
RESEARCH ARTICLE

Measuring Asymmetry in Time-Stamped
Phylogenies
Bethany L. Dearlove*, Simon D. W. Frost

Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom

* bd357@cam.ac.uk

Abstract
Previous work has shown that asymmetry in viral phylogenies may be indicative of hetero-

geneity in transmission, for example due to acute HIV infection or the presence of ‘core

groups’ with higher contact rates. Hence, evidence of asymmetry may provide clues to un-

derlying population structure, even when direct information on, for example, stage of infec-

tion or contact rates, are missing. However, current tests of phylogenetic asymmetry (a)

suffer from false positives when the tips of the phylogeny are sampled at different times and

(b) only test for global asymmetry, and hence suffer from false negatives when asymmetry

is localised to part of a phylogeny. We present a simple permutation-based approach for

testing for asymmetry in a phylogeny, where we compare the observed phylogeny with ran-

dom phylogenies with the same sampling and coalescence times, to reduce the false posi-

tive rate. We also demonstrate how profiles of measures of asymmetry calculated over a

range of evolutionary times in the phylogeny can be used to identify local asymmetry. In

combination with different metrics of asymmetry, this combined approach offers detailed in-

sights of how phylogenies reconstructed from real viral datasets may deviate from the sim-

plistic assumptions of commonly used coalescent and birth-death process models.

Author Summary

Phylogenetic trees of viruses sampled from different individuals provide clues to the dy-
namics of transmission. The extent to which the tree is asymmetric may be influenced by
biological factors such as differences in infectiousness or contact rates between individuals,
but also by nuisance factors such as the pattern of sampling. We have devised a simple sta-
tistical test for asymmetry, which controls for sampling patterns and potentially complex
temporal dynamics by conditioning on the sampling and coalescence times in a phyloge-
ny, and can also detect whether specific clades in the phylogeny drive patterns of asymme-
try. We apply our approach to data on HIV, influenza A virus H5N1, and ebola virus.
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Introduction
Genetic approaches to investigating infectious diseases are well-established, exploiting the nat-
urally high genetic diversity in pathogen populations such as HIV and influenza to reconstruct
both their evolutionary and epidemiological dynamics [1]. Phylogenies contain potentially
large amounts of information on disease dynamics, and can help reveal the disease incidence
and prevalence, changes in historical population size, and population substructure [2–4]. How-
ever, there can be confounding factors when trying to convert evolutionary dynamics into epi-
demiological quantities such as transmission rates, and ideally we want to be able to explicitly
model viral transmission in an evolutionary framework, taking into account features such as
the host population structure (for example, differences in contact rates between groups of indi-
viduals) and the natural course of infection (for example, differences in infectiousness during
the acute and chronic phases of HIV infection) [5].

One way to investigate the extra biological complexity of such patterns is to consider the
shape or branching structure of the phylogeny, a feature that is arguably underused despite
being relatively straightforward to infer. Evidence of asymmetry in a tree reflects heterogeneity
in the population that has arisen due to the processes by which a tree has grown [6]; previous
work suggests that evidence of asymmetry in a phylogenetic tree can arise due to selection [2],
heterogeneity in contact rates [7] and population structure [5]. Since many tree models assume
homogeneity in the population, it is important to be able to identify which parts of the tree
might be driving asymmetry, and whether or not this is problematic under the modelling as-
sumptions—preferably before running computationally expensive analyses.

It is common to analyse viral datasets sampled over multiple timepoints. As viruses, includ-
ing RNA and ssDNA viruses, evolve rapidly, phylogenetic reconstruction gives rise to trees
with root-to-tip distances that reflect, in part, sampling times. However, such trees are more
likely to be asymmetric, resulting in standard metrics developed for homochronous sampling
being implicitly biased (see Supplementary Information of Frost and Volz (2013) [5]). This is
due to the fact that most metrics use the topological distance (that is, the number of nodes tra-
versed between two points in the tree), and isolates sampled earlier in the history of the phylog-
eny will tend to have fewer nodes between them and the root of the tree.

