by the borehole wall are represented by two
components: a normal reaction force assumed to follow a Hertzian stiffness law
and a tangential frictional force assumed to be independent of sliding velocity.

The normal reaction force FR (as defined in Figure 2) is assumed to be given
by:

FR = −kcδ
3
2 (70)

where kc is a stiffness coefficient and δ is the contact depth. It should be noted
that both the digital filter model and the Finite Element model work for an
infinite contact stiffness and the choice of finite stiffness has been made on
physical, rather than numerical, grounds.

The tangential friction force FF is given by:

FF = µ0FRVssign {Vs} ∀ Vs 6= 0 (71)
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where Vs is the relative sliding velocity, i.e. the velocity of the contact point
in the eθ direction (see Figure 2 for the sign convention used). If the sliding
velocity is zero, then the position is known by the kinematics of rolling contact
and the unknown is the contact force.

4.2 Cutting laws

The dynamics of the cutting process perhaps represents the most uncertain
nonlinear coupling: the mix of mud-flow with loose cuttings, bit-rock inter-
action, rock-type and inhomogeneity, coupling to lateral and axial dynamics,
regenerative effects and cutter wear all contribute to a highly complex interac-
tion. These effects are not beyond the capability of the modelling strategy, but
the cutting model was selected in the spirit of choosing the simplest possible
model.

There are several studies investigating the average relationship between the
dynamic torque (Td), weight-on-bit (WOB), and depth of cut per revolution
(DOC). Note that the rate-of-penetration (ROP) is intrinsically related to
depth of cut per revolution, as DOC=ROP/RPM. The approach selected
for this study follows Detournay et al. [23], which represents a thorough
data-driven investigation that draws out key relationships from experimen-
tal drilling tests for two example rock types. The relationships between Td,
WOB, and DOC were fitted to a piece-wise linear law corresponding to differ-
ent cutting regimes.

An example is shown in Figure 4(a) for sandstone (dashed, red) and shale
(solid, blue) scaled for a 30 cm (12 inch)) drillbit. This represents a rather
large diameter hole consistent with the dimensions of the academic example
system described next in Section 5. Figure 4(a) shows torque and (b) shows
the depth of cut per revolution, both as a function of weight-on-bit. In the
present study, the weight-on-bit is assumed to be constant as axial dynamics
have been neglected, and the cutting torque follows the relationship shown in
Figure 4(a).

For the following simulations a distinction is made between the dynamic torque
limit Td and the static torque limit Ts (taken to be Ts = 1.2Td).

5 Test cases

A sequence of numerical simulations have been carried out on an idealised
drillstring. The aims of this section are to: compare the digital filter approach
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with the finite element model; demonstrate the efficiency achieved by assum-
ing nonlinearities are localised; and qualitatively validate the methodology by
simulating commonly observed phenomena.

The idealised geometry used for these initial explorations is summarised in
Table 2. The total length is 1 km and is divided into two sections: 900 m of
periodic drillpipe connected to 100 m of larger diameter uniform drillcollar
representing the Bottom Hole Assembly (BHA). The system parameters have
deliberately been chosen to be unrepresentative of industry practice for IP
reasons: the results should therefore be interpreted as illustrative. Two sce-
narios will be considered: (A) with a single nonlinearity at the drillbit (either
nonlinear cutting law or borehole wall frictional contact); and (B) with three
nonlinearities at discrete stabiliser locations along the BHA (with both cutting
and borehole contact included). A sketch is shown in Figure 5 that illustrates
these scenarios: the borehole nonlinearity for Scenario (1) is at Site 3 and for
Scenario (2) is at Sites 1, 2 and 3. This academic test case exemplifies a wide
range of phenomena and provides proof-of-concept for the feasibility of further
parametric studies.

For these example simulations, the pre-compression C is chosen to be zero. It’s
effect has been investigated, but for loads that do not cause buckling it does
not significantly affect the qualitative behaviour of the drillstring. Choosing
zero compression allows easier comparison with the Finite Element model (for
which pre-compression has not been included).

