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SUMMARY

Themycobacterial ESX-1 virulence locus accelerates
macrophage recruitment to the forming tuberculous
granuloma. Newly recruited macrophages phagocy-
tose previously infected apoptotic macrophages to
become new bacterial growth niches. Granuloma
macrophages can then necrose, releasing mycobac-
teria into the extracellular milieu, which potentiates
their growth even further. Using zebrafish with ge-
netic or pharmacologically induced macrophage
deficiencies, we find that global macrophage deficits
increase susceptibility to mycobacterial infection by
accelerating granuloma necrosis. This is because
reduction in the macrophage supply below a critical
threshold decreases granulomamacrophage replen-
ishment to the point where apoptotic infectedmacro-
phages, failing to get engulfed, necrose. Reducing
macrophage demand by removing bacterial ESX-1
offsets the susceptibility of macrophage deficits.
Conversely, increasing macrophage supply in wild-
type fish by overexpressing myeloid growth factors
induces resistance by curtailing necrosis. These find-
ings may explain the susceptibility of humans with
mononuclear cytopenias to mycobacterial infections
and highlight the therapeutic potential of myeloid
growth factors in tuberculosis.

INTRODUCTION

The pathological hallmark of tuberculosis (TB) is the granuloma,

a cellular aggregate consisting of macrophages and other im-

mune cells (Ramakrishnan, 2012). Studies in theMycobacterium

marinum-zebrafish model of TB find that despite the ability
C

of participating macrophages to partially restrict mycobacterial

growth, the bacteria can actually co-opt the tuberculous granu-

loma to expand intracellularly (Clay et al., 2008; Davis and

Ramakrishnan, 2009; Pagán and Ramakrishnan, 2014). Myco-

bacteria accomplish this by accelerating recruitment of unin-

fected macrophages to the growing granuloma. Multiple newly

recruited cells phagocytose previously infected macrophages

that have undergone apoptotic death.

The mycobacterial ESX-1/RD1 virulence locus promotes

both apoptosis of infected macrophages and recruitment of

new macrophages to the granuloma (Davis and Ramakrishnan,

2009; Volkman et al., 2004). Accordingly, the attenuated infec-

tion by ESX-1 mutant mycobacteria, including the BCG vaccine

strain, is characterized by reduced granuloma and bacterial

growth (Lewis et al., 2003; Volkman et al., 2004). Thus, the phase

of cellular granuloma growth with its attendant intracellular bac-

terial expansion is driven by a mycobacterium-mediated in-

crease in macrophage demand. It is this increased macrophage

demand that converts the granuloma from a protective to a path-

ogenic entity in this initial cellular phase.

In active human TB, granulomas can progress to central

necrosis caused by lysis of the infected macrophages that re-

leases viable mycobacteria into a growth-permissive extracel-

lular milieu (Pagán and Ramakrishnan, 2014). Thus granuloma

necrosis can be accompanied by accelerated mycobacterial

growth and result in increased disease severity and transmissi-

bility (Cambier et al., 2014). In this work, we have linked granu-

loma necrosis to a critical reduction in the available macrophage

supply to the granuloma. We monitored granuloma formation

and fate together with bacterial expansion in zebrafish where

macrophage supply was manipulated. We assessed the impact

of macrophage deficiency states in animals lacking colony-stim-

ulating factor-1 receptor (Csf-1r) or interferon regulatory factor

8 (Irf8) or after pharmacological macrophage depletion with

clodronate-loaded liposomes (lipo-clodronate). Macrophage

deficiency states exacerbated granuloma necrosis by acceler-

ating depletion of the macrophage supply. This necrosis could
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be delayed by reducing macrophage demand in the granuloma.

Conversely, a macrophage surplus created by overexpressing

csf1 in wild-type animals curtailed granuloma necrosis. This

work highlights the role of an adequate macrophage supply in

increasing host resistance by limiting infected macrophage ne-

crosis and extracellular bacterial expansion.

RESULTS

Zebrafish csf1r Mutants Have a Persistent Global
Macrophage Deficit from Early in Development
Because mice deficient in CSF-1R signaling have a global

macrophage deficit (Cecchini et al., 1994; Dai et al., 2002; Stan-

ley and Chitu, 2014) and are susceptible to M. tuberculosis

(Teitelbaum et al., 1999), we sought to use CSF-1R-deficient

zebrafish to determine the role of macrophage deficiency in

TB pathogenesis. To confirm that Csf-1r-deficient zebrafish

had fewer macrophages, we generated csf1raj4blue homozygous

mutant (csf1r�/�) zebrafish (Parichy et al., 2000) expressing the

macrophage reporter mpeg1:YFP (Ellett et al., 2011; Roca and

Ramakrishnan, 2013). Similar to CSF-1R signaling-deficient

mice, csf1r mutant adult zebrafish had fewer spleen and liver

macrophages than their phenotypically wild-type csf1r+/� sib-

lings (Figure S1) (Cecchini et al., 1994; Dai et al., 2002).

The zebrafish has great utility as a TB model during its larval

transparent phase. We therefore asked if Csf-1r deficiency de-

creases macrophages from early in myeloid development, dur-

ing the primitive and transient definitive waves of hematopoiesis.