In this paper, we propose a permutation-based approach that allows an observed phylogeny
to be compared to random phylogenies with the same sampling and coalescence times. This
approach can also be used to assess asymmetry throughout evolutionary history in a rooted
tree, therefore also allowing areas of local asymmetry to be identified in addition to a single
global value at the root of the tree. We demonstrate this approach on three datasets with differ-
ent expected types of heterogeneity, illustrating the imprint of various transmission dynamics
on viral phylogenies.

Materials and Methods

Measuring phylogenetic tree shape
There are a number of ways to measure the balance of a phylogeny. Most approaches consider
either the topological distance (the number of nodes) between two parts of the tree, for example
Sackin’s index, or the balance of each internal node by comparing the number of leaves in the
left and right subtrees below it, for example Colless’ index [8–11]. Here, we consider two mea-
sures of asymmetry: Sackin’s index [11], and the number of cherries [12], although the meth-
odology can easily be extended to other metrics.

Sackin’s index is the total topological distance between the leaves and root of the tree. If dj is
the number of nodes to be traversed between each leaf j and the root, then Sackin’s index is the
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total over all leaves,

IS ¼
X

j

dj: ð1Þ

In trees where the tips have been sampled at the same time, the expected Sackin’s index,
E(IS(n)), for n isolates in the sample is given by:

EðISðnÞÞ ¼ 2n
Xn

k¼2

1

k
ð2Þ

under the Yule or coalescent models [13]. For large n, E(IS (n))� 2n log(n). Since the expected
value of the Sackin’s index increases with the tree sample size, it is common to either divide the
statistic by n (i.e. the mean topological distance from root to tip), or use the following standar-
disation proposed by Leventhal et al. [7]:

ISðnÞ ¼
ISðnÞ � EðISðnÞÞ

EðISðnÞÞ
: ð3Þ

However, since the permutation method outlined in this paper compares an observed tree to
those of the same size (i.e. like with like), we simply use the non-standardised version here. We
use the function sackin.test in the apTreeshape R package to test the hypothesis of
asymmetry in the tree, comparing the observed value to 10,000 trees simulated under the Yule
model [14, 15].

A cherry is formed when two tips share a direct ancestor. In an asymmetric tree, tips gener-
ally coalesce with branches earlier in the ancestry of the tree, and therefore fewer cherries are
expected than with a balanced tree. Under the Yule or coalescent model, the expected number
of cherries, Cn, in a tree with n taxa is n/3, and for a uniform tree is n/4 [12]. In addition,
McKenzie and Steel showed that the number of cherries is asymptotically normal with

Cn � n=3ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n=45

p ! N ð0; 1Þ ð4Þ

under the Yule or coalescent model, and

Cn � n=4ffiffiffiffiffiffiffiffiffiffi
n=16

p ! N ð0; 1Þ ð5Þ

for a uniform tree [12].
These two metrics complement each other well, as the number of cherries reveals recent

asymmetry in the tree, whereas Sackin’s index gives the asymmetry of the tree over the whole
evolutionary history [5]. In addition, these metrics are only weakly correlated, unlike for exam-
ple, the Sackin and Colless indices [16, 17].

Local asymmetry
The ordering of nodes in a rooted tree means we can consider the asymmetry in the phyloge-
netic tree throughout the evolutionary period, and not just at the root. This asymmetry could
be due to a small effect at each internal node accumulating throughout the tree, or due to one
or more nodes with highly imbalanced subtrees below them. Calculating the asymmetry over
the entire course of the tree allows us to identify local asymmetry, even when there may not be
significant evidence for global asymmetry (as obtained by considering the cumulative statistics
at the root of the tree).
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There are two main types of event that can affect the shape of a phylogeny: a coalescence,
and a new sampling event, which adds a tip. Sackin’s index and the number of cherries are
both concerned with internal nodes rather than the tips, so we need only consider the former.
At each coalescent event, we consider the contribution of that node to the overall metric. This
results in a vector of n − 1 values, one for each ancestral node, giving a measure of how asym-
metric the subtree below the node is (Fig 1). We can add these values cumulatively as we go
backwards in time from the present towards the root, to investigate how asymmetry builds up
over the course of the tree.

