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Abbreviations used in the manuscript: 

Stat3- Signal Transducer and Activator of Transcription 3 

CNS - Central Nervous System 

OPC- Oligodendrocyte Progenitor Cell 

GFAP- Glial Fibrillary Acidic Protein 

GFAP-STAT3-CKO - conditional astrocytic (GFAP promoter dependent) phosphorylated 

Stat3 knockout mouse 

PNS - Peripheral Nervous System 

Pdgfra - Platelet Derived Growth Factor Receptor Alpha 

NG2 - Neural/Glial antigen 2 

fl/fl - denotes a floxed region of a gene (flanked with loxP sites) 

T12 /T13 - Thoracic levels 12 /13 

PBS - phosphate buffered saline 

Olig2 - Oligodendrocyte transcription factor 2 protein 

CC1 (Apc) - Adenomatous Poliposis Coli protein 

Iba1 - Ionized calcium Binding Adaptor molecule 1 

pStat3- phosphorylated Stat3 protein 

Tyr705- tyrosine 705 

Aldh1l1- Aldehyde dehydrogenase family 1 member L1 protein 

MOM - mouse on mouse blocking reagent 

DIG - digoxigenin 

plp - proteolipid protein mRNA 

mpz -  myelin protein zero mRNA 

SSC - saline sodium citrate buffer 

AP - alkaline phosphatase 

NBT/BCIP - Nitro Blue Tertrazolium/ 5-Bromo-4-Chloro-3-Indolyl Phosphate 

DPX - Dibutyl Phthalate in Xylene 

dpl - days post lesion 

BMP- Bone Morphogenetic Protein 
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Abstract 

 

Remyelination within the Central Nervous System (CNS) is most often the result of 

oligodendrocyte progenitor cells (OPCs) differentiating into myelin-forming 

oligodendrocytes. In some cases, however, Schwann cells, the peripheral nervous 

system myelinating glia, are found remyelinating demyelinated regions of the CNS. The 

reason for this peripheral type remyelination in the CNS and what governs it is 

unknown. Here we have used a conditional astrocytic phosphorylated Signal 

Transducer and Activator of Transcription 3 knockout (GFAP-STAT3-CKO) mouse model 

to investigate the effect of abrogating astrocyte activation on remyelination following 

lysolecithin-induced demyelination of spinal cord white matter. We show that 

oligodendrocyte mediated remyelination is decreased and Schwann cell remyelination 

is increased in lesioned knockout mice in comparison to lesioned controls. Our study 

shows that astrocyte activation plays a crucial role in the balance between Schwann 

cell and oligodendrocyte remyelination in the CNS, and provides further insight into 

how Schwann cells remyelinate CNS axons. 
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Introduction 

 

The adult mammalian central nervous system (CNS) is remarkably efficient at 

replacing myelin forming cells following primary demyelination 1. This regenerative 

process is called remyelination. While in most circumstances the new myelin forming 

cells are oligodendrocytes, the myelinating cells of the CNS, it is also well-established 

in both experimental models and clinical disease that remyelination can be mediated 

by Schwann cells, the myelinating cells of the peripheral nervous system (PNS) 2-8. 

New remyelinating oligodendrocytes are generated from a population of neural 

progenitor cells widely distributed throughout the adult CNS 9-11. These cells can be 

identified using a range of markers, of which two commonly used are Pdgfra and NG2, 

and are generally referred to as oligodendrocyte progenitor cells (or OPCs) 12. In the 

past, it was assumed that all Schwann cells engaged in remyelinating CNS axons were 

derived from PNS Schwann cells, and entered the CNS through breaches in the 

astrocytic glia limitans 13, 14. While this is certainly a source of some CNS Schwann cells 

10, transplantation 15 and, more especially, genetic fate mapping studies 10 have 

revealed that large numbers of CNS Schwann cells are derived from OPCs.  

