
Soroban: Attributing Latency in Virtualized Environments

James Snee, Lucian Carata, Oliver R. A. Chick, Ripduman Sohan,
Ramsey M. Faragher, Andrew Rice, and Andy Hopper

Computer Laboratory, University of Cambridge, UK
{firstname.lastname}@cl.cam.ac.uk

Abstract
Applications executing on a hypervisor or in a con-
tainer experience a lack of performance isolation from
other services executing on shared resources. Latency-
sensitive applications executing in the cloud therefore
have highly-variable response times, yet attributing the
additional latency caused by virtualization overheads on
individual requests is an unsolved problem.

We present Soroban, a framework for attributing la-
tency to either the cloud provider or their customer.
Soroban allows developers to instrument applications,
such as web servers to determine, for each request, how
much of the latency is due to the cloud provider, and
how much is due to the consumer’s application or ser-
vice. With this support Soroban enables cloud-providers
to provision based on acceptable-latencies, adopt fine-
grained charging levels that reflect latency demands of
users and attribute performance anomalies to either the
cloud provider or their consumer. We apply Soroban to
a HTTP server and show that it identifies when the cause
of latency is due to a provider-induced activity, such as
underprovisioning a host, or due to the software run by
the customer.

1 Introduction

The rise of cloud computing can primarily be attributed
to multi-tenant hosting. Typically, multiple services are
co-located together with the hypervisor or containeriza-
tion mechanism scheduling services as necessary. While
co-hosting increases utilization, it introduces a number
of disadvantages. In particular: (i) The hypervisor intro-
duces an additional (un-coordinated) level of indirection
with respect to process scheduling. This property makes
the service time of requests unpredictable. (ii) The ser-
vice performance is influenced by overall system state of
which individual services have no information, e.g. num-
ber of other services hosted, time scheduled in and con-
tention on shared resources. Given the lack of mutual

performance isolation, it is common for co-located ser-
vices to affect each other’s performance. While there has
been previous work in improving the scheduling prob-
lem [8, 21], the lack of performance isolation remains.
This has lead to a situation where pinpointing the reasons
for performance irregularities in cloud environments can
be challenging. In particular, it is difficult to ascertain
whether performance anomalies are being caused by the
behaviour of the running service (e.g. garbage collection)
or if they are due to external artifacts (e.g. CPU starva-
tion).

Current techniques for characterizing system-wide ef-
fects in cloud platforms rely on benchmarking virtual
machines to measure their performance. However, the
utility of benchmarking is reduced by several factors:
(i) benchmarks are typically not representative of true
workloads [12, 20] (ii) benchmarks do not typically
model real-world events that may significantly impact
performance (e.g. domain creation, boot storms, a do-
main being slashdotted) and (iii) while benchmarks re-
veal a measurement of the throughput or latency of the
system, they do not provide a root-cause analysis for per-
formance anomalies.

To this end, we present Soroban, a framework for at-
tribution of latency to either the cloud provider or their
customer. With Soroban programs executing on virtu-
alized hardware can be instrumented to indicate the se-
mantics of processing actions, for example serving a re-
quest. Soroban then monitors the servicing of each ac-
tion in the system and records all latency-influencing ac-
tions performed on the virtual machine or container by
the cloud provider (e.g. an HTTP request taking a VM
exit whilst being serviced). Furthermore, Soroban re-
ports how much of the latency in serving each individual
action is attributable to the cloud provider and how much
is due to the consumer’s software by comparing online
latency against a machine-learning model constructed
from running the application in a non-virtualized envi-
ronment. We presently have implementations of Soroban

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/77408439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for the Xen hypervisor [5] and Linux Containers.
In summary the contributions of this paper are:

1. We show that by exposing the quality of service
given to a virtual machine or container we can use
supervised machine learning to determine the effect
of virtualization on the latency of individual actions,
such as serving HTTP requests (§3).

2. We evaluate Soroban, showing that it can attribute
an increase in server latency to cloud-provider ac-
tions, such as performing an antivirus scan (§4).

2 Soroban

Soroban allows services running in a virtualized environ-
ment to determine how much of their server-side latency
is attributable to the underlying cloud infrastructure and
how much is due to their own software stack. For in-
stance, if a cloud provider creates a boot storm it induces
latency on its clients, whereas if the load being served by
the virtual machine increases, the latency will be caused
by the client.