For the number of cherries, calculating the effect of each individual node is straightforward
—being 1 if the node is a cherry (i.e. the direct ancestor of two tips) and 0 if it is not. To calcu-
late the Sackin’s index for each node, rather than count the topological distance to the root for
each tip as the calculation of the Sackin’s index is usually presented, we instead consider the
number of times each node is traversed going from the tip to the root. Namely, this is the num-
ber of tips found in the subtree below the node of interest.

Permuting the tree
To obtain the distribution of possible values for each the statistics for an observed tree, we per-
mute the tree whilst retaining the same tip sampling and internal node times (Fig 2). These
simulated trees form a neutrally evolving null distribution of coalescent trees, conditioned on
the same tip and internal node times as the observed tree.

For n tips, there are n − 1 internal nodes. Starting at the time of the most recent internal
node (say, t1) and going backwards in time from the present at t = 0, we consider all tips that
were sampled more recently (i.e. between t1 and t = 0). Two of these tips are then chosen at ran-
dom to coalesce, thus creating the internal node for t1. This continues backwards in time for
each node in turn, with the only difference that coalescences can be between sample tips and
nodes that have already been produced via a coalescence between the time to node i, ti, and the
present.

The code to simulate permutations of an observed tree with the same sampling and coales-
cence times, and all the imbalance metrics considered above, were written in R [15], and are
available as part of the treeImbalance package on GitHub (https://github.com/bdearlove/
treeImbalance), and are in the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.
v7817.

Hypothesis testing
To obtain a distribution of possible values for each imbalance metric, 10,000 permutations of
the observed tree with the same tip sampling and internal node times were generated. For each
of these permuted trees, the number of cherries and Sackin’s index were calculated at each in-
ternal node and globally by computing the cumulative statistics at the root (Fig 1).

The median trajectory of Sackin’s index and the number of cherries throughout the ancestry
of the tree (shown with a solid red line in plots) was calculated by partitioning around the
medoid with a single cluster using the function pam in the cluster R package [18]. The
medoid represents the trajectory which has the least dissimilarity with all the other possible tra-
jectories from the permutation test. This ensures that the median is obtained from within the
set of permuted trajectories, thus ensuring it is a ‘viable’ trajectory, and overcomes issues asso-
ciated with other methods (such as calculating the mean or median statistic at each node),
which do not necessarily force the trajectory to be monotonically increasing.

At each internal node, the 95% confidence interval was calculated by inverting the hypothe-
sis test around the medoid value at that timepoint [19]. The medoid was subtracted from the
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Fig 1. Calculating local asymmetry. For each internal node of an observed tree (a) it is possible to calculate
the node contribution and cumulative number of cherries (b) and Sackin’s index (c).

doi:10.1371/journal.pcbi.1004312.g001
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permuted trees, and then the critical points of this distribution are found where 2.5% of the val-
ues are as or more extreme (with no interpolation). The confidence interval then is obtained by
adding these back to the medoid. Calculating the 95% confidence in this way, as opposed to
using quantiles or the variance, ensures that the value calculated is within the permuted dataset.
Since considering the local imbalance at each node results in a multiple hypothesis test, several
p-value adjustments were considered in order to control the family-wise error rate (including
the Bonferroni correction and methods proposed by Holm (1979), Hochberg (1988) and Hom-
mel (1988) [20–22]), and the false discovery rate (including methods proposed by Benjamini
and Hochberg (1995) and Benjamini and Yekutieli (2001) [23, 24]). For the latter, we also in-
vestigated the q-value, which estimates the proportion of significant hypotheses that are false
[25–27]. Results were generally consistent (S1 Table), so here we report the most conservative
adjustment, the Bonferroni correction, alongside the unadjusted p-values. The uncorrected val-
ues remain valuable since the purpose of the test is to identify potential deviations from the
model for further investigation, rather than necessarily a strict hypothesis test.

For the cumulative statistics, the Bonferroni correction is equal to the number of internal
nodes, n − 1. For the single node contribution to Sackin’s index, the correction is n − 2, since at
the root n tips will always be added.