5.1 Linear Dynamics

Before carrying out nonlinear simulations, the linear dynamics of the idealised
test case will be briefly described. Figure 6(a) shows the reference torsion
transfer function from surface angular displacement to downhole angular ve-
locity calculated using periodic structure theory. The filters were calculated
over a bandwidth corresponding to two stop-bands of the torsional response:
these are clearly visible at approximately 150 Hz and 300 Hz. There are ap-
proximately 100 resonant peaks in-between each stop-band as expected with a
100-segment periodic system. The non-trivial details of the transfer functions
arise from the non-uniform periodicity: segments 0–90 are periodic, while 90–
100 is a thicker section of uniform cross-section. The finite element implemen-
tation required approximately 2000 elements to provide convergence over the
same bandwidth as computed for the digital filters.

Figure 6(b) shows the reference bending driving point transfer function at the
bottom end of the drillstring. Damping is significantly higher for bending vi-
bration, and travelling waves in a beam are intrinsically dispersive so there is
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not such an intuitive pattern to the transfer functions. Finite element trans-
fer functions (not shown) over this bandwidth had also converged with 2000
elements.

Figure 7(a) shows the downhole angular velocity response to a 60 rpm step
change in surface angular velocity, using both the digital filter and finite ele-
ment models. It can be seen that the two methods give a very similar response.
There is a delay of approximately 0.3 seconds due to the time taken for the tor-
sion wave to travel from surface to bottom and whole round-trip reflections at
subsequent 0.6 second intervals are also apparent. The details of the response
are more complicated due to significant internal reflections occurring in the
thicker 100 m section at the end of the drillstring. The difference between the
two predictions is shown beneath the response: the peak in this difference is
due to a small difference in the predicted initial delay. The other differences
are due to additional high-frequency signal content in the finite element pre-
dictions, most likely a result of differences in numerical damping between the
two integration schemes.

Figure 7(b) shows the downhole displacement response to a band-limited unit
lateral impulse (1 Ns) at t = 1 second with duration 0.02 seconds applied at
the end of the drillstring. The delay of 1 second before applying the lateral
impulse was to ensure that the downhole angular velocity was non-zero at
the time of impulse. The difference between the digital filter and finite ele-
ment predictions is much more obvious: this is partly an artefact of plotting
displacement instead of velocity which exaggerates low frequency errors. The
difference is most likely because the digital filter integration scheme is inher-
ently first order, while the Newmark-Beta integration scheme of the Finite
Element model is second order.

5.2 Single Contact Behaviour

5.2.1 Torsional stick-slip oscillation

The self-excited torsional vibration of the drillstring has previously been ex-
plored in [24] using the digital filter approach. A similar set of simulations
is carried out here in order to determine the operating parameter space over
which stick-slip oscillation can be sustained and to compare the digital filter
predictions with the finite element model. The cutting law is based on drilling
through sandstone, using the law described in Section 4.2.

It turns out that the Newmark-Beta integration scheme used for the finite el-
ement model is numerically unstable in torsion during sticking, using γ = 0.5
and β = 0.25. It has already been seen that the high frequency behaviour is
less damped in the finite element implementation than the digital filter ap-
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proach (e.g. see Figure 7(a)). It may seem surprising that there is any issue of
stability here: Newmark-Beta integration with the chosen parameters should
be unconditionally stable. The difficulty is that ‘sticking’ can be viewed as a
feedback loop with infinite velocity gain. The issue can be resolved by intro-

ducing small numerical damping using γ = 0.52 and β =
1

4
(
1

2
+ γ)2 = 0.2601.

Two example time-domain simulation using the two methods is shown in Fig-
ure 8, which will be referred to as case (a) and (b) according to the subfigure
labels. It can be seen that both predictions undergo an initial ‘sticking’ phase,
before suddenly slipping. The dynamic friction is assumed to be less than the
static friction (Ts = 1.2Td), so the step change in torque sends a travelling
wave up the drillstring which is reflected at the surface and travels back down
the drillstring with the opposite sign. When this wave reaches the bottom it is
sometimes sufficient to cause the drill bit to reach zero velocity and be ‘recap-
tured’ by the frictional contact, as seen in case (b). The digital filter and finite
element models show good agreement, with only small differences of detail: for
case (a) this translates to a small difference in predicted sticking duration; and
for case (b) this causes the stick-slip oscillation period to be slightly different,
hence the apparently large peak errors for these figures is misleading. So it
seems that the emergent features of the predictions are consistent and follow
the same trends, and the differences give some indication of the reliability of
the quantitative properties of the predictions.