 

What remains unclear is how and why Schwann cell remyelination occurs within the 

CNS. Clues are provided by the anatomical features associated with areas of the CNS 

in which either oligodendrocyte or Schwann cell remyelination occurs. The most 

consistently observed feature is the astrocyte status: oligodendrocyte remyelination 

occurs in regions where astrocytes are present, restoring a complete CNS glial 

environment, while Schwann cell remyelination occurs where astrocytes are absent, 

resulting in patches of tissue that resemble the PNS 16-19. Indeed, the extent of 

Schwann cell remyelination is directly proportional to the extent of astrocyte absence. 
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This is most clearly seen when comparing the remyelination of ethidium bromide-

induced spinal cord demyelination, where there is initially extensive astrocyte loss and 

hence a high proportion of Schwann cell remyelination, with remyelination of 

lysolecithin induced spinal cord demyelination, which is more sparing of astrocytes and 

hence has a smaller Schwann cell contribution to remyelination 20.   

 

The extent of Schwann cell remyelination has been experimentally manipulated using 

cell transplantation approaches, where, for example, the extent of Schwann cell 

remyelination of ethidium bromide-induced spinal cord demyelination can be reduced 

by astrocyte transplantation 21, 22. However, whether astrocyte responses play a 

physiological role in determining the balance of central versus peripheral types of 

remyelination has not been tested in experiments where the endogenous astrocyte 

response is altered. In this study we took advantage of the central role of 

phosphorylation of the transcription factor Signal Transducer and Activator of 

Transcription 3 (Stat3) in the astrocyte response to CNS injury 23 to address the 

hypothesis that the proportion of Schwann cell remyelination following experimental 

demyelination is dependent on astrocyte activation within the lesion. Using a 

conditional Cre-loxP approach, we were able to specifically prevent Stat3 

phosphorylation in astrocytes following focal toxin-induced demyelination and 

demonstrate that not only did this lead to a reduced astrocyte response, it also led to 

an impairment in OPC activation and resulted in an increased level of Schwann cell 

remyelination and a decreased level of oligodendrocyte remyelination, thereby 

demonstrating a central role of astrocyte activation in determining the nature of CNS 

remyelination.    
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Materials and Methods 

 

Animals  

The mouse line containing a conditional phosphorylated Stat3 (pStat3) knockout in 

astrocytes (GFAP-STAT3-CKO) on a C57BL6 background was kindly provided by Dr. 

Michael Sofroniew, University of California, Los Angeles 23. Ablation of the activated 

form of Stat3 in astrocytes was achieved by conditional Cre-loxP recombination. In this 

line, the Cre recombinase is expressed under the mouse GFAP promoter (GFAP-Cre). 

Recombination occurs at loxP sites flanking exon 22 (the phosphorylation site 

containing exon) of the stat3 gene (stat3fl/fl). As a result, phosphorylation of Stat3, 

crucial for its function, does not occur. Experimental animals were bred using 

homozygous stat3fl/fl males and heterozygous Cre expressing females (GFAP-Cre+/-

:statfl/fl). The resulting GFAP-STAT3-CKO mice showed normal development and were 

fertile. Both male and female mice were used in the experiments with non-Cre 

expressing littermates (statfl/fl) used as controls. Experiments were performed in 

compliance with UK Home Office regulations and institutional guidelines. 

 

Toxin induced demyelination 

Focal spinal cord demyelination was created as previously described 24. Briefly, 8-10 

week old mice were anaesthetized with isoflurane and the spinal cord was exposed at 

the level of T12/T13 by removing the soft tissue between the vertebrae. 1μl of 1% L-a-

lysophosphatidylcholine (lysolecithin – Sigma-Aldrich, Gilingham, UK) in sterile saline 

was injected using a Hamilton syringe fitted with a fine glass tip into the ventral spinal 

cord white matter (Fig.1.A). At designated time points after injection, mice were 

terminally anaesthetized with an overdose of pentobarbital before being perfused 
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transcardially with either 4% paraformaldehyde for immunohistochemistry, or 4% 

glutaraldehyde for resin embedding and electron microscopy.   