Fig 2. Permuting a time-stamped tree. The times of the tips (solid blue lines) and internal nodes (dashed
blue lines) from the observed tree (top, black) are preserved in the permuted tree (bottom, dark grey).

doi:10.1371/journal.pcbi.1004312.g002
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Simulated trees
To illustrate the bias of standard metrics, we simulated two sets of trees—one set with homo-
chronous sampling (tips sampled at the same time) and one set with heterochronous sampling
(tips sampled at different times). These were generated using Serial SimCoal [28] under a coa-
lescent model with effective population size of 104, with 100 tips sampled in the present for the
homochronous sampling, and sampled over 10 time points each 1000 generations apart for the
heterochronous sampling.

Phylogenies
A single tip-dated phylogeny is required as input for our permutation approach. These can be
obtained via a number of methods, but for viral datasets, the use of BEAST [29] is most com-
mon. Before implementing the permutation test, the observed trees were checked for poly-
tomies, which were subsequently resolved into randomly ordered dichotomies with zero
branch lengths. Negative branches were set equal to zero.

Tree files were available for the ebola virus [30] and influenza A virus [31] datasets in New-
ick format, and are available in the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.
v7817. For the within-host HIV dataset [32], the sequences were aligned using MUSCLE
v3.8.31 [33] and the maximum clade credibility tree (MCC) obtained using BEAST 1.8 with a
GMRF Bayesian Skyride coalescent model [29]. The GTR model of nucleotide substitution
[34] was used with an uncorrelated log-normal relaxed clock and a discretised gamma distribu-
tion with four categories was used to model rate heterogeneity across the sequence [35]. For
the log-normal relaxed clock parameters, a uniform prior between 0.0 and 1.0 × 10100 was as-
sumed for the mean, and an exponential with mean 1/3 for the standard deviation. A uniform
(Dirichlet) prior was used for the nucleotide frequencies. The MCMC was run for 1 billion iter-
ations, with a 10% burn-in period and samples saved every 10,000 iterations.

The within-host HIV skyride plot was obtained from the observed tree in R using an ap-
proximate approach that employs an integrated nested Laplace approximation [36].

Results
In this section, we apply our test for detecting asymmetry in phylogenies with tips sampled at
different times. The permutation test simulates new coalescent trees, conditional on the inter-
nal node and sampling times in the observed tree, so that a null distribution of asymmetry sta-
tistics can be calculated. The observed Sackin’s index and number of cherries can then be
compared with this distribution to assess how asymmetric the observed tree is, compared to
trees with those times.

As an example, consider a tree simulated with 100 tips sampled over 10 time points (Fig 3a).
Comparing this heterochronous tree with 1000 similarly simulated trees but with tips sampled
at a single time point (Fig 3b) illustrates how extreme the observed values of Sackin’s index and
number of cherries (solid black line) are compared to the expected values (dashed black line),
purely due to the serial sampling [5]. However, when the heterochronous observed tree is com-
pared to a distribution obtained from the permuted trees (Fig 3c), it can be seen that in the dis-
tribution of possible trees with the same internal node and tip sampling times, there is little
evidence to suggest that this observed tree is asymmetric.

We tested this pattern for a total of 100 similarly simulated trees with heterochronous tip
sampling. Using the standard metrics, 99 trees were found to be more asymmetric than ex-
pected using Sackin’s index, and 74 using the number of cherries. In contrast, using the permu-
tation test with 10,000 simulated trees to control for the temporal signal, only two trees were
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significantly more asymmetric than expected with Sackin’s index when compared to the 2.5%
and 97.5% quantiles, and only one tree using the number of cherries.