Each feature of Figure 8 can be approximated analytically. The delay before
initial slip τ1 is dominated by the time taken for the drillstring torque to reach
its limiting value, and can be estimated using:

τ1 =
Ts

Ωkeff

(72)

where Ts is the static torque limit, Ω is the steady surface angular velocity, keff

is the effective static torsional stiffness of the whole drillstring. It is assumed
that the static torque limit is 20 % larger than the dynamic slipping torque
Td. For this drillstring then case (a) gives τ1 ≈ 3.5 seconds, and case (b) gives
τ1 ≈ 14.2 seconds. These estimates can be seen to be in good agreement with
the numerical simulations.

For case (b) where the system begins stick-slip oscillation, the subsequent slip
duration τ2 can be estimated as the time taken for a torsion wave to travel to
surface and back. This is easily estimated from the torsional group velocity
vg = 3.2 kms−1 and the total drillstring length Lt = 1 km, i.e. τ2 = Lt/vg ≈
0.6 seconds. Finally the sticking duration τ3 can be estimated as the time taken
for the frictional torque to ramp up from the dynamic to the static frictional
torque limits:

τ3 = [Ts − Td]Ωkeff (73)
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For case (b) this is estimated to be τ3 ≈ 2.4 seconds. This regime of friction-
induced vibration corresponds to a ‘relaxation oscillation’ in the friction liter-
ature (e.g. Putelat [25]).

Finally it is possible to estimate the stability boundary using a simple criterion
for this kind of stick-slip oscillation. Stick-slip can only occur if the reverse
torsional wave that is reflected from the surface is large enough to cause the
drillbit to reach zero velocity. This can be estimated by determining whether or
not the minimum value of the step response is greater than the surface RPM.
In other words, stick-slip oscillation is expected to be able to be sustained if:

Ω < [Ts − Td]∆ (74)

where ∆ is the largest undershoot of the unit step response at the drillbit:

∆ = −
[
min
t>0

(∫ t

0
d

(t)
NNdt

)]
(75)

A parametric study was carried out to identify the operating parameter space
over which stick-slip can be sustained. Two operating parameters are varied:
the drilling speed and the weight-on-bit (which maps to a dynamic torque
limit Td according to Figure 4(a) and assuming drilling through sandstone). A
summary of results is shown in Figure 9: the case studies above are shown as
triangles; crosses indicate time-domain simulations that did not sustain stick-
slip; circles show cases that did stick-slip. Note that the parameter space is
not very representative of industry practice, as the selected case study is for
an academic geometry and results are intended to be illustrative of trends and
to demonstrate the capability of the modelling approach. For each simulation
both the digital filter and finite element methods predicted the same type of
behaviour. The solid line shows the analytic boundary from Equation 74 and
mapped to weight-on-bit using Figure 4(a) (sandstone), which is in excellent
agreement with numerical simulations. It is clear that stick-slip oscillation
can be sustained at slow drilling speeds and with large weight-on-bit. This is
consistent with field observation and provides proof-of-concept for a tool to
further explore parameter dependencies of the stick-slip boundary.

With this setup the filters took approximately 10 seconds to compute, and
a 10-second time domain simulation coupled to a single-contact nonlinearity
took approximately 120 seconds to compute. The finite element matrices took
5 seconds to compute and an equivalent simulation took 60 seconds. This
demonstrates the efficiency of the approach and allows fast exploration of
different situations.
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5.2.2 Transient Lateral Excitation