 

Immunohistochemistry  

Immunohistochemistry was performed on 12µm thick frozen sections. Where required, 

heat mediated antigen retrieval with 10mM sodium citrate buffer (pH 6) was performed 

prior to standard protocol for indirect immunofluorescence staining. Briefly, slide 

mounted sections were washed with phosphate buffered saline (PBS, pH 7.4), and 

blocked with 5% normal donkey serum and 0.1% triton X-100 in PBS for 1 hour at 

room temperature. Sections were then incubated with primary antibodies diluted in 

blocking solution overnight at 4 ºC. The following primary antibodies were used: Olig2 

1:200 (Millipore, Watford, UK), CC1 1:100 (Apc, Calbiochem - San Diego, CA), Iba1 

1:500 (Wako - Osaka, Japan), pStat3 (Tyr705) 1:100 (Cell Signaling Technology - 

Beverly, MA), Aldh1l1 1:100 (clone N103/39 – Neuromab, Davis, CA). For Apc and 

Aldh1l1 staining on lesion sections, Mouse On Mouse (MOM) blocking reagents (Vector 

Labs) were used to reduce nonspecific background according to manufacturer’s 

instructions. Staining was visualised with Alexa Fluor conjugated secondary antibodies 

(1:500, Invitrogen, Paisley, UK). The slides were counterstained with 0.1% Sudan 

Black (Sigma-Aldrich, Gillingham,UK) to reduce background and reveal lesion area and 

subsequently mounted in FluorSave™ Reagent (Calbiochem, San Diego, CA). The 

images were acquired using the Zeiss Axio Observer fluorescence microscope. 

 

In situ Hybridization 

In situ hybridisation of digoxigenin (DIG) labelled cRNA probes for myelin protein zero 

(mpz) and myelin proteolipid protein (plp) was performed as previously described 26. 

Briefly, sections were hybridised with DIG-labelled cRNA probes at 65°C overnight and 
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subjected to a standard wash protocol (50% formamide, 1X SSC, 0.1% tween-20, 

65°C, 3X 30min) to remove non-specific binding of probes.  The target bound probes 

were detected by alkaline phosphatase (AP) conjugated anti-DIG antibody, and 

visualised as purple precipitate after incubation in NBT/BCIP solution according to 

manufacturer’s instructions (Roche, Lewes, UK). The slides were dehydrated with 

ascending concentration of ethanol, cleared with xylene and mounted in dibutyl 

phthalate in xylene (DPX). Images were acquired with the Zeiss Axio Observer 

microscope. 

 

Electron microscopy 

Animals were perfused with 4% glutaraldehyde in PBS containing 0.4mM CaCl2. The 

spinal cord was coronally sliced at 1mm thickness and treated with 2% osmium 

tetroxide overnight before being subjected to a standard protocol for epoxy resin 

embedding 24. Lesions were localised on semithin 1μm sections stained with toluidine 

blue.  Ultrathin sections of the lesion site were cut onto copper grids and stained with 

uranyl acetate before being examined with a Hitachi H-600 Transmission Electron 

Microscope.  

 

Quantification and Statistics 

For each animal, three demyelinated lesion sections, separated by approximately 120 

µm, were selected from within the central region of the lesion. For immunostaining, the 

outline of each lesion was defined based on the increase in cellularity inside the lesion, 

as visualised by Hoechst 33342 counterstain. For in situ hybridisation, the outline was 

defined based on the lesioned tissue texture, using Zeiss AxioVision software. The 

numbers of marker-positive cells inside the lesions were manually counted using 

ImageJ, and normalized against the lesion area. The average of 3 sections was used 
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for each lesioned animal. For each group, 4-5 animals were used. To compare 

differences between the control and experimental group, a two way ANOVA followed by 

Bonferroni post test was used and the threshold for statistical significance was set at 

p<0.05.  

 

Results 

 

Expression of phosphorylated Stat3 in astrocytes is reduced in GFAP-STAT3-

CKO mice following toxin-induced CNS demyelination 

Phosphorylation of Stat3 is increased in multiple CNS cell types during injury 25-27. To 

verify this in our demyelination model we examined the expression of phosphorylated 

Stat3 (pStat3) in control, non-Cre expressing lesioned and unlesioned mice, using a 

pStat3 specific antibody. To obtain a focal demyelinating lesion, animals were injected 

with 1% lysolecithin solution into the ventral spinal cord (Fig.1.A). In normal 

unlesioned spinal cord, very few cells were found to express pStat3 (not shown). In 

contrast, there was a marked increase in pStat3 expression 5 days post lesion (dpl), 

(Fig.1.B). The pStat3 levels remained elevated at 14 and 21 dpl, albeit somewhat 

decreased from the expression at 5dpl (Fig.1.B). The staining was most intense within 

the nucleus (Fig.1.D, inset). pStat3+ cells were a variety of cell types, including 

CD11b+ macrophages/microglia, Olig2+ oligodendrocyte lineage cells and Gfap+ 

astrocytes (Fig.1.E,F,M-O). 