Primitive macrophages are specified in the rostral lateral plate

mesoderm from 12 hr post-fertilization and then disperse

throughout the embryo (Herbomel et al., 1999; Lieschke et al.,

2002). A subset of these macrophages migrates to the brain in

a Csf-1r-dependent manner to become microglia, the tissue-

resident macrophages of the brain (Clements and Traver,

2013; Herbomel et al., 2001). csf1rmutant larvae had 80% fewer

microglia by 3 days post-fertilization (dpf) (Figures S2A and S2B)

(Herbomel et al., 2001), similar to the deficit in mice (Ginhoux

et al., 2010).

The second wave of zebrafish hematopoiesis initiates in the

caudal hematopoietic tissue (CHT) by 32 hpf before it transitions

into the adult kidney through developmental pathways analo-

gous to the transition of hematopoiesis from mouse fetal liver

to adult bone marrow (Clements and Traver, 2013; Ginhoux

and Jung, 2014). At 3 dpf, csf1rmutants had 14% fewer macro-

phages in the CHT, a deficit that became more pronounced by 6

dpf (49% reduction) and extended to other tissues normally

populated by these macrophages (56%, 76%, and 69% reduc-

tion in the pericardium, dorsal region, and tail fin, respectively)

(Figures S2C and S2D). In contrast, the microglial deficit was

less marked at 6 dpf than at 3 dpf, consistent with prior findings

(Figure S2D) (Herbomel et al., 2001). Neutrophils were not

reduced in csf1r mutants (Figure S2E).

Finally, as in mammals, zebrafish csf1r mutant macrophages

were more spherical and moved more slowly than wild-type

macrophages (Figures S2F–S2H and Movies S1 and S2) (Boo-

cock et al., 1989; Sampaio et al., 2011; Stanley and Chitu,

2014; Webb et al., 1996). In sum, zebrafish csf1r deficiency reca-

pitulates key features of mammalian CSF-1R signaling defi-

ciency with a persistent deficit in monocyte/macrophage lineage
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cells as well as phenotypic differences—all from the earliest

developmental stages.

Adult and Larval Zebrafish csf1r Mutants Are
Hypersusceptible to M. marinum

We confirmed that adult zebrafish csf1rmutants were hypersus-

ceptible to M. marinum. Similar to mice lacking CSF-1, a ligand

for CSF-1R, they succumbed to infection earlier than wild-type

siblings (Figure 1A) (Teitelbaum et al., 1999). Their accelerated

mortality was accompanied by higher bacterial burdens (Fig-

ure 1B). Because Teitelbaum et al. found fewer mycobacteria

transported to the lung-draining lymph nodes in mutant mice,

they have argued that CSF-1 deficiency causes susceptibility

through impaired M. tuberculosis-specific T cell priming (Teitel-

baum et al., 1999). If this were the sole defect, then susceptibility

should be manifested only in the context of an adaptive immune

response. We were able to test this directly in zebrafish larvae,

which lack functional lymphocytes (Langenau and Zon, 2005).

csf1r mutant larvae also had accelerated mortality with

increased bacterial burdens (Figures 1C–1E). This finding im-

plicated their macrophage deficit—functional, numerical, or

both—as the root cause of hypersusceptibility. To understand

this further, we assessed macrophage microbicidal capacity

andmigration that are both central to early pathogenesis and im-

munity (Ramakrishnan, 2014).

Macrophages of csf1r Mutant Zebrafish Exhibit Normal
Microbicidal Capacity In Vivo
We assessed macrophage microbicidal capacity in Csf-1r-defi-

cient versus wild-type animals by enumerating bacterial burdens

in individual macrophages 2 days post-infection (2 dpi). Mutant

macrophages had similar bacterial burdens to wild-type at this

time point (assessment of later time points is precluded by tech-

nical limitations) (Clay et al., 2008) (Figure S3A). In contrast,

consistent with their known macrophage microbicidal deficit,

Tnf receptor1-deficient larvae created by modified antisense

oligonucleotide (morpholino) knockdown had higher bacterial

burdens in their macrophages (Figure S3A). csf1r mutants also

had similar tnf levels to wild-type at baseline and after infection,

consistent with their normal microbicidal capacity (Clay et al.,

2008) (Figure S3B and data not shown). Thus, a macrophage mi-

crobicidal deficit did not appear to be the underlying mechanism

of csf1r mutant hypersusceptibility.

csf1r Mutant Granulomas Undergo Normal Cellular
Expansion Followed by Accelerated Necrosis
We next assessed the kinetics of granuloma formation in themu-

tants. Our earlier qualitative observations had suggested that

granulomas form normally in csf1r mutant fish (Davis et al.,

2002), but more quantitative analysis was warranted given our

findings that csf1r-deficient macrophages moved more slowly

under homeostatic conditions. We confirmed that mutant granu-

loma formation was similar to wild-type up to 4 dpi, showing that

themacrophage recruitment in this first phase of granuloma pro-

gression was undiminished (Figure 2A and data not shown). This

suggests that Csf-1r contributes to homeostatic macrophage

migration but not their migration to the tuberculous granuloma.

However, thereafter, we noticed a rapid progressive loss of

granuloma cellularity accompanied by the characteristic corded



Figure 1. csf1r Mutant Zebrafish Are Hypersusceptible to M. marinum Infection

(A) Survival of adult zebrafish injected intraperitoneally with �273 M. marinum or an equivalent volume of PBS (mock). n = 30 for each group.

(B) Bacterial burdens (CFU, colony-forming units) of adult zebrafish infected intraperitoneally with �115 CFU of M. marinum. Horizontal lines indicate mean

values.

(C) Survival of zebrafish larvae injected with PBS (mock) or �193 M. marinum via the caudal vein. n = 30 for each group.