The next logical step is to simulate a lateral transient disturbance at the
drillbit which causes side-contact with the borehole wall (in the absence of
cutting). Two inputs are applied: a step change of 60 RPM in surface angular
velocity at t = 0 seconds, followed by a band-limited lateral impulse applied
at t = 1 second, with duration 0.02 seconds and amplitude I = 3I0, where
I0 is the amplitude required for the drillstring to just make contact with the
borehole wall. A Coulomb friction law is assumed at the interface between
the drillstring and borehole wall, without distinguishing between static and
sliding coefficients of friction. The coefficient of friction is taken to be µ0 = 0.5.
Figure 10 shows the digital filter and finite element predictions for (a) the
displacement from the centre of the borehole to the centre of the drillstring
and (b) the trace of the centre of the drillstring. The dashed line represents the
clearance radius in both (a) and (b). It can be seen that the impulse causes
a sudden deviation from the centre of the borehole which initiates contact
with the borehole wall. The rotating drillstring and the frictional contact then
induce motion in the negative y direction, but the conditions are not right for
sustained backward whirl and the drillstring begins to return to the borehole
centre after approximately 1–2 seconds of contact. It can be seen that the two
methods give good agreement, where the main difference is again most likely
due the difference in order of integration scheme between the digital filter and
Finite Element models.

The simulation results shown in Figure 10 use a finite contact stiffness coeffi-
cient kc = 1× 109: it was noted in Section 2.3.2 that a finite contact stiffness
is not a numerical convenience and the case of infinite contact stiffness is
readily computed. This is because the first coefficient of the discretised dig-
ital filters is non-zero which prevents a singularity in the contact force. To
demonstrate, Figure 11 shows the infinite contact stiffness case equivalent to
Figure 10. As expected, it can be seen that there is no longer any penetra-
tion into the borehole wall but that otherwise the behaviour is very similar: a
period of high-frequency intermittent contact before borehole contact is lost.
The remainder of simulations use a finite contact stiffness, but this choice is
physics-based rather than for numerical convenience and for all cases tested
the infinite contact stiffness simulations do not differ substantively.

Figure 12 shows a similar comparison using a higher coefficient of friction
(µ0 = 2) and keeping the impulse amplitude the same (I = 3I0). From (a) it
can be seen that contact is maintained after the initial impact, and from (b)
close inspection reveals the direction of travel of the centre of the drillstring
is clockwise which is consistent with backward whirl as the drillstring itself is
rotating anticlockwise. The details of the transients differ somewhat in each
prediction but the overall features are similar. It can also be seen that the
equilibrium backward whirl radius is slightly larger for the digital filter pre-
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dictions which is most likely to be due to the difference in integration schemes:
the digital filter method uses a simple first-order scheme, while the finite ele-
ment uses a second-order scheme. Despite differences in detail, the emergent
behaviour is reassuringly similar for both simulation methods, and suggests
that broad features of the predictions are robust.

Both models assume that nonlinearities are localised with potential contact
locations that have been identified in advance. The finite element model readily
allows the whole drillstring response to be reconstructed (it is also possible
using the digital filters approach but more cumbersome). Figure 13 shows
the peak lateral displacement along the length of the drillstring for the two
example simulations shown in Figure 10 and 12. In both of these cases it can be
seen that the maximum response does occur at the site of the nonlinearity and
the local nonlinearity assumption is valid if the borehole clearance is assumed
to be constant at 15 mm. However, other scenarios could be envisaged where
the borehole clearance is unexpectedly exceeded. An adaptive substructuring
strategy could be developed for handling the class of problem where contact
locations are unknown, but this is beyond the scope of the present study.

It is natural to use the model to explore the initiation conditions for backward
whirl. A Monte Carlo test was carried out varying impulse amplitude and the
coefficient of friction over the ranges 0.9I0 < I < 5I0 and 0.5 < µ0 < 3. Fig-
ure 14 shows a summary of the results: ‘×’ backward whirl was not sustained
in either model; ‘2’ backward whirl was predicted by the finite element model
but not the digital filter model; ‘◦’ backward whirl was predicted by both
models. The two triangles represent the examples shown above in Figures 10
and 12. It can be seen that agreement between the two methods is good where
only a narrow band of cases gave different results (‘2’). For this test system,
a single lateral impulse only triggers backwards whirl if the coefficient of fric-
tion is large (µ0 > 1). This is perhaps unsurprising as the impulse leads to an
orthogonal impact with the borehole wall, so frictional forces would need to
be very strong to push the system into a whirling state (tangential motion)
before rebound occurs. Although there is a clear boundary it is not obvi-
ous how this might be predicted in advance: these simulations demonstrate a
proof-of-concept efficient simulation approach that allows some progress to be
made.