Influenza A H5N1
We considered 98 influenza A virus H5N1 haemagglutinin sequences sampled from various
bird species around seven locations in Asia (as distributed with BEAST v1.8.0, data originally
collated by Wallace et al. (2007) [29, 31]). Here, we would reasonably expect that there could
be three main sources of asymmetry in the phylogeny: the temporal sampling, selection and
population substructure in the form of host species and location. Using the standard Sackin’s
index, the phylogeny is found to be extremely asymmetric (p-value<0.0001), though there is

Fig 3. Permutations of an observed tree can overcome bias in detecting asymmetry in time-sampled phylogenies. a) An ‘observed’ tree, simulated
under the coalescent model with 100 sequences sampled over 10 time points, each 1000 generations apart, with effective population size of 104. b) The
distribution of Sackin’s index and number of cherries for 100 random trees, simulated as in a) except for tips being sampled at a single time point. Expected
values for these distributions are shown with dashed black lines. The observed values (solid black line) are highly extreme due to the implicit bias caused by
tips sampled early in the ancestry. However, this is not the case when comparing them to a distribution calculated from permuting the observed tree, as seen
in c), where there is no evidence to suggest the observed tree is asymmetric and the solid black line falls between the 2.5% and 97.5% quantiles (dashed red
lines).

doi:10.1371/journal.pcbi.1004312.g003
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not enough evidence to reject the null hypothesis of asymmetry at the tips using the number of
cherries (p-value = 0.100).

However, when we condition on the heterochronous sampling and coalescence times using
the permutation test, we find that there is no evidence for global asymmetry with either statistic
(Fig 4). There may be evidence of individual nodes being more asymmetric than expected, with
12 nodes significant at an unadjusted significance level of 5%, though none remain significant
after the Bonferroni correction (Fig 4a). This suggests that the extreme result seen with the
standard Sackin’s index was due to non-epidemiological effects, rather than heterogeneity in

Fig 4. Asymmetry in influenza A H5N1. a) Tree of 98 influenza A H5N1 haemagglutinin sequences sampled from bird species in Asia. b) Observed
cumulative number of cherries over time (black), with results from permuted trees (grey). Inset histogram shows global results. Red lines show the medoid
(solid) and 95% confidence interval of the permuted results (dashed). c) Trajectories for the cumulative Sackin’s index. d) Node effect on Sackin’s index over
time. Nodes which are significant at an unadjusted p-value of 5% are shown by an open red circle.

doi:10.1371/journal.pcbi.1004312.g004
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the population. However, the unadjusted p-values may still hint towards a deviation from the
model so it could be worth investigating a model that allows for heterogeneity.

Ebola virus
The 2014 West Africa epidemic of ebola virus is the largest known outbreak of the virus, caus-
ing 25,791 cases and 10,689 deaths (as of 15th April 2015) across Guinea, Liberia and Sierra
Leone [37]. A recent study by Gire et al. [30] investigated sequences from 78 patients in Sierra
Leone, suggesting a central African source to the outbreak in 2004 with continued human-to-
human transmission, as opposed to punctuated re-transmission from a zoonotic source. A sub-
sequent paper by Volz and Kosakovsky Pond [38] found strong evidence for superspreading,
with much variance in the number of onward transmissions per individual, in contrast to the
results of Stadler et al. who found that using two classes of transmission rates did not offer a
significant improvement over an unstructured model [39]. Volz and Kosakovsky Pond note
that this heterogeneity in transmission causes highly imbalanced phylogenies. Using a different
method, Łuksza, Bedford and Lässig, identified a clade with a significantly higher growth rate
than the ancestral clade it diverged from—again providing evidence for deviation from a sim-
ple randomly mixing model [40].

Similarly to the influenza data, the standard Sackin’s index showed evidence of global asym-
metry (p-value<0.0001), whilst the null hypothesis could not be rejected for the number of
cherries (p-value = 0.141). Fig 5 shows the trajectory plots for the same statistics using the per-
mutation test, showing that when controlling for the tip sampling being heterochronous, there
is no evidence for asymmetry. Again, this suggests that the extreme result was due to non-epi-
demiological effects rather than heterogeneity in the tree. This clearly does not fit with what
previous work has revealed about the dynamics of the epidemic, and it may reflect the limited
power of these statistics compared to models that take the full phylogeny into account.