 

Phosphorylation of Stat3 plays a key role in mediating astrocyte responses to CNS 

injury 23. To further explore the astrocyte-specific role of pStat3 in lysolecithin-induced 

demyelination, we used a conditional Stat3 knockout mouse model in which Cre 

recombinase was expressed under the GFAP promoter. The Cre recombinase excised 
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the floxed Stat3 exon 22 containing the phosphorylation site (Tyr 705) involved in 

Stat3 activation 23, resulting in a mutant unable to phosphorylate Stat3 in astrocytes 

(GFAP-STAT3-CKO mice).  We first investigated pStat3 expression in lesioned GFAP-

STAT3-CKO mice. As expected, the number pStat3 expressing astrocytes, as examined 

by colabelling with astrocyte markers Gfap (Fig.1.C-I) and aldehyde dehydrogenase 1 

(Aldh1l1) 28 surrounding pStat3+ nuclei, was significantly lower in the mutants 

compared to controls (Fig.1.J-L). 

 

Demyelination-associated astrogliosis is reduced in GFAP-STAT3-CKO mice 

Lysolecithin demyelination is characterised by an abundance of astrocytes within the 

lesioned area (Fig.1.C-L; Fig.2.A-D). In control mice, we observed an increase in Gfap 

immunoreactivity within and beyond the demyelinated area (the latter determined by 

the lipophilic dye Sudan Black) (Fig.2.A, B). An increase in Gfap expression was also 

seen in demyelinated areas of spinal cord in GFAP-STAT3-CKO mice, when compared 

to unlesioned tissue surrounding the lesioned areas (Fig.1.H; Fig.2.C,D), although the 

intensity of the staining was lower than in control animals (not shown). Because Gfap 

staining localises to astrocytic processes that often form a tangled mesh in injured 

tissue, rendering quantification of individual positive cells challenging, we instead 

compared the areas occupied by reactive astrocytes in control and GFAP-STAT3-CKO 

spinal cord lesions, as defined by a clear boundary of increased Gfap reactivity. We 

found the relative area of reactive astrocytes over total lesion area to be reduced in 

GFAP-STAT3-CKO mice at both 5 and 14 dpl (Fig.2.E). This was verified by counting 

the number of Aldh1l1+ cells in demyelinated areas, which revealed a significant 40-

60% reduction in GFAP-STAT3-CKO mice compared to controls at all three survival 

time points examined (Fig.2.G). 
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Reducing Stat3 activation in astrocytes does not alter macrophage responses 

to demyelination 

Abrogation of Stat3 activation results in spreading of inflammation following a spinal 

cord crush injury 23, 29. To assess the influence of astrocytic Stat3 knockout in our 

demyelination model, we examined the microglia/macrophage response in GFAP-

STAT3-CKO mice following demyelination by immunostaining for Ionized calcium 

Binding Adaptor molecule 1 (Iba1). Iba1+ cells were found to be present at high 

density throughout the lesion (Fig.3). Since it is not feasible to quantify 

microglia/macrophage cellular density due to the fused pattern of immunostaining in 

lesions, we measured normalised mean optical density to represent the extent of 

microglia/ macrophage infiltration in the demyelinated area. There was no difference in 

either Iba1 intensity or area of Iba1+ cell infiltration at all the time points examined 

(Fig.3.C, D).  

 

The attenuated astrocyte response reduces oligodendrocyte remyelination 

Astrocytes are known to influence OPCs during CNS remyelination 21, 30-32. We therefore 

assessed the impact of the conditional astrocytic pStat3 ablation on oligodendrocyte 

remyelination, by comparing the distribution of oligodendrocyte lineage cells using 

different markers expressed at specific stages of lineage progression in control and 

mutant lesioned mice. In control animals, Olig2+ cell numbers had increased at 5 dpl 

(when OPCs are actively recruited to the lesion), had increased further at 14 dpl (when 

differentiation is ongoing) and remained high at 21 dpl (when remyelination is near 

completion) (Fig.4.A,B and E). In GFAP-STAT3-CKO animals, the density of Olig2+ cells 
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was comparable to controls at 5 dpl, but had significantly reduced at 14 and 21 dpl 

(Fig.4.C-E).  