(D and E) Representative images (D) and mean bacterial burden (E) of larvae infected with �200 fluorescent M. marinum via the caudal vein. Scale bar, 300 mm.

Error bars indicate standard error of the mean (SEM).

Statistical significance was determined by log-rank test (A, C) or two-tailed unpaired Student’s t test (B, E). Data are representative of more than three exper-

iments. See also Figures S1–S3 and Movies S1 and S2.
bacterialmorphology exhibitedduringextracellular growth in vivo

(Figures 2Band 2C) (Clay et al., 2008). Prior work has linked these

two phenotypes to the necrosis of infected macrophages where

the bacteria are released to grow extracellularly (Clay et al., 2008;

Tobin et al., 2010). Taken together, our findings suggested that

the first cellular phase of bacterial expansion in the granuloma

proceeds normally in the mutant, but the second phase of gran-

uloma necrosis and extracellular bacterial growth occurs earlier.

However, it was possible that this conclusion made in larvae,

which only have a few hundred macrophages, might not be rele-

vant during amore chronic infection in adult animals with a much

more abundantmacrophage supply. Sowe examined granuloma

formation and progression in response to M. marinum in adult

csf1r mutant and wild-type siblings. By 2 weeks post-infection,

granuloma formation throughout the body was occurring in

both groups—macrophage aggregates as well as organized

granulomas were seen, but with little evidence of necrosis in

either, in accordance with prior studies (Figures 2D and 2E)

(Swaim et al., 2006). By 4 weeks, granulomas were more abun-

dant and more uniformly organized in both groups with a similar
C

wide tissue distribution again, as seen previously (Swaim et al.,

2006). Wild-type granulomas were still mostly non-necrotic with

only a few displaying only partially necrotic areas (Figures 2F

and 2G). In contrast, the majority of the Csf1r-deficient granu-

lomas, whether solitary or multicentric, had completely necrotic

areaswith abundant bacteria (Figures 2H and 2I). In the csf1rmu-

tants, we occasionally observed patches of bacteria that were

apparently outside of granulomas (e.g., Figures 2H and 2I), a dis-

tribution that was absent in the wild-type animals both in this

cohort and in prior studies (Figures 2F and 2G) (Swaim et al.,

2006). This may be a consequence of bacterial outgrowth from

necrotic lesions. These findings corroborate findings in the

Csf1r-deficient larvae that granulomas form normally but un-

dergo accelerated necrosis.

Necrosis in csf1r Mutants Coincides with a Critical
Depletion of the Available Macrophage Supply
We investigated the mechanistic basis of granuloma necrosis in

csf1r mutants. We have previously shown that TNF dysregula-

tion—both deficiency and excess—causes necrosis of infected
ell Host & Microbe 18, 15–26, July 8, 2015 ª2015 The Authors 17



Figure 2. Exuberant Mycobacterial Growth in csf1r Mutants Is Associated with Granuloma Necrosis

(A) Mean granuloma diameter measured by their longest axis in larvae infected at 2 dpf via the caudal vein with�195 tdTomato-expressingM.marinum. Data are

representative of two sets of injections.

(B) Maximum-intensity projections of macrophage-repleteWT granuloma or a macrophage-depleted csf1rmutant granuloma showing early signs of cording in 5

dpi mpeg1:YFP larvae infected at 2 dpf via the caudal vein with �200 tdTomato-expressing M. marinum. Scale bar, 10 mm.

(C) Percentage of larvae with cording phenotype after infection with �190 M. marinum via the caudal vein. Average values from four separate sets of injections

from at least two independent experiments were plotted. In (A) and (C), error bars indicate SEM.

(D–I) Representative hematoxylin and eosin (left) and modified Ziehl-Neelsen (right) stains of wild-type or csf1r mutant adult zebrafish 2 weeks (D and E) or

4 weeks (F–I) post-intraperitoneal infection with�100 CFU ofM. marinum. Dotted lines delineate granulomas and solid lines indicate regions of necrosis. Arrows

indicate mycobacteria inside granulomas and arrowheads indicate mycobacteria outside of granulomas.

Scale bars, 50 mm. Two or three fish per group were used for each time point.

18 Cell Host & Microbe 18, 15–26, July 8, 2015 ª2015 The Authors



Figure 3. A Baseline Macrophage Deficit Is

Associated with an Accelerated Depletion

of the Granuloma Macrophage Supply

(A and B) Absolute numbers (A) or normalized

numbers (B) of macrophages in mpeg1:Gal4FF;

UAS:E1bKaede larvae infected with �240

M. marinum or mock injected. n = 5–9 larvae per

group. Error bars indicate SEM.

(C) Number of macrophages in the CHT of 4-dpf

mpeg1:YFP larvae 40 hr after injection of 1:10

dilution of lipo-PBS or graded doses of lipo-

clodronate.

(D and E) Bacterial kinetics of cording (D) and

burdens (E) in larvae infected with tdTomato-ex-

pressing M. marinum via the caudal vein at 2 dpf.

Statistical significance was determined by two-

tailed unpaired Student’s t test (B) or one-way

ANOVA with Sidak’s post-test (C and E). £, p =

0.02;V, p = 33 10�8; $, p = 0.004; andU, p = 0.03.

