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Despite declarations that the so-called
end of AIDS is near, the global human
immunodeficiency virus (HIV) epidemic
continues to grow. This is the case within
localized epidemics in the resource-rich
world, as well as so-called generalized ep-
idemics in the resource-limited setting.
With the relative lack of success of wide-
spread prevention approaches, focus has
turned to the finer granularity of the ep-
idemics [1]. Even within generalized epi-
demics in sub-Saharan Africa, evidence
points to increasing heterogeneity in
transmission [2]. More-precise determi-
nation of the characteristics of individuals
continuing to spread the virus—for
instance, whether their infection is un-
diagnosed, diagnosed and untreated, or
diagnosed and treated—is needed to guide
prevention to reduce transmission to
manageable levels.

It is within this context that the use
of viral genetic sequences can add im-

portant value to inference of transmission
dynamics and inform targeted prevention
strategies [3]. Sequence data are becom-
ing increasingly used in epidemiological
studies for a variety of pathogens, with re-
cent recommendations for how such
studies are to be reported [4]. Whereas
the major focus for implementing molec-
ular epidemiological approaches for HIV
should be toward reducing the devastat-
ing epidemics in Africa and Asia, the
vast majority of HIV sequence data de-
rives from North America and Europe,
mainly as a result of widespread HIV ge-
notypic drug resistance testing. Neverthe-
less, sequence data from resource-rich
settings represent an invaluable resource
for developing methods that can be ap-
plied globally. This is particularly the
case when sequence databases cover a sig-
nificant fraction of individuals infected
with HIV, as exemplified in countries
such as the United Kingdom, Switzer-
land, and the Netherlands.
Use of phylogenetics to identify the

likely source of specific transmission
events is a well-trodden path in HIV re-
search [5], particularly in relation to
small, targeted epidemiological investi-
gations. However, when applying such
approaches to data sets sampled at a re-
gional or national level, the sampling
fraction is too low to detect significant
numbers of direct transmissions [6].Nev-
ertheless, so-called clusters of highly

similar viruses are often observed [7–9].
How these clusters are defined varies
across studies, although all use a measure
of distance between pairs of sequences,
below which the sequences are deemed
clustered. Some studies use genetic
distances calculated directly from the se-
quence data, whereas others use distances
calculated from a phylogenetic tree. Some
phylogenetic studies use information on
sampling times of the sequences, allowing
clustering to be defined in terms of cal-
endar time rather than in terms of the
percentage divergence of the sequence.
Furthermore, additional criteria may be
used to classify clusters, such as the level
of statistical support and the minimum
size of a cluster. These differences in clus-
ter definition make it difficult to compare
the frequency of clustering in different
studies, but it is apparent that such clus-
tering is widespread and can even be de-
tected between HIV sequences from
different countries [10].

The demonstration of the clustering of
a group of viruses by itself is not particu-
larly useful, as clustering occurs even in a
homogeneous population and can be
driven by nonepidemiological factors,
such as how individuals are sampled.
However, when combined with other in-
formation about the individual, examina-
tion of clusters may reveal potential
subepidemics and moves the focus to
the characteristics of individuals within
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a cluster. Further insights can be gained
by considering who an individual is clus-
tered with. For example, coclustering of
individuals with recent infection is a bet-
ter indicator of the higher infectiousness
of these individuals than clustering,
which may simply reflect the limited
time for the virus to diverge in these indi-
viduals [11].

In this issue of The Journal of Infec-
tious Diseases, Poon et al present an anal-
ysis of HIV type 1 sequence data collected
from British Columbia, Canada. This
adds to the relatively few phylogenetic
studies with a high level of coverage—
approximately 50% of the HIV-positive
population in British Columbia. Unlike
other studies, multiple sequences per pa-
tient were considered when identifying
clusters, which allowed Poon et al to
identify more clustered individuals than
if only the first available sequence for
each individual was used. Although
there may be a bias in those with multiple
sequences, for the purposes of examining
transmission, this bias may not be that
important, as the availability of multiple
sequences for an individual may reflect
that the individual experienced a rebound
in viral load during therapy and, hence,
remained infectious. Building on similar
work [12, 13], they use sequence data
both to identify clustered individuals, as
well as to define what they term a “phylo-
genetic neighborhood” for each individu-
al. Characteristics of individuals within
their phylogenetic neighborhood were re-
lated to whether individuals were clus-
tered, allowing Poon et al to start to
disentangle correlates of clustering and
coclustering, while avoiding the attribu-
tion of the source of infection to any in-
dividual present in the sample.