 

Increased expression of the transcription factor Sox2 is a marker of OPC activation 

(unpublished observations). The density of total Sox2+ cells, and Sox2+/Olig2+ 

colabelled cells in the demyelinated area were significantly lower in the GFAP-STAT3-

CKO group compared to controls at 5 and 14 dpl, suggesting impaired OPC activation 

(Fig.4.F,G). There was also a reduction in Sox2+ cells that did not express Olig2, which 

are likely to be astrocytes and is consistent with the data in Fig. 2G. The reduced 

density of Olig2+ and Olig2+/Sox2+ cells was mirrored by reduced expression of 

mature oligodendrocyte markers CC1 and plp at 14 and 21 dpl (Fig.5).  

 

Schwann cell CNS remyelination is increased as a result of attenuated 

astrogliosis 

The mutual exclusivity of astrocyte presence and Schwann cell remyelination within the 

same region of repairing demyelinated lesion led us to reason that an attenuated 

astrocytic response could lead to increased Schwann cell remyelination in GFAP-STAT3-

CKO mutants. Indeed, compared to lesioned controls, the GFAP-STAT3-CKO spinal cord 

white matter lesions showed increased areas of periaxin antigenicity and increased 

density of myelin protein zero (mpz) mRNA expression at 14 and 21 dpl, indicating 

increased Schwann cell remyelination (Fig.6.A-I). The increased number of 

remyelinating Schwann cells was confirmed by analysing semithin resin sections and 

performing electron microscopy, where Schwann cells could be readily recognised by 

their typical ‘signet ring’ morphology and relatively thicker myelin sheath (Fig.6.J-O). 

Notably, in the GFAP-STAT3-CKO lesions, Schwann cell remyelinated areas contained 

more demyelinated axons than oligodendrocyte remyelinated areas at all the time 
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points examined (Fig.6.M,N). Since toxin-induced demyelination invariably undergoes 

complete remyelination it is likely that these few remaining demyelinated axons will 

eventually undergo remyelination.  
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Discussion 

 

In this study, we used a transgenic conditional astrocytic pStat3 knockout model to 

show that altering astrocyte activation significantly influences the response to CNS 

demyelination injury. This model had been previously used to study astrogliosis and 

scar formation in spinal cord trauma 23. In accordance with this previous study, we 

found that abrogating astrocyte activation decreased the astrocytic response in the 

lesion. However, unlike in the trauma model, we found no effect of pStat3 

manipulation in astrocytes on macrophage responses 29. Crucially, our study focused 

on remyelination and revealed that oligodendrocyte remyelination was reduced and 

Schwann cell remyelination increased in lesioned GFAP-STAT3-CKO mice. Our findings 

therefore constitute the first direct proof of the indispensable role of astrocyte 

activation in the balance between Schwann cell and oligodendrocyte remyelination in 

the CNS. 

 

The intriguing phenomenon of Schwann cell remyelination within the CNS has been 

recognised for many decades, yet its mechanisms and functions remain obscure. It is 

now known, as a result of genetic fate mapping strategies that, contrary to the 

previously held belief, many of the Schwann cells that appear in the CNS are not 

immigrants from the peripheral nervous system but are instead derived from CNS 

progenitor cells 10. It has also been recognised that Schwann cell remyelination often 

occurs around blood vessels and within areas of damaged CNS from which astrocytes 

are absent 16, 19, 33. This observation has led to the hypothesis that the presence or 

absence of astrocytes determines if CNS progenitor cells support remyelination of 

demyelinated axons by becoming an oligodendrocyte or a Schwann cell. Our results 

clearly reveal a central role for astrocytes in determining the balance of central versus 
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peripheral type remyelination. It remains unclear how astrocytes exert this effect. One 

proposed hypothesis is that members of the bone morphogenetic protein (BMP) family 

induce OPCs to become Schwann cells and this is prevented in the presence of 

astrocytes by astrocyte-derived inhibitors of BMP signalling, with OPCs becoming 

oligodendrocytes instead. However, while there is some evidence that the fate of 

transplanted OPCs can be influenced by prior treatment in vitro with BMPs 34, 35 there is 

no compelling evidence for such mechanism in vivo. Since the current STAT3 knockout 

takes place at the first appearance of GFAP expression during development it is 

possible that there are long-term changes in the environment that contribute to the 

shift in remyelination type. However, if such changes do exist they would only seem to 

be revealed following injury since in neither our study nor in previous studies on 

astrocyte STAT3-null animals have phenotypic changes been identified in the absence 

of injury. Thus, exactly how OPCs become Schwann cells in the CNS in the absence of 

astrocytes remains to be fully explored.  