(C–E) Data are representative of three independent

experiments. See also Figure S4.
macrophages (Clay et al., 2008; Roca and Ramakrishnan, 2013;

Tobin et al., 2012), but tnf induction and microbicidal capacity

similar to that of wild-type argues against TNF dysregulation

in the csf1r mutant as the cause of granuloma macrophage ne-

crosis. Because the phase of intracellular granuloma growth is

sustained by a continuous influx of macrophages (Davis and

Ramakrishnan, 2009), we wondered if granuloma necrosis

could be accelerated by a critical depletion of an already

reduced macrophage supply in csf1r mutants. If so, we should

see a more rapid global macrophage depletion in infected csf1r

mutants. We enumerated macrophages daily in infected and

mock-infected wild-type and mutant animals. As expected,

mock-infected csf1r-deficient larvae had fewer macrophages

at all time points (Figure 3A). Their macrophage deficit remained

relatively constant throughout (Figure 3B), consistent with the

idea that Csf-1r-derived survival signals are dispensable for

maintenance of the macrophage pool, at least under homeo-

static conditions during early development. However, following
Cell Host & Microbe 18,
infection, clear differences emerged: in

wild-type there was a sharp decline

immediately after infection between

days 1 and 2 that then slowed down

(Figure 3B). This pattern was observed

in the mutant also, which had the same

initial sharp decline as wild-type (Fig-

ure 3B). Although the mutant macro-

phage decline also slowed thereafter, it

remained greater than wild-type in this

phase (Figure 3B). These results are

consistent with the onset of infection-

induced myelopoiesis that is less robust

in the mutant than wild-type.

In both mutant and wild-type granu-

lomas, bacterial cording began at time

points that coincided with macrophage

reduction to below a critical threshold

(day 4 and 6, respectively, for mutant

and wild-type; compare Figures 2C and
3A). Together, these results suggest that depletion of the avail-

able macrophage supply drives necrosis of the granuloma by

limiting its macrophage replenishment.

If depletion of the macrophage supply drives granuloma ne-

crosis in the csf1r mutants, then we should see a direct correla-

tion between the extent of global macrophage reduction and

granuloma breakdown. To test this, we treated wild-type larvae

with lipo-clodronate, which depletes macrophages without

affecting neutrophils (Bernut et al., 2014) (Figures S4A–S4C).

We dose-titrated lipo-clodronate to create graded macrophage

reductions: 47% (similar to csf1r mutants), 67%, and 84% (Fig-

ure 3C). We found that the smaller the macrophage supply, the

sooner the development of macrophage necrosis (evidenced

by bacterial cording) (Figure 3D). We again confirmed that gran-

uloma necrosis was associatedwith increased bacterial burdens

(Figure 3E). This experiment further implicated a reduction in

macrophage supply as the sole driver of granuloma necrosis in

the csf1r mutants.
15–26, July 8, 2015 ª2015 The Authors 19



Figure 4. Reducing Macrophage Demand

Delays Onset of Granuloma Necrosis

(A and B) 2-dpi larvae were infected via the caudal

vein with �300 WT or DESX-1 tdTomato-ex-

pressing M. marinum. (A) Percentage of wild-type

(black bars) or csf1r�/� larvae (gray bars) at 5

and 6 dpi. (B) Bacterial burdens at 6 dpi.

Each symbol represents individual larvae. Each

symbol represents individual larvae, and horizon-

tal lines indicate means. Statistical significance

was determined by Fisher’s exact test (A) or

one-way ANOVA with Sidak’s post-test (B). Data

are representative of two experiments. See also

Figure S4.
Reducing Macrophage Demand Curtails Granuloma
Necrosis by Delaying Depletion of the Macrophage
Supply
Our results so far suggested that the first cellular phase of gran-

uloma growth occurs when macrophage supply is not limiting

and is therefore driven mainly by macrophage demand. How-

ever, the quantity of macrophages demanded during the cellular

phase should also influence the time of onset of the necrotic

phase of the granuloma by influencing the rate of macrophage

depletion. To ask if macrophage demand alters the time to

granuloma necrosis, we compared wild-type and ESX-1 mutant

infection in wild-type animals. ESX-1 mutant granulomas ex-

panded more slowly, as we had shown before (Davis and Ram-

akrishnan, 2009). By examining infection at later time points, we

found that ESX-1 mutant granulomas did not become necrotic,

unlike their wild-type counterparts (Figure 4A). Next we tested

the effect of reducing both macrophage supply and demand

by assessing ESX-1 infection in csf1r mutant hosts. In csf1r

mutants, ESX-1 mutant bacteria produced less necrosis than

wild-type bacteria (Figure 4A). However, when we compared

ESX-1 mutant granulomas in csf1r mutant versus wild-type

fish, we observed more necrosis in csf1r mutants (Figure 4A).

These gradations in necrosis were reflected in the bacterial

burdens (Figure 4B). Together these results reveal the inherent

connection between macrophage demand and supply, even

when these two quantities appear to be independently regu-

lated at this juncture. In addition, the finding that the ESX-1

mutant bacteria were rendered more virulent by Csf-1r defi-

ciency has relevance to mycobacterial susceptibility of humans

with myeloid deficiencies, as discussed in the following section.