Users deploy Soroban by instrumenting their applica-
tion using the Soroban API. With this API services are
able to receive event information specific to the underly-
ing virtualization platform (e.g. in Xen we provide VM
entry and VM exit events). Associated with every event
we provide enough resource consumption information
(e.g. cycle-count at time of event) so that Soroban can re-
construct the impact on latency of the hypervisor or con-
tainer. Thus, services are able to monitor system-wide
effects that impact the performance of their actions.

2.1 Motivating Soroban
We highlight three motivating scenarios where Soroban
can be applied in production cloud environments:

Dynamic allocation. With Soroban, consumers can
specify the upper bound on performance overhead that is
tolerable. This allows the provider to react to users in a
more accurate manner by allocating resources according
to price and demand.

QoS-based, fine-grained charging. Current charg-
ing models are coarse-grained. Physical resources are
priced at the unit level and users pay on a per-unit-
consumed basis. However, this model does not account
for the quality-of-service that is finally provided. A user
is charged the same amount per-unit regardless of the ef-
fects imposed by the hypervisor. For example, a user will
pay the same amount to service two HTTP requests even
if one takes twice as long to complete due to hypervisor
delays. With Soroban it is possible for providers to ex-
plore flexible new pricing models that set price points as
a function of user demand and overall system-imposed

1 int sd = srbn_start ();

2 ...

3 srbn_yield(sd);

4 ...

5 srbn_resume(sd);

6 ...

7 srbn_end(sd);

8 auto& srbn_data {srbn_read(sd)};

Figure 1: The Soroban API allows applications to be in-
strumented to mark the start, and end of requests.

delay, leading to more accurate and representative charg-
ing models.

Attributing performance anomalies. Slow server re-
sponses are a principal component of end-to-end latency
for client-server systems [9]. Soroban attributes slow
responses to either the cloud provider or the customer
software stack. Consumers can use this information to
purchase more computing resource or focus their efforts
on modifying their software. Soroban enables accurate
pinpointing of performance anomalies at a request level
enabling both providers and users to obtain a detailed fin-
gerprint on online service performance.

3 Implementation

We currently maintain two implementations of Soroban:
one for virtual machines running on Xen and one for
Docker containers. Most of the code is shared be-
tween those implementations, keeping the virtualization-
specific code targeted at capturing specific Xen or con-
tainer scheduling events. In this section we outline the
implementation details necessary to support Soroban on
these platforms.

3.1 Design

Applications are instrumented to mark the start and end
of each action by adding a call to the Soroban library.
The Soroban library tracks the scheduling events per-
formed by Xen or the Linux kernel using regions of
memory shared either with the hypervisor or with the
Linux kernel. At the end of processing a request the
application can read back all those events that affected
its performance. Moreover, the Soroban library provides
a measure of how much of that request’s server-side la-
tency is caused by executing in the cloud, rather than on
bare metal. This measure is ideally independent of load
in the virtual machine, or container, and dependent on
the state of the host machine.

3.2 Service API
Applications interact with Soroban via an API, designed
to be minimally invasive and requiring little integra-
tion effort. Figure 1 outlines the API. Services use
srbn start (1) and srbn end (7) to start and stop
tracking resource consumption. It is expected that the
service will use those calls to signal a logical event where
resource allocation for a particular action (e.g. serving a
HTTP request) will start and stop.

A call to srbn start (1) returns an unique token for
identifying the current application action to which mea-
surements should be attributed.

Services distinguish between simultaneous logical
events through multiple calls to the start and end op-
erations, thereby enabling differentiation based on ser-
vice classification (e.g. per user). A single user-level
thread can differentiate between logical actions via the
srbn yield (3) and srbn resume (5) calls, which allow
user-level applications to signal that subsequent system
calls should be attributed to a different logical event [3].
User-level applications access a single logical event’s
resource usage via the srbn read (8) call which re-
turns a breakdown of the resources consumed by the
hypervisor. In particular, applications access a single
srbn data->cloud latency field which contains the
amount of latency for the event that is attributable to the
hypervisor.