5.2.3 Eccentricities

The effect of drillpipe (or drillcollar) eccentricities can be accounted for in
an ad-hoc fashion by assuming that the eccentricity is a lumped mass me

with offset d. It is further assumed that the dominant force acts in the radial
direction with magnitude me(d+ r)θ̇2, where r is the distance from the centre
of the borehole to the centre of the drillstring. This force is correct for steady-
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state forward whirl and although eccentricity could be accounted for more
carefully to include coriolis terms, it is hypothesised that its main effect is
to cause forward whirl. Therefore these simple assumptions are expected to
capture the main effects, even if the transient details are not fully captured.

By way of example, it is assumed that there is an eccentricity of med =
100 kgm at the end of the drillpipe, and the input surface angular velocity
is taken to be a step of 60 RPM as before. Figure 15(a) shows the drillstring
displacement from centre, and (b) shows the x− y trace. It can be seen that
the eccentricity causes contact to be made with the borehole wall, then fric-
tional forces cause an initial transient which is in the opposite direction to
the drillstring rotation but that the eccentric force dominates leading to for-
ward whirl. There is broad agreement between the two predictions, with small
differences visible in the details of the transients and equilibrium radius.

5.3 Multi-Contact Behaviour

In all of the above examples it has been assumed that nonlinearity is confined
to a single location: a multi-contact scenario is now considered. It is assumed
that contact can occur at three downhole sites: 100 m, 50 m and 0 m from the
drillbit corresponding to Sites (1), (2) and (3) respectively. It is assumed that
these sites represent stabiliser locations where the clearance is at a minimum.
The surface angular velocity profile is a step of 60 RPM, and at t = 1 second
a lateral impulse is applied at Site (2). The side-wall coefficient of friction is
taken to be µ0 = 0.5. This all represents an artificial test case: the purpose is
simply to provide proof of concept for the applicability of the model to handle
multiple nonlinearities.

Figure 16 shows the displacement amplitude for two example simulations. The
left-side plots (a,c,e) show the predictions for Sites (1), (2), and (3) respectively
with µ0 = 0.5. The right-side plots (b,d,f) show the equivalent predictions
with µ0 = 2. It can be seen in (a,c,e) with µ0 = 0.5 that side-wall contact is
not sustained while in (b,d,f) backward whirl is initiated. The behaviour is
similar to the single contact case shown in Figure 12, but in this multi-contact
scenario the transient behaviour is more complicated: the disturbance impulse
causes impact events at all three sites and the resulting whirling behaviour is
not steady, particularly in (f) it can be seen that the drillstring intermittently
loses contact with the borehole wall.

Figure 17 shows a parametric study investigating the initiation conditions of
backward whirl, equivalent to the single-contact study shown in Figure 14.
The results are similar to the previous single-contact case: high amplitude
disturbances together with a high coefficient of friction consistently lead to

28



sustained backward whirl. Squares indicate cases for which the finite element
model predicted backward whirl, but the digital filter method did not. In
most cases the discrepancies fall on an obvious boundary as before. On closer
inspection it can be seen that the boundary in this case is slightly lower than
for the single contact case: this is perhaps due to the additional contacts
resulting in a higher effective frictional force which tend to push the system
towards backward whirl. It would be interesting to explore how this boundary
moves as the number of allowed contact points increases and in the limit as
distributed contact is considered: however, this falls beyond the scope of the
present study.

5.4 Computational Costs

Both the digital filter and the Finite Element models are based on a discreti-
sation of the drillstring and a reduction to ‘nonlinear’ degrees of freedom. The
digital filter approach is based on discretising in time the impulse response
functions corresponding to the nonlinear degrees of freedom. Finding the im-
pulse response functions represents a fixed overhead computational cost: the
filters for the multi-contact test case above took approximately 10 seconds on
a laptop (late-2011 macbook pro, quad core 2.5 GHz Intel Core i7). This cal-
culation could be carried out once for a given set of parameters characterising
the linear dynamics of the drillstring. On average, a 10 second simulation with
fs ≈ 640 Hz and with three sites of nonlinearity took approximately 250 sec-
onds to compute. The memory required for the multi-contact test case above
was very small at around 20 MB, including all variables used for a 10 second
simulation and storage of results.