Macrophage Depletion Caused by irf8 Deficiency
Confers Susceptibility
Mutations in hematopoietic transcription factors such as PU.1

and IRF8 are also associated with numerical deficits in macro-

phages (DeKoter et al., 2007; Terry and Miller, 2014). We

were particularly interested in IRF8 deficiency, because even a

modest reduction in monocytes is associated with human sus-

ceptibility to TB as well as to the ESX-1-deficient vaccine strain

BCG (Crosslin et al., 2013; Ding et al., 2012; Hambleton et al.,

2011).

irf8 homozygous mutant (irf8st95 and irf8st96) zebrafish larvae

have a near complete lack of macrophages without any obvious
20 Cell Host & Microbe 18, 15–26, July 8, 2015 ª2015 The Authors
developmental abnormalities (Shiau et al., 2015). We showed

that the mutant larvae had the expected dramatic early increase

in bacterial burdens with cording that is associated with bacteria

being in an extracellular niche from the start of infection (Figures

5A and 5B and data not shown) (Clay et al., 2007). To recapitulate

the reduced macrophage pool of human IRF8 deficiency (rather

than the complete absence of macrophages), we used a mor-

pholino to knock down irf8 expression (Li et al., 2011). After con-

firming that we could achieve the expected 95% macrophage

depletion using the previously reported concentration, we

titrated down the concentration of morpholino to 0.2 mM, so

as to achieve partial macrophage depletion (Figure 5C). At this

concentration, we found an infection phenotype similar to that

of csf1r deficiency: increased bacterial cording and growth

following upon granuloma formation (Figures 5D and 5E). These

observations extend our findingswith csf1r deficiency to those of

othermyeloid growth factors and suggest amechanismwhereby

human IRF8 deficiency causes susceptibility to virulent myco-

bacteria as well as to the attenuated BCG vaccine strain (Ding

et al., 2012; Hambleton et al., 2011).

Increasing Macrophage Numbers in Wild-Type Animals
Delays Granuloma Necrosis
Our model would predict that increasing macrophage supply

above wild-type should delay granuloma necrosis. To increase

macrophage numbers, we injected mRNA encoding the Csf-1r

ligand Csf-1a into mpeg1:tdTomato embryos (Figure 6A). This

single administration increased macrophage numbers in zebra-

fish larvae, similar to the effect of recombinant CSF-1 protein

in adult mice, rats, nonhuman primates, and humans (Hume

and MacDonald, 2012). By 2 dpf, macrophages were increased

throughout the body, including a 175% increase in the CHT, with

neutrophil numbers being unchanged by 3 dpf (Figures 6A and

6B and data not shown). After infection, these animals had a

41% reduction in bacterial cording by 7 dpi (Figures 6C and

6D). We confirmed that the beneficial effect of Csf-1a was medi-

ated specifically through Csf-1r signaling by showing that csf1a

mRNA injection into csf1r mutants did not reduce cording (Fig-

ures 6C and 6D). Thus, increasing macrophage supply above

wild-type promotes resistance. The therapeutic potential of

this finding would be predicated upon being able to ameliorate

an ongoing infection by increasing macrophage numbers, lead-

ing us to the next experiments.



Figure 5. Macrophage Depletion Caused

by irf8 Deficiency Promotes Granuloma

Necrosis

(A–E) Larvae from an irf8st96/+ intercross were in-

fected via the caudal vein with �200 tdTomato-

expressing M. marinum. (A) Percentage of larvae

with cording phenotype and (B) bacterial loads 3

dpi. (C) Macrophage numbers in irf8 morpholino

(MO)- andmock-injectedmpeg1:YFP larvae 2 dpf.

(D) Bacterial cording and (E) bacterial burdens in

irf8 and mock morphants 3 dpi with �300 tdTo-

mato-expressing M. marinum injected via the

caudal vein. (B, C, E, and G) Each symbol repre-

sents individual larvae, and horizontal lines indi-

cate means. Statistical significance was deter-

mined by Fisher’s exact test (A and D) or one-way

ANOVA with Tukey’s post-test (B, C, and E). Data

are representative of three (A–D) experiments.
Restoring Macrophage Supply during Ongoing Infection
Delays Granuloma Necrosis
To replenish macrophage numbers after granulomas had

formed, we used a zebrafish line bearing a temperature-sensitive

csf1r allele (csf1raut.r4e174A, abbreviated here as csf1rts) (Parichy

and Turner, 2003). Csf-1r signaling is preserved when csf1rts/ts

homozygous mutants or csf1rts/� compound heterozygotes are

raised at 24�C but abolished when they are raised at 33�C, as
indicated by differences in xanthophore development (which is

Csf-1r dependent) at the two temperatures (Parichy and Turner,

2003).We used this line to ask if restoringmacrophage supply by

shifting infected animals to the permissive temperature soon af-

ter granulomas formed could mitigate susceptibility. Addressing

this question rigorously required the use of three genotypes and

two rearing temperatures: the csf1rts/+ heterozygote, which
Cell Host & Microbe 18,
should be macrophage-sufficient at both

33�C and 24�C; the csf1r�/� homozygote,

which should bemacrophage-deficient at

both 33�C and 24�C; and the csf1rts/�

compound heterozygote, which should

be macrophage-deficient at 33�C yet

macrophage-sufficient when shifted to

24�C. We enumerated macrophages in

larvae from the three lines grown at

33�C from 0 to 7 dpf or from 0 to 4 dpf, fol-

lowed by a shift to 24�C through 7 dpf

(Figure 7A). By 4 dpf, csf1r�/� and

csf1rts/� larvae raised at 33�C had 55%

fewer macrophages than csf1rts/+ con-

trols at both 4 and 7 dpf (Figure 6B). In

contrast, csf1rts/� larvae that were shifted

to 24�C at 4 dpf had 33% fewer macro-

phages than csf1rts/+ controls at 7 dpf

and double those of csf1r�/� larvae (Fig-

ure 7B). Thus, reinstating Csf-1r signaling

during larval development had partially

restored macrophage numbers within

3 days.