Within-host HIV
Within a single host infected with HIV, we might expect that selection driven by neutralising
antibodies would be the primary driver of asymmetry in the phylogenetic tree of the viral enve-
lope, as rates of diversifying selection are significantly higher in HIV-1 env in individuals with
robust neutralising antibody responses [32]. However, this is not the only cause of asymmetry
in a phylogeny. We re-examined the HIV env sequence data of a patient who was previously
shown to have a slow rate of immune escape from neutralising antibodies [32]. There were 134
full-length env sequences available, collected from 13 time points sampled over 1,098 days of
follow up (Fig 6a). This phylogeny was found to be asymmetric with the standard Sackin’s
index (p<0.0001), and was also significant using the number of cherries (p = 0.028).

Correcting for the tip sampling with the permutation test, the number of cherries shows no
evidence of global asymmetry in the phylogeny, though suggests there is some evidence of re-
cent local asymmetry between 767 and 781 days from the present (Fig 6b). Sackin’s index
shows strong global asymmetry at the the root, which accumulates throughout the depth of the
tree (Fig 6c). Within this, there are six individual nodes identified as having more asymmetric
than expected subtrees below them (Fig 6d) with the Bonferroni correction, and 20 at the unad-
justed 5% level. If we consider the q-value instead, there are 14 nodes with a q-value of 2.5% in
the upper tail (for a 5% two-tailed test), suggesting that less than one of them (0.35) will be a
false negative.

Examining the skyline plot for these data (S1 Fig) does not indicate any deviations from the
null model. There are two distinct clades circulating within the patient at the same time in the
tree, and if these clades were non-overlapping in time, we would see a pronounced dip in the
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skyline plot. This is not the case, with the effective population size instead showing steady ex-
ponential growth. This pattern and treeshape is reminiscent of the inter-subtype competition
identified by Ferguson, Galvani and Bush [41].

Discussion
In this paper, we have presented a framework to quantify asymmetry in phylogenetic trees
where the tips have been sampled at different times. Previously, it has been highlighted that un-
derstanding the link between a tree topology and the evolutionary processes that gave rise to it
is difficult [6, 42], which is further confounded by the fact that standard tests for asymmetry
are implicitly biased in trees with heterochronous sampling [5]. The permutation test described

Fig 5. Asymmetry in the Sierra Leone ebola epidemic. a) Tree of 78 ebola virus whole genome sequences. b) Observed cumulative number of cherries
over time (black), with results from permuted trees (grey). Inset histogram shows global results. Red lines show the medoid (solid) and 95% confidence
interval of the permuted results (dashed). c) Trajectories for the cumulative Sackin’s index. d) Node effect on Sackin’s index over time.

doi:10.1371/journal.pcbi.1004312.g005
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here allows an observed phylogenetic tree to be compared to a distribution of coalescence trees,
conditional on the same internal node and tip sampling structure. This is in contrast to the
Temporal Clustering (TC) statistic proposed by Gray et al. [43], which tests for a ‘temporal sig-
nal’ in a tip-dated phylogeny, whereby sequences sampled around the same time are found
clustered together in the tree and among these is the ancestor of any clade with sampling dates
closer to the present. Their statistic permutes the tips with a fixed tree, whereas the test pre-
sented here permutes the tree conditional on the observed temporal structure in the form of tip
sampling dates and internal node times. Trees with high temporal clustering have a higher

Fig 6. Within-host asymmetry is not always due to immune selection. a) Tree of 134 HIV envelope sequences from patient 83 [32]. b) Observed
cumulative number of cherries over time (black), with results from permuted trees (grey). Inset histogram shows global results. Red lines show the medoid
(solid) and 95% confidence interval of the permuted results (dashed). c) Trajectories for the cumulative Sackin’s index. d) Node effect on Sackin’s index over
time. Nodes identified as significantly more asymmetric than expected with the Bonferroni correction are marked with a filled red circle in a), and those which
are significant at an unadjusted p-value of 5% are shown by an open red circle.

doi:10.1371/journal.pcbi.1004312.g006
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potential for false positives from the standard global tests. The three datasets presented in this
paper all have a strong temporal signal according to their TC statistic. However, when we con-
trol for their temporal structures, they display different levels of asymmetry.