The Finite Element model is based on discretising the drillstring in space to
generate mass, damping and stiffness matrices. Calculation of these matrices
represents a fixed overhead cost: the matrices for the multi-contact test case
above took approximately 6 seconds. On average, a 10 second simulation with
three sites of nonlinearity took approximately 150 seconds to compute. The
memory required was small at around 120 MB, including all variables and
storage of results.

The differences in computation time and required memory are not significant,
as they are most likely due to particular choices of implementation in the
Matlab code and also choice of discretisation resolution for the two meth-
ods. Fundamentally the two methods have rather similar requirements, which
is most obvious from the similarity of the time-stepping equations for each
method: Equations 61 and 68.
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6 Concluding Remarks

Two efficient models for predicting the nonlinear dynamics of the full length
of a drillstring have been presented: (1) using a digital filter approach; and
(2) using the finite element method. In both methods efficiency is achieved
by assuming that the dominant sources of nonlinearity are spatially localised,
allowing reduction of the system to the nonlinear degrees of freedom.

The method was applied to a 1 km drillstring and was shown to be able to
efficiently demonstrate a range of phenomena observed in the field: stick-slip
oscillation; forward whirl and backward whirl. Parametric studies confirmed
field observations that stick-slip oscillation is sustained at low drilling speeds
and high weight-on-bit, and a simple analytic criterion for the stability bound-
ary was derived and found to be in good agreement with numerical simulations.
The initial conditions of backward whirl were explored and appeared to reveal
a bound for the coefficient of friction, below which backward whirl could not
be initiated. As the coefficient of friction was increased, a smaller amplitude
disturbance was able to initiate backward whirl.

A multi-contact scenario was presented which demonstrated similar behaviour
for disturbance-initiated backward whirl. A slightly lower coefficient of friction
and disturbance amplitude were found to initiate backward whirl, but the
effect was relatively small. The initial parameter studies carried out motivate
further research into the operating conditions that lead to high amplitude
vibration regimes: this is the subject of ongoing research.

All simulations were carried out using both the digital filter and finite element
methods: good agreement was observed in all cases, particularly in terms of
the emergent qualitative behaviour of the system. Differences in the details of
the predictions were observed, giving some indication as to the precision of
predictions.

Both methods were found to be extremely efficient and could still predict key
phenomena commonly observed in drillstring dynamics, suggesting that the
local nonlinearity approximation may be appropriate for further parametric
investigation of this class of problem. The key advantages of the digital filter
approach are that the impulse response characterisation provides more physi-
cal intuition of the system behaviour, and the relevant impulse responses could
potentially be identified using a variety of methods (numerical or perhaps ex-
perimental). The main advantage of the Finite Element formulation is that it
is a more commonly used framework which makes it more straightforward to
apply to existing models.
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Notation

Symbol Definition

BHA Bottom Hole Assembly (end section of drillstring)

DOC Depth of cut per revolution (m)

ROP Rate of penetration (ms−1)

RPM Revolutions per minute

WOB Weight on bit (N)

hilb Discrete Hilbert Transform

IDFT Inverse Discrete Fourier Transform

•∗ Complex conjugate

•T Transpose

•̄ Frequency domain variable

•̇ Differentiation with respect to time

•′ Differentiation with respect to distance along drillstring

•h ‘History’ term: convolution involving only past states

∗ Convolution operation

A Overall impulse response matrix

a Contributions of eigenvectors to solution

A Drillstring cross-sectional area (m2)

C Drillstring pre-compression (N)

C(b) Finite Element damping matrix (bending)

cb Damping coefficient for bending (Nsm−2)

ct Damping coefficient for torsion (Nmsrad−1)

C(t) Finite Element damping matrix (torsion)

D(b) Input-output frequency domain matrix (bending)

D(t) Input-output frequency domain matrix (torsion)

E Overall vector of inputs

E Young’s modulus (GPa)

fs Sampling frequency (Hz)
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F Combined vector of lateral forces (N)

FF Total external force in frictional (tangential) direction
(N)