In the same experiment, we asked if

restoring macrophage numbers during
the cellular phase of the granuloma could delay its necrosis.

We infected cohorts from the three lines at 2 dpf and reared

them under the same two temperature conditions as their unin-

fected siblings (Figure 7A). Necrosis in csf1rts/� larvae was higher

than in wild-type animals at 33�C but not at 24�C (Figure 7C). In

contrast, as expected, csf1r�/� animals had increased necrosis

over wild-type at both temperatures (Figure 7C). When we as-

sessed bacterial burdens, we saw the expected reduction at

24�C compared to 33�C in all genotypes, a result that was

consistent with the substantial reduction in M. marinum growth

rate at the lower temperature (Clark and Shepard, 1963). Despite

this overall decrease, csf1r�/� animals still had significantly

higher bacterial burdens than wild-type at the lower temperature

(Figure 7D). However, in the csf1rts/� larvae, the bacterial bur-

dens were significantly higher than wild-type at 33�C but not at
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Figure 6. Increasing Macrophage Supply in

Wild-Type Zebrafish Delays Granuloma

Necrosis

(A–D) One-cell stage WT mpeg1:tdTomato em-

bryos were injected with vehicle (mock) or�2 nl of

200 ng/ml in vitro-transcribed csf1a RNA. (A)

Schematic of csf1a overexpression construct and

maximum intensity projections of the caudal he-

matopoietic tissue of 2-day-old larvae. Scale bar,

100 mm. (B) Number of macrophages in the CHT of

2 dpf larvae. Horizontal lines depict means. Per-

centage of cording in WT or csf1r mutant larvae 6

dpi (C) or 7 dpi (D) with �200 M. marinum ex-

pressing tdKatushka2. Statistical significance

determined by two-tailed unpaired Student’s t test

(B) or Fisher’s exact test (C and D).
24�C, likely a consequence of reduced granuloma necrosis at

the lower temperature (Figure 7D). Our finding that increasing

macrophage supply after granulomas have formed can mitigate

susceptibility may suggest the therapeutic potential of myeloid

growth factors for TB.

DISCUSSION

This work suggests that tuberculous granuloma dynamics are

best understood in the context of two discrete stages of granu-

loma development: an initial stage of cellular growth and a

subsequent stage of necrosis. Both stages can promote myco-

bacterial growth, although the unfettered extracellular growth

of the second, necrotic phase can greatly outstrip the intracel-

lular growth of the first phase.

Macrophage supply and demand are key determinants of gran-

uloma fate (Figure S5). The first cellular stage is dominated by

macrophage demand and persists until macrophage supply be-

comes limiting, at which time the granuloma enters the second

necrotic stage. Under the infection conditions studied here,

macrophage supply and demand are determined independently

of each other. However, an increased macrophage demand will

deplete macrophage supply sooner. Therefore, macrophage de-

mand in the first phasecan influence the tempoof thegranuloma’s

transition to the necrotic phase. Accordingly, reducing macro-

phage demand (e.g., ESX-1 mutant infection) not only delays ne-

crosis in wild-type animals but also greatly curtails necrosis even

under conditions of reduced macrophage supply (Figure S5).

Conversely, increasing macrophage supply offsets the sus-

ceptibility of wild-type animals (Figure S5). This latter result is

important because it suggests that macrophage supply can be

ultimately limiting even in wild-type animals. Because the find-

ings that support this conclusion were made in larvae in a limited

time course, it might be argued that it cannot be extrapolated to

adult infection, which occurs in the context of a larger myeloid

pool and adequate time for sustained monocyte recruitment to
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come into play (Shi and Pamer, 2011).

Two lines of evidence support the possi-

bility that the macrophage supply be-

comes ultimately limiting in adults: (1)

macrophage turnover is high even in

mature tuberculous granulomas of mice,
frogs, and zebrafish (Cosma et al., 2004, 2008; Dannenberg,

1993, 2003) and (2) ESX-1 mutant granulomas of adult zebrafish

havemuch less necrosis thanwild-type ones, in addition to being

less well formed (Swaim et al., 2006). These previous findings

had been interpreted to suggest that the ESX-1 locus influences

both granuloma cellularity and necrosis, possibly by distinct

mechanisms (Swaim et al., 2006). The present work provides

a unifying mechanistic explanation for both phenotypes by

implicating the reduced macrophage demand of the mutant

in both.

Our findings may explain the susceptibility to mycobacteriosis

of individuals with genetic IRF8 variants that produce defi-

ciencies in macrophage numbers, e.g., loss-of-function IRF8

mutations. Humans with rare variants in the DNA binding domain

of IRF8 had fewer monocytes and got disseminated BCG infec-

tion as infants soon after vaccination (Hambleton et al., 2011).

Additionally, common variants in IRF8 are associated with

monocyte abundance and with susceptibility to virulent TB,

although different variants were examined in the two studies

(Crosslin et al., 2013; Ding et al., 2012). Based on findings in

Irf8- and Csf1-deficient mice, it has been suggested that these

deficiencies may cause susceptibility through poor antigen pre-

sentation leading to defective T cell immunity (Hambleton et al.,

2011; Teitelbaum et al., 1999; Turcotte et al., 2005). Our work

suggests that the macrophage deficiencies associated with

these states can be directly responsible for susceptibility.