Although only Sackin’s index and the number of cherries were illustrated here, the permuta-
tion test can be extended to other metrics of asymmetry including Colless’ index [10], Shao
and Sokal’s balance statistics B1 and B2 [44], and the shape statistics of Agapow and Purvis [45,
46]. These statistics use varying measures of topological distance to quantify asymmetry, mean-
ing they tend to be biased when tips are sampled earlier in the tree and have fewer nodes con-
necting them to the root and other tips of the tree. Given that the number of cherries and
Sackin’s index did not have the power to identify the asymmetry present in the ebola tree, it
may well be worth considering a wider range of statistics alongside the permutation test if there
is strong external suggestion of asymmetry in the tree. It is important to note that the branch
lengths in a phylogeny can also convey important information about the dynamics of disease.
The kernel function of Poon et al. [42] accounts for differences in branch lengths when com-
paring multiple trees, but cannot be used to statistically assess a single observed tree on its own.
However, our permutation test could be used alongside this method to calculate the distance
between the observed tree and simulated null trees. Additionally, the topology and the branch
lengths of a viral phylogeny are not necessarily equivalent to the underlying transmission tree
[47], and therefore it is important to be aware of the possible discrepancy in equating asymme-
try in the phylogeny with asymmetry in transmission.

Generally, more complicated models will better fit the data. However, increased model com-
plexity can be computationally intensive. As such, the model that is considered the best comes
from a balance of the scientific relevance (the biological plausibility), the goodness of fit, and
complexity [48]. While this usually relies on some simplifying assumptions, these are often vio-
lated—such as the assumption of a randomly mixing population. As a result, it is important to
bear in mind the overall fit of the model to data. In the Bayesian framework, posterior predic-
tive simulation is widely used for model checking, but despite recommendations for its use in
the literature [49–53], it remains underutilised in the field of phylogenetics. In addition, these
tests are often only possible alongside or once the analysis has been completed, after much
computational effort. Since the base topology can often be recovered relatively quickly and ac-
curately, our permutation test represents a quick method for checking whether the assumption
of randommixing is supported, or whether there is evidence of asymmetry and therefore het-
erogeneity in the population.

We simply test for evidence of asymmetry in an observed tree, which can arise in the tree
due to many processes in the underlying population such as contact rates and population struc-
ture [5, 7]. As evidenced with the within-host HIV data, it is not necessarily simple to interpret
the underlying cause of local asymmetry being detected. It might be preferable to control for
certain aspects of asymmetry occurring in the tree (that is, allow for some specific asymmetry
in the null model), and see if there is significant evidence for further imbalance beyond that ex-
pected under the null model. However, methods that have become standard for inferring struc-
ture in the phylogenetic tree, such as the phylogeographic approach of Lemey et al. [54], make
the assumption that the tree branching structure is not affected by the heterogeneity in the
population (i.e. the population is randomly mixing, and the discrete trait model is simply over-
laid over the tree). Thus, our permutation test can be used to justify whether this is an appro-
priate assumption, or whether it might be more advisable to use a more complex model such as
the structured coalescent [55, 56].

Our approach is fast, has a free software implementation, and can offer important additional
insights by highlighting potential lack of goodness-of-fit of commonly used coalescent and
birth-death models.
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Supporting Information
S1 Fig. Skyride ride plot for the within-host HIV phylogeny showing exponential growth.
Dashed lines show the 95% confidence interval, and red vertical lines indicate the timing of
nodes evidence of higher than expected asymmetry in the tree.
(TIFF)

S1 Table. Coverage probabilities for the permutation tests for the cumulative Sackin’s
index (a), node effect on Sackin’s index (b) and cumulative number of cherries (c).Within
datasets, for each permuted tree from the null distribution the probability of seeing a statistic
as or more asymmetric in the remaining 9,999 permuted trees was calculated. The number of
significant nodes was recorded, with the coverage probability being the proportion of trees for
which there were no nodes with evidence of asymmetry. For a two-tailed hypothesis test with
95% confidence, we would expect the coverage to be around 97.5% showing that the unadjust-
ed p-values give more false positives than expected, and that all adjustments should be conser-
vative.
(PDF)
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