FI External force disturbance vector (N)

FN External force contribution from contact in normal direc-
tion (N)

FR Total external force in radial (normal) direction (N)

FT External force contribution from contact in tangential
direction (N)

Fx Total external force in x-direction (N)

Fx Vector of external forces in x-direction (N)

Fy Total external force in y-direction (N)

Fy Vector of external forces in y-direction (m)

G Shear modulus (GPa)

G(t) Matrix of impulse response functions (torsion)

H(t) Matrix of impulse response functions (bending)

Ḡ(jω) Matrix of transfer functions (torsion)

H̄(jω) Matrix of transfer functions (bending)

I Second moment of area (m4)

I0 Impulse amplitude needed to just initiate borehole wall
contact (N)

I Impulse amplitude normalised to I0

J Polar moment of inertia (kgm2)

k Time index

K Effective linearised feedback gain for digital filter stabil-
ity analysis

K(b) Dynamic stiffness matrix (bending)

K(b) Finite Element stiffness matrix (bending)

K
(b)
eff Effective stiffness from Newmark-Beta integration (bend-

ing)

kc Contact stiffness coefficient (Nm−1)
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K(t) Dynamic stiffness matrix (torsion)

K(t) Finite Element stiffness matrix (torsion)

K
(t)
eff Effective stiffness from Newmark-Beta integration (tor-

sion)

L1,2 Length of (1) pipe and (2) joint section of drillstring (m)

M(t)
n Transfer matrix for the nth pipe and joint section (tor-

sion)

M(b)
n Transfer matrix for the nth pipe and joint section (bend-

ing)

Mmn Internal bending moment at interface between two sec-
tions of drillstring (Nm)

M(b) Finite Element mass matrix (bending)

me Eccentric mass (kg)

M (ext)
n External bending moment at end of n section of drill-

string (Nm)

M(t) Finite Element mass matrix (torsion)

P Top partition of Φ

Q Bottom partition of Φ

Ri Magnitude of ith eigenvalue ofM(t,b)
n

Rn Radial displacement of n section of drillstring

r1,2 Internal radius of (1) pipe and (2) joint section of drill-
string (m)

R1,2 External radius of (1) pipe and (2) joint section of drill-
string (m)

S Scaling matrix to prevent ill-conditioning

Smn Internal shear at interface between two sections of drill-
string (N)

S(ext)
n External shear force at end of n section of drillstring (N)

Ti Torque at end of ith pipe and joint section (Nm)

t Time (s)

T(ext) External torque vector (Nm)

Ts, Td Static and dynamic friction torque limits (Nm)
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U Overall vector of outputs

vg Group velocity (ms−1)

v Augmentation vector

Vs Side-wall sliding velocity (ms−1)

W Localised self-weight (N)

x Displacement (m)

x Vector of x-displacements (m)

y Displacement (m)

y Vector of y-displacements (m)

z Combined vector of lateral displacements (m)

α, β Newmark-Beta integration parameters

δ Contact penetration (m)

∆ Largest undershoot of unit driving point step response at
drillbit (m)

Γ(b) First order matrix for bending

Γ(t) First order matrix for torsion

Λ Eigenvalues of M(t)
n

λ Lagrange multiplier

µ0 Side-wall coefficient of friction

ω Frequency (rads−1)

Φ Right eigenvectors of M(t)
n

Ψ Left eigenvectors ofM(t)
n

ρ Density (kgm−3)

τi Stick-slip characteristic times (s)

θ, θ̇, θ̈ Angular position, velocity and acceleration (rad, rads−1,
rads−2)

ξ Distance along drillstring from surface (m)
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ḠN0

Fig. 3. Block diagram for torsion with frictional feedback.