 

What is the functional significance of Schwann cells myelinating CNS axons? There are 

two main functions of myelin – to allow rapid saltatory conduction and to help maintain 

axon health and integrity 36. It has been evidence for many years that Schwann cell 

myelination restores saltatory conduction to demyelinated CNS axons, and from this 

perspective it appears to make no difference which type of myelin surrounds the axons 

37, 38. However, the relative effect of peripheral versus central type myelin on axonal 

integrity is entirely unknown. Schwann cells and oligodendrocytes differ in a number of 

ways - they develop from different tissues, use different strategies to myelinate target 

axons, produce different extracellular components and assemble molecularly distinct 

nodes and paranodes 39. Moreover, key differences have been shown in their metabolic 

relationships with the axons they ensheath 40. It is possible therefore that in the 
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context of recovery from CNS demyelinating injury, Schwann cell CNS remyelination 

may have distinctive physiological advantages over oligodendrocyte remyelination, 

although this hypothesis remains to be tested. Certainly, in the context of immune 

mediated damage directed against epitopes specific to oligodendrocytes and their 

myelin, one might imagine that Schwann cell would be resistant to direct injury and 

that therefore this form of remyelination might protect against subsequent 

oligodendrocyte-directed immune attack.  

 

Our study has shown that substantial reduction of pStat3 mediated astrocyte activation 

is a sufficient prerequisite to sway the remyelination process towards PNS type 

remyelination in the CNS. This evidence will help to further elucidate the development 

and function of peripheral type CNS remyelination, which presents not only an 

intriguing biological phenomenon but also an interesting and unexplored therapeutic 

possibility.  
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Figure legends 

 

Figure 1. Expression of pStat3 following focal demyelination in spinal cord 

white matter is reduced in GFAP promoter controlled conditional Stat3 

knockout mice.  

Control and mutant animals were injected with lysolecithin to create a focal 

demyelination lesion (A). The quantification of total numbers of pStat3+ cells and 

pStat3/Gfap double positive cells in control and GFAP-STAT3-CKO lesions, is shown in 

graphs (B) and (C). Image sets (D-I) show immunostaining of lesioned ventral spinal 

cord white matter at 14 days post lesion (dpl). D and G show merged immunostaining 

for phosphorylated Stat3 (pStat3), and the nuclear dye Hoechst 33342. The dotted line 

marks the border of the demyelinated area, as demarcated by increased cellularity 

shown by Hoechst staining (inset in D). Colabelling with pStat3 and astrocyte marker 

Gfap is shown in E and H, with boxed area in each image magnified in F and I 

respectively. Representative images show colocalization of an alternative astrocyte 

marker Aldh1l1 and pStat3 in demyelinated areas at 14 dpl, in control (J) and GFAP-

STAT3-CKO (K) animals, with quantification shown in (L). pSTAT3 is also expressed in 

other types of cells, including CD11b+ macrophages/ microglia (M,N) and Olig2+ 

oligodendrocyte lineage cells (O) within lesions. Mean ± SEM, *, p<0.05, **, p<0.01, 

***, p<0.001. Arrowheads in images F and J-O indicate cells labelled with both 

markers. Scale bar in D represents 100 μm for D-I , and 25μm for J and K. 

 

Figure 2. Astrocyte response to demyelination is attenuated in GFAP-STAT3-

CKO mice.  