3.3 Xen Implementation
We modify Xen to export to each domain data about all
scheduling events on each of its vCPUs. In particular at
every VM entry, and VM exit, we expose a timestamp,
cycle count, the credit of the vCPU, the number of pend-
ing events in the event channel, the number of yields,
and the number of blocks. These data are exposed to
the guest using shared hypervisor memory, and are read
by the guest Soroban API. We therefore do not add the
overhead of increased interrupts on each vCPU schedul-
ing activity.

3.4 Docker Implementation
A Linux scheduler instrumentation layer (∼ 200 LoC)
interposes the host OS and tracks scheduling events that
interact with the Soroban-enabled processes. The ag-
gregated events are accessible to the Soroban library via
shared memory.

3.5 Latency Attribution
Soroban uses data from Xen and Docker to attribute pro-
portions of the latency of each individual action to the
cloud provider or the user’s software stack.

0.8 1.0 1.2 1.4 1.6
Server-side latency (cycles) 1e8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X
en

sc
he

du
le

d-
ou

t
(c

yc
le

s) 1e8

66%

30%

Xen scheduling measurements

0

20

40

60

80

100

120

140

160

xe
n

#
sc

he
du

le
s

du
e

to
bl

oc
ki

ng

Figure 2: Baseline Xen scheduling measurements for
lighttpd requests, under low resource contention. The
solid line is x = y, the line of complete attribution (time
scheduled out equals server-side latency). The two major
clusters represent request latencies for which a constant
proportion (66% and 30%) can be attributed to the time
being scheduled-out.

In principle, a hypervisor should fairly divide re-
sources amongst contending VMs, with the latency of a
particular service increasing proportionally to the time its
VM has been scheduled out. Simply measuring the VM
scheduled-out time for each application activity could
thus be seen as an easy solution to the attribution prob-
lem. However, Figure 2 shows a more complicated story:
because of variations in concurrent workloads running on
the same infrastructure and the adaptability of the sched-
uler, the time scheduled out can vary substantially (for
example, going from 30% to 66%) without any increases
in server-side latency. As a simple example of how this
is possible, being scheduled out while a server process is
blocked on a file descriptor operation will not add to the
final latency.

Nevertheless, this also implies that looking at a given
(latency,sched-out) pair alone, one can not precisely de-
termine how much latency is added by running along-
side other services in a virtualized environment. Instead,
Soroban uses supervised machine learning to build a
slowdown attribution model from multiple metrics, using
both PMU data (cycles, cache data, per-subsystem kernel
measurements) and scheduler information (time sched-
uled out, number of blocks, yields, number of events on
the event channel). We use a Gaussian process regres-
sion that, after training, can map the set of measurements
gathered for a given request to a number representing the
latency introduced by the cloud provider for that request
(or any other application activity).

The ground truth data for the training is obtained by
measuring the shift between the latency distributions
of the service running uncontended on bare metal, and
it running in a virtualized environment (either Xen or
Docker). Concretely, the shift, δlat is computed by taking

https://www.cl.cam.ac.uk/research/dtg/rscfl/soroban.html#fig2

the difference between the latency of requests in the vir-
tualized experiment and the latency of requests from the
bare-metal experiment that are in the same percentile.

The Gaussian process regression is then trained to
learn the relationships between each multi-dimensional
feature vector containing the measurements for a partic-
ular request in the virtualized experiment (m1,m2,m3, ...)
and the corresponding δlat .

To ensure accurate predictions from the model, vir-
tualized measurements are taken whilst increasing the
number of other guests on the server, introducing re-
source contention with a mixed IO and CPU load. The
whole training process need only be performed once at a
coarse-grained level, based on all requests served by the
virtual machine. However, whenever there are classes of
requests that execute differing loads on the hypervisor, a
new training set could be taken for increased precision.

The final output of this process is a model that when
given a new vector of measurements, returns the pre-
dicted latency increase attributed to the current virtual-
ization load, and a confidence interval. This scheme is
robust to differences between bare-metal environments
and virtualized environments—such as a micro VM ex-
ecuting on a high-end server—in that Soroban reports a
large overhead imposed by virtualizing the application,
which can be reduced by purchasing a larger VM.