0 10 20 30 40 50
0

1

2

3

4

5

6

Weight−on−bit (WOB, kN)

C
ut

tin
g 

to
rq

ue
 (

kN
m

)

 

 

Shale
Sandstone

(a)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Weight−on−bit (WOB, kN)

D
ep

th
−

of
−

cu
t p

er
 r

ev
ol

ut
io

n 
(D

O
C

, m
m

)

 

 

Shale
Sandstone

(b)

Fig. 4. Relationship between weight-on-bit, torque and depth-of-cut for a 12 inch
drillbit for sandstone (red dashed line) and shale (blue solid line): (a) torque; and
(b) depth of cut per revolution.
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Fig. 6. Example transfer functions to illustrate the linear dynamics of the example
test system: (a) surface to downhole angular velocity ḠN0(iω); and (b) downhole
lateral force to displacement H̄NN (iω).
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Fig. 7. Comparison of digital filter predictions with finite element predictions for
the transient response of a linear drillstring: (a) downhole angular velocity response
to 60 RPM step change in surface velocity; and (b) downhole lateral response to
unit impulse.
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Fig. 10. Comparison of digital filter predictions with finite element predictions for
the nonlinear transient response of the drillbit to an impulse of amplitude I = 3I0

with side-wall coefficient of friction µ0 = 0.5: (a) radial displacement as a function of
time; and (b) x−y trace of the displacement. The dashed line represents the borehole
clearance radius. The drillstring makes temporary contact with the borehole wall.
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Fig. 11. Comparison of digital filter predictions with finite element predictions for
the nonlinear transient response of the drillbit to an impulse of amplitude I = 3I0

with side-wall coefficient of friction µ0 = 0.5 using an infinite contact stiffness: (a)
radial displacement as a function of time; and (b) x− y trace of the displacement.
The dashed line represents the borehole clearance radius. The drillstring makes
temporary contact with the borehole wall.
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Fig. 12. Comparison of digital filter predictions with finite element predictions for
the nonlinear transient response of the drillstring to an impulse of amplitude I = 3I0

with coefficient of friction (µ0 = 2): (a) radial displacement as a function of time;
and (b) x − y trace of the displacement. The dashed line represents the borehole
clearance radius. The drillstring makes contact with the borehole wall which then
leads to sustained backward whirl.
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Fig. 13. Reconstruction of peak lateral amplitude of whole drillstring response.
The dashed line shows the transient contact simulation with coefficient of friction
µ0 = 0.5 and the solid line shows the example backward whirl simulation with
coefficient of friction µ0 = 2.
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Fig. 14. Initiation conditions for backwards whirl, varying impulse amplitude I/I0

and coefficient of friction µ0: sustained backwards whirl (circles); transient response
(crosses); and discrepancies between finite element and digital filter predictions
(squares).
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Fig. 15. Comparison of digital filter predictions with finite element predictions
for the nonlinear transient response of the drillstring with an eccentricity of
med = 100 kgm: (a) radial displacement as a function of time; and (b) x − y trace
of the displacement. The dashed line represents the borehole clearance radius. The
drillstring makes contact with the borehole wall which then leads to sustained for-
wards whirl.
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Fig. 16. Comparison of digital filter predictions with finite element predictions for
the nonlinear transient response of the drillstring to an impulse of amplitude I = 3I0.
The left-side plots (a,c,e) are for a coefficient of friction µ0 = 0.5; while the right-side
plots (b,d,f) are for µ0 = 2. The pair (a,b) show the predicted response for Site (1);
(c,d) show Site (2); and (e,f) show Site (3). The horizontal dashed line shows the
amplitude
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Fig. 17. Initiation conditions for backwards whirl for a drillstring with three points
of contact, varying impulse amplitude I/I0 and coefficient of friction µ0: sustained
backwards whirl (circles); transient response (crosses); and discrepancies between
finite element and digital filter predictions (squares).
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Type Property Value

General

Shear modulus (G) 80 GPa

Young’s modulus (E) 210 GPa

Density (ρ) 7840 kgm−3

Damping (torsion) (ct) 10 Nmsrad−1

Damping (bending) (cb) 2 kNs

Drillpipe

Number of segments (N) 90

Internal radius of pipe (r1) 0.05 m

External radius of pipe (R1) 0.125 m

Length of pipe (L1) 9.5 m

Internal radius of joint (r2) 0.05 m

External radius of joint (R2) 0.15 m

Length of joint (L2) 0.5 m

Drillcollar

Number of segments (N) 10

Internal radius (r1) 0.05 m

External radius (R1) 0.15 m

Length (L1) 10 m

Table 2
Drillstring parameters used for test cases.
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