Images (A-D) illustrate areas of lysolecithin-induced demyelination in ventral spinal 

cord white matter at 14 days post lesion (dpl), immunolabelled for astrocyte marker 
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Gfap and nucleus dye Hoechst 33342 (A,C), with lesion areas demarcated by 

counterstaining with Sudan Black (B,D). The relative total area occupied by 

immunoreactive Gfap staining in demyelinated lesions, and the average length of 

astrocytic processes in control and GFAP-STAT3-CKO mice are quantified in graphs (E) 

and (F). The number of astrocytes inside the lesion area identified by the astrocyte 

marker Aldh1l1 are shown in (G). Dotted lines in images mark the lesion boundaries. 

Mean ± SEM, *, p<0.05, **, p<0.01 ***, p<0.001. Scale bar represents 100 μm for 

all images. 

 

Figure 3. Macrophage and microglia infiltration following demyelination in 

GFAP-STAT3-CKO mice is similar to that in controls.  

The microglia/macrophages in demyelinated area at 5 dpl were visualised with 

antibody against macrophage/microglia marker Ionized calcium Binding Adaptor 

molecule 1 (Iba1) in control (A) and GFAP-STAT3-CKO mice (B). Mean optical density 

was used to compare Iba1 immunoreactivity between controls and mutants across time 

points (C). (D) shows the average macrophage/microglia infiltration area at different 

survival times. Measurements were taken form transverse sections of the lesion that 

had the largest area of lesion (identified by increased cellularity). Mean +/- SEM. Scale 

bar represents 50μm for both images. 

 

Figure 4. The response of oligodendrocyte lineage cells to lysolecithin induced 

spinal cord demyelination in GFAP-STAT3-CKO mice.  

Images show demyelinated areas of ventral spinal cord lesions at 14 dpl, from control 

and GFAP-pSTAT3-CKO mice, double stained for oligodendrocyte lineage marker Olig2 

and transcription factor Sox2, a marker for activated OPCs (A-D). B and D are the 

enlarged areas marked by orange rectangle boxes in A and C respectively.  Densities of 
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single labelled and colabelled cells are compared in (E), (F) and (G).  Arrows indicate 

double-labelled cells. Mean ± SEM, *, p<0.05, **, p<0.01, *** p<0.001. Scale bar 

represents 100 μm for images A and B. 

 

Figure 5. Oligodendrocyte remyelination is reduced in GFAP-STAT3-CKO mice.  

Remyelination by oligodendrocytes in control and GFAP-pSTAT3-CKO mice at 14 and 

21dpl was assessed by immunostaining for the differentiated oligodendrocyte marker 

CC-1 (A and B) and in situ hybridization for proteolipid protein mRNA (plp), (D and E).  

Images depict representative examples of demyelinated lesions at 21dpl. The cell 

densities for each marker at selected survival times are compared in (C) and (F). Mean 

± SEM, **, p<0.01, ***, p<0.001. Scale bar represents 100μm for all images. 

 

Figure 6. Schwann cell remyelination is increased in GFAP-STAT3-CKO mice. 

Remyelinating Schwann cells from control and GFAP-STAT3-CKO mice at 21 dpl were 

examined by Periaxin immunostaining (A-D), and mpz mRNA in situ hybridisation (F-

H). Dotted lines mark demyelinated areas. (E) and (I) show quantifications of relative 

area of positive Periaxin immunofluorescence and cells containing mpz mRNA, 

respectively. Semithin resin sections from control (J) and STAT3CKO (K) lesioned mice 

were stained with toluidine blue. (M) and (N) are enlarged boxed areas from (J) and 

(K) respectively. Areas of oligodendrocyte remyelination are marked with yellow letter 

‘O’, and that of Schwann cell with the red letter ‘S’. In (L) and (O), examples of axons 

remyelinated by oligodendrocytes are marked by yellow arrows; green arrows point to 

examples of axons that were not demyelinated; cyan arrows indicate poorly 

remyelinated axons, whereas red arrows mark typical morphology of myelinating 

Schwann cells. These observations were further verified by electron microscopy with 

examples shown in (L) - control and (O) - GFAP-STAT3-CKO. Inset in (O) shows an 



 

25 

enlarged view of boxed area in (O), depicting the typical structure of myelinating 

Schwann cells. Mean ± SEM, *, p<0.05, **, p<0.01, *** p<0.001. Scale bar in A 

represents 100μm for A-D. Scale bar in F represents 100μm for F and G. Scale bar in J 

represents 100μm for J-M. Scale bar in L represents 5μm for N and O. 

 