4 Evaluation

In this section we focus on identifying how well our pro-
posed slowdown attribution model works in a controlled
setup that mimics some of the conditions present in cloud
environments, like the contention on resources or the ex-
istence of periodic running tasks. We use a controlled
setup as some important metrics (scheduling informa-
tion, pending interrupts) are not currently accessible to
the application in third party cloud solutions. However,
the proposed model itself is sufficiently general to allow
for extensibility and consider more complex scenarios
(feature vectors with more dimensions, realistic work-
loads and contention). We explore how changes in the
distribution of request latencies can be attributed to the
cloud provider or to client application/VM activities.

We run all workloads on a machine with an Intel Xeon
E3-1230 V2 @ 3.3 GHz and depending on the virtualiza-
tion type being evaluated, either Xen-unstable (compiled
from source) in PV mode or Docker containers. In all
cases we use Ubuntu 14.10 with the 3.19 upstream ker-
nel compiled from the Linus branch. For Xen, the unsta-
ble branch has been chosen to make use of the Credit2
Scheduler, which is optimized for low latency.

We instrument lighttpd with the Soroban API to re-
port when individual requests start, stop being processed
or are multiplexed by the main event loop. At runtime,

Figure 3: As the load on hypervisor/containers system
increases, there is an increase in the latency at which re-
quests are served. Soroban only identifies the cause of
the latency as being due to the cloud provider when the
hypervisor or host OS is under load.

Soroban can aggregate per-request resource consumption
metrics and events, from both the OS and the hypervisor.
This data can be read back in real time by lighttpd after
a response has been sent or alternatively saved for later
analysis. This builds the per-request feature vectors re-
quired by our latency attribution model. We then perform
the training stage outlined in §3.5.

Understanding request slowdowns. In order to ver-
ify that our model is reasonable and useful, we run ex-
periments by varying the number of virtualized guests
running on the same host (and executing CPU-intensive
tasks) and the load within the guest running lighttpd and
serving requests. In each case we obtain measurements
for approximately 50000 requests, and use the regression
from the training phase to predict how much of the ob-
served tail latency is due to the virtualization.

The results are summarized in Figure 3. Each cell
shows the estimated number of cycles that are at-
tributable to the cloud provider for increasing the tail
(99th percentile) latency of requests. Similar heatmaps
could be used to investigate the causes of shifts in me-
dian latency or in other measured features.

Using the full Soroban results, a complete image de-
scribing the slowdown caused by the hypervisor can be
obtained for the entire lighttpd latency distribution, with
plots similar to Figure 4 being available for each cell in
the heatmap.

The request latency attributed to both Xen and Docker,
as reported by Soroban, increases proportionally to the
hypervisor contention (more VMs and containers), for
any given guest load (every column in Figure 3). In ad-
dition, for a given number of concurrent VMs or contain-
ers, as the load on the virtual machine increases, we do
not see a significant change in attribution metrics, sug-
gesting that Soroban does not attribute increases in guest
load to the cloud provider.

Periodic events. Using the same training dataset, we
also explore whether common repetitive tasks that exe-

https://www.cl.cam.ac.uk/research/dtg/rscfl/soroban.html#fig3

30 35 40 45 50 55 60 65
Hypervisor-induced latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
CDFs of hypervisor-induced latency

Low contention
AV scan running

Figure 4: When the cloud provider executes an antivirus
scan the tail latency of serving HTTP requests increases
from 36ms to 47ms. Soroban correctly attributes this in-
crease in latency to the cloud provider.

cute on other VMs or in dom0 and slow down requests
can be detected and properly classified using our model.
For this purpose, we compare the slowdown caused
by the hypervisor in two cases (Figure 4): The first
case—running a realistic mix of CPU/Network and I/O
workloads on sixteen other VMs sharing the same host,
but keeping overall contention low (30%); The second
case—running a periodic virus scan (clamav) in dom0.
As expected, we are able to see a shift in the hypervisor-
induced latency, with the 90th percentile shifting from
36 ms to 47 ms (with lighttpd serving 500 KB files).