Poon et al demonstrated that individu-
als were more likely to be clustered if the
viral load in their phylogenetic neigh-
borhood was higher. Studies of HIV-
transmitting partners have demonstrated
that the viral load in the infecting partner
accounts for 20%–55% of the variation
in viral load in the recipient partner
[14]. As viral loads in 2 individuals are

likely to show negligible correlation if
separated by ≥5 transmissions, this implies
that an individual is separated from in-
dividuals in their phylogenetic neighbor-
hood by a limited number of intermediate
transmissions.
Some information on likely serocon-

version dates was available, although it
was mainly determined from physician
reports rather than on the basis of clear
serological evidence. Consistent with
other studies [15], individuals with recent
HIV infection clustered together. When
combined with information on sampling
date, estimates of seroconversion dates
also allowed changes in clustering over
time to be investigated, demonstrating
early establishment of clusters among peo-
ple who inject drugs, followed by more-re-
cent emergence of clusters among men
who have sex with men (MSM). Although
potentially confounded by changes in
sampling patterns over time, this result
is consistent with surveillance data over the
past decade, demonstratingdecliningnum-
bers of HIV infection diagnoses among
people who inject drugs but sustained
numbers of diagnoses among MSM [16].
This suggests that in other populations,
the dynamics of clusters over time may
provide insights into past transmission,
even when classical epidemiological data
are lacking [17]. The potential to map
the impact of large-scale intervention
strategies is currently being tested on
epidemics in Africa, using full-length
HIV sequences within the PANGEA-HIV
consortium (available at: https://github.
com/PangeaHIV).
Poon et al found that the presence of

mutations that conferred resistance to
nucleoside reverse transcriptase inhibi-
tors (NRTIs) in an individual’s phyloge-
netic neighborhood was associated with
significantly less clustering. Although
sustained transmission of drug resistance
mutations has been found in other stud-
ies in the United Kingdom [18] and Swit-
zerland [9], the underrepresentation of
NRTI resistance is consistent with earlier
reports arguing that the frequency of
transmitted resistance is much lower than

the number of potential transmitters of
resistance at the population level [19, 20].

While clinical databases of HIV can
offer epidemiological insights at little in-
cremental cost, they are not without lim-
itations. Individuals who are infected
with HIV but have yet to receive a diag-
nosis are not sampled, and establishing
the role of these individuals in ongoing
transmission is essential to guide efforts
to roll out testing in the community. In-
clusion of samples obtained through
anonymized surveillance programs, for
example, may reveal additional clusters.
In addition, only very basic information
on demographic characteristics and risk
factors is routinely collected during coun-
seling and testing. Despite the many chal-
lenges in measuring contact networks
[21], developing surveys that capture the
dynamic and possibly network-depen-
dent nature of risk behaviors may allow
us to dissect the drivers of phylogenetic
clustering in more detail.

A key question is whether phyloge-
netics adds significantly to careful epide-
miological mapping of the epidemic. A
limited number of studies to date suggest
that sequence data can be informative
about factors such as the stage of HIV in-
fection when transmission occurs [22], as
well as in identifying spatial structure
[23]. In addition, such data have the
potential to provide insights into superin-
fection and recombination. As detectable
recombination at the population level
takes place when the same individual is
infected with multiple divergent viruses
and then goes on to transmit a recombi-
nant, better characterization of recombi-
nation may give further insights into
groups with high transmission rates.

As HIV genetic data become even eas-
ier and cheaper to generate, the field
has turned to the methodological and
informatic challenges of making robust
epidemiological inferences from next-
generation sequence data [24]. Reliance
on sequences alone, however, neglects
uninfected individuals. While some at-
tempts have been made to extract infor-
mation about the underlying contact
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structure from patterns of phylogenetic
clustering [25], more mechanistic phylo-
dynamicmodels are needed that explicitly
link the phylogeny of infected individuals
in the sample to the population of infected
and uninfected individuals. It is critical
for large sequence data sets to be placed
side by side with detailed clinical, epide-
miological, and behavioral information,
to maximize the potential of phylogenetic
approaches.
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