Moreover, our finding that ESX-1mutants eventually cause gran-

uloma breakdown in macrophage-deficient hosts mirrors BCG-

associated disseminated infection in IRF8-deficient humans

(Hambleton et al., 2011). Similarly, a macrophage supply deficit

may also explain the susceptibility of severely monocytopenic

GATA2-deficient individuals to Mycobacterium avium complex

(Dickinson et al., 2014; Hsu et al., 2011; Vinh et al., 2010).

In terms of TB pathogenesis, our findings reveal yet another

route to macrophage necrosis. Previously, we had identified

macrophage necrosis caused by both TNF deficiency and



Figure 7. Restoring CSF-1R Signaling dur-

ing an Ongoing Infection Delays Granuloma

Necrosis

(A) Schematic of temperature-shifting experiment.

(B–D) Macrophage numbers (B), bacterial cording

(C), and bacterial burdens (D) in phenotypically WT

heterozygotes (csf1rts/+), csf1r null homozygous

mutants (csf1r�/�), and temperature-sensitive

heterozygotes (csf1rts/�). Horizontal lines indicate

means. Statistical significance was determined by

one-way ANOVA with Tukey’s post-test (B and D)

or Fisher’s exact test, correcting for multiple

comparisons by multiplying p values obtained in

pairwise comparisons by the number of groups in

each experimental condition (C).
excess and had identified common human variants in the Leuko-

triene A4 Hydrolase gene that promoted susceptibility, presum-

ably by dysregulation of TNF (Clay et al., 2008; Roca and Ram-

akrishnan, 2013; Tobin et al., 2012). We now find that genetic

defects in macrophage development can produce the same

phenotypic compromise in granuloma integrity by reducing the

pool of macrophages that would replace those dying in the gran-

uloma. We envision that any genetic or induced defect that re-

duces the availability of functional macrophages (e.g., reduced

macrophage survival) could exacerbate granuloma necrosis.

In summary, our findings suggest that maintaining an adequate

macrophage supply promotes resistance by preserving granu-

loma integrity. Even in the face of pathological, mycobacterium-

accelerated macrophage demand, sustaining the macrophage

pool benefits the host by permitting the bacteria only intracellular

rather than extracellular growth. Therefore, boostingmacrophage

supply with myeloid growth factors may be a host-targeting ther-

apy for TB. Indeed, our experiments show that increasing the

myeloid pool even after granulomas have formed can reduce their

necrosis. However, these proof-of-concept experiments could

only assess the effect of macrophage replenishment during the

early cellular phase of the granuloma. It is possible that once a

granuloma has become highly necrotic (as in patients with

advanced TB), the corded extracellular bacteria therein can no

longer be phagocytosed by new macrophages (Bernut et al.,

2014; Pagán and Ramakrishnan, 2014). This caveat notwith-

standing, myeloid growth factor therapies may be worth trying,

particularly in extensively drug-resistant TB, where antimicrobial

therapy alone offers little hope for cure (Wong et al., 2013).

EXPERIMENTAL PROCEDURES

Bacterial Strains

M. marinum M strain (ATCC #BAA-535) and its mutant derivatives DESX-1

(DRD1) and Derp expressing tdTomato or tdKatushka2 under control of the
Cell Host & Microbe 18,
msp12 promoter (Cosma et al., 2006a; Takaki

et al., 2013; Volkman et al., 2004) were grown un-

der hygromycin (Mediatech) or kanamycin (Sigma)

selection in 7H9 Middlebrook’s medium (Difco)

supplemented with oleic acid, albumin, dextrose,

and Tween-80 (Sigma) (Takaki et al., 2013).

Zebrafish Husbandry and Infections

Zebrafish husbandry and experiments were con-

ducted in compliance with guidelines from the
UK Home Office and the U.S. National Institutes of Health and approved by

the University of Washington Institutional Animal Care and Use Committee.

The Tg(mpeg1:Brainbow)w201 line was generated by cloning the Brainbow

1.0L cassette (Livet et al., 2007) (Addgene) into a Tol2 plasmid containing

the zebrafish mpeg1 promoter (Ellett et al., 2011). The mpeg1:Brainbow

plasmid was then injected along with transposase mRNA into one- to two-

cell-stage embryos of the wild-type AB strain (Zebrafish International

Resource Center) as previously described (Suster et al., 2011). Putative foun-

ders were identified by tdTomato expression in macrophages and crossed to

wild-type AB zebrafish. Transgenic lines were identified in the next generation

and kept on the AB strain.Wild-type AB strain, csf1raj4blue (Parichy et al., 2000),

csf1raut.r4e174A (Parichy and Turner, 2003), irf8st95 and irf8st96 (Shiau et al.,

2015), Tg(mpeg1:Gal4FF) gl25 3 Tg(UAS:E1bKaede)s1999t (Ellett et al., 2011),

Tg(mpeg1:YFP)w200 (Roca and Ramakrishnan, 2013), Tg(mpeg1:Brain-

bow)w201, and Tg(lysC:EGFP)nz117 (Hall et al., 2007) larvae were infected via

the caudal vein or hindbrain ventricle at 2 dpf as previously described (Takaki

et al., 2013). Adults were infected intraperitoneally as described previously

(Cosma et al., 2006b). Homozygous csf1raj4blue larvae were identified from

phenotypically wild-type siblings by their xanthophore deficit (Parichy et al.,

2000). irf8st95 and irf8st96 lines were genotyped by high-resolutionmelt analysis

(Garritano et al., 2009) of PCR products generated with the following primers:

Forward, 50-TGGATGCCGTGAGTATGTAC-30 and Rev, 50-CCTCCCACTG
CAGTCCATTA-30 on a CFX Connect thermocycler (BioRad).