In the general case, we believe that the ability to un-
derstand fine-grained behavior under virtualization, such
as in the examples above would offer ample opportuni-
ties for application optimization in cloud environments.
The overheads imposed by Soroban on lighttpd are not
statistically significant, and would therefore not prohibit
any such usecases.

5 Related Work

Existing cloud service providers bill users based on their
use of coarse-grained system resources such as the num-
ber of vCPUs or amount of memory. But work has
suggested that this often leads to an underprovisioning
of resources, something that AutoPro attempts to over-
come by provisioning machines based on performance
requirements [6]. Agmon et al. predict new markets for
fine-grained performance and resource requirements [1],
with pricing that encourages users to accurately pre-
dict the requirements of their application’s actions [2].
Soroban supports these systems by providing a transpar-
ent layer between the provider and customer, allowing
the user to quantify the performance impact the provider
has on individual system actions, improving billing pro-
cedures [14].

The performance impact of virtualization has been
well investigated [7]. Work to overcome this has looked

at finding compositions of applications that interact well
together [16, 15], but this requires accurate indicators of
provider induced overhead and often falls back to ob-
serving overall system throughput, suggesting that better
predictors be found. Understanding the performance of
individual actions of a system provides a much more in-
formative description of its behavior, and work has been
carried out into investigating variance in request based
systems [19].

Whilst existing work can detect cloud providers caus-
ing consistent, system-wide overheads, they cannot de-
termine per-action impact on latency over a short time
period with unstable interference [18], so are only suit-
able for performance anomalies [10]. Similarly, tech-
niques for detecting changes in data collected over a long
period of time exist [22]. Soroban’s API allows users to
annotate actions in the system and propagate IDs simi-
larly to X-Trace [13], without requiring behavior traces
to be re-built afterwards such as in Magpie [4]. This pro-
vides a much more accurate view of the overhead im-
posed by service providers on individual actions than
external measures such as throughput or coarse-grained
system call tracking.

Soroban exposes the behavior of the underlying hyper-
visor layer’s scheduler to the guest, using a similar tech-
nique to existing work that investigates the virtualization
of the CPU’s PMU [11, 17].

6 Conclusion

We have presented Soroban, a framework that allows
servers hosted in either a virtual machine, or a container,
to determine the latency overhead imposed by the cloud
provider on serving individual actions. Soroban exposes
additional information from the hypervisor or container
system that allows clients to determine the quality of ser-
vice that they received from their provider. Using this
information, Soroban reports the overhead imposed on
each action due to being hosted on cloud infrastructure,
which may be contended.

7 Acknowledgments

This work was principally supported by internal funds
from the Computer Laboratory at the University of Cam-
bridge; and also by the Engineering and Physical Sci-
ences Research Council [grant number EP/K503009/1].

The raw data and code required for reproducing the
figures in this paper is available.1 We aim to release
the source code for Soroban along with a more com-
plete technical description as part of a full-length paper
in 2016.

1https://www.cl.cam.ac.uk/research/dtg/rscfl

https://www.cl.cam.ac.uk/research/dtg/rscfl/soroban.html#fig4
https://www.cl.cam.ac.uk/research/dtg/rscfl

8 Discussion Topics

Claims: We have shown the technical feasibility of
a low-overhead system for collecting and correctly at-
tributing resource consumption in cloud services. This
system operates by providing services real-time access
to key metrics describing system state.

Point 1: Useful for datacenter wide resource con-
sumption? Our proof-of-concept implementation only
operates on a single host. Whilst existing techniques can
account for network delays in serving requests [9] we
should like to attribute resource consumption across all
the elements in a datacenter at a logical request level.
We believe providing this information to service opera-
tors and users will result in increased efficiency for both
parties.

In order to be useful across an entire datacenter we
believe it is necessary to instrument all data and con-
trol paths. Specifically, we expect that end-to-end re-
source consumption support will only be possible with
the support of intermediate processing elements in the
data plane (switches, routers and SAN and NAS devices).
We expect the major problems that are required to be
solved are: (i) How to represent a logical action as a
series of discrete related sub-actions or sub-events. (ii)
Correlating resource consumption metrics across these
sub-events. (iii) Providing this support with acceptable
(ideally ≤ 10%) space and time overheads and (iv) Ex-
tending this mechanism across the entire data plane in a
homogeneous