Construction of Venus-V2A-csf1a Plasmid and In Vitro Transcription

Danio rerio csf1awas cloned into a Gateway middle entry vector encoding nu-

clear-localized Venus and a viral 2A peptide cleavage sequence (Provost et al.,

2007) and subsequently assembled into a Gateway destination vector to pro-

duce pCMV:nlsVenus-V2A-csf1a (gift from D. Parichy). In vitro transcription

was performed with mMessage/mMachine SP6 kit (Life Technologies).

Morpholino, RNA, and Liposome Injections

irf8 splice-blocking morpholino (50-AATGTTTCGCTTACTTTGAAAATGG-30) (Li
et al., 2011) (Gene Tools) and in vitro-transcribed csf1a mRNA were diluted in

a 13 Buffer Tango (Thermo Scientific) containing 2% phenol red sodium

salt solution (Sigma) and injected into the yolk of one- to two-cell-stage em-

bryos in �2 nl (Tobin et al., 2012). Lipo-PBS and lipo-clodronate (http://

clodronateliposomes.org) (van Rooijen et al., 1996) were diluted in PBS and in-

jected into 2-dpf-old larvae in �10 nl via the caudal vein.
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Quantitative RT-PCR

Quantitative RT-PCR was performed as described (Clay et al., 2007). Total

RNA from batches of �30 embryos per biological replicate was isolated

with TRIzol Reagent (Life Technologies) and used to synthesize cDNA

with Superscript II reverse transcriptase and oligo DT primers (Invitrogen).

Quantitative RT-PCR assays were performed with SYBR green PCR Master

Mix (Applied Biosystems) on an ABI Prism 7300 Real-Time PCR System

(Applied Biosystems). Each biological replicate was run in triplicate, and

average values were plotted. Data were normalized to bactin for DDCt

analysis.

Sudan Black Staining

Sudan Black staining was performed as described (Le Guyader et al., 2008).

Embryos were fixed in 4% methanol-free paraformaldehyde at 4�C overnight.

On the following day, embryos were washed in PBS and stained with Sudan

Black B Staining Reagent (Sigma) at room temperature for 20min. Stained em-

bryos were extensively washed with 70% ethanol and then gradually rehy-

drated to PBS containing 0.1% Tween-20.

Histology

Histology was performed as described (Swaim et al., 2006). Euthanized fish

were fixed in Dietrich’s fixative for 72 hr, transferred into 70% ethanol, and

sent to Histo-Tec Laboratories for processing. Fish were embedded in paraffin

and sectioned along the midline. Serial sagittal sections of 7 mm were stained

with hematoxylin and eosin or modified Ziehl-Neelsen stain.

Microscopy

Fluorescence microscopy was performed as described (Takaki et al., 2013;

Yang et al., 2012). Quantification of bacterial burdens, assessments of myco-

bacterial cording, and enumeration of neutrophils were performedwith a Nikon

Eclipse Ti-E inverted microscope fitted with 23, 103, and 203 objectives.

Enumeration of macrophages, assessments of intracellular bacterial growth,

measurements of granuloma diameter, and evaluation of histological sections

were performed on a Nikon Eclipse E600 upright microscope fitted with 103

and 203 objectives. For laser scanning confocal microscopy, larvae were

anesthetized in N-phenylthiourea (PTU)-supplemented fish water containing

0.025% Tricaine and embedded in 1.5% low-melting-point agarose on optical

bottom plates or dishes (MatTek Corporation). A Nikon A1 confocal micro-

scope with a 203 Plan Apo 0.75 NA objective was used to generate 40 mm z

stacks consisting of 1.3–2 mm optical sections. The galvano scanner was

used for all static imaging and for time-lapse imaging of the CHT. Time-lapse

images were taken at 5 min intervals for 8 hr. Data were acquired with NIS

Elements (Nikon). Macrophage tracks were generated using the 3D tracking

feature of Imaris (Bitplane Scientific Software).

Flow Cytometry

Splenocyte single-cell suspensions of 4- to 5-month-old zebrafish were

prepared by dissociating the tissue in flow cytometry buffer (13 PBS, 2%

FCS, and 1 mM EDTA) and filtering it through a 70 mm cell strainer (BD Biosci-

ences). Liver samples were digested in 13 PBS supplemented with DNase I

and type I/II collagenases for 15 min at 32�C. Cells were then stained with

Alexa Fluor 594-conjugated Peanut Agglutinin (PNA) (Life Technologies) for

30 min at 4�C to enrich for myeloid cells, as previously described (Lugo-Villar-

ino et al., 2010). Samples were resuspended in flow cytometry buffer contain-

ing 0.05 mg/ml 40,6-Diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma)

for dead cell exclusion and run on an LSRII flow cytometer (BD Biosciences).

Absolute numbers of cells were calculated with AccuCheck Counting Beads

(Life Technologies) (Moon et al., 2009). Samples were analyzed with FlowJo

(TreeStar).

Statistical Analyses

Statistical analyses were performed on Prism (GraphPad). Not significant,

p R 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and two movies and can be

found with this article online at http://dx.doi.org/10.1016/j.chom.2015.06.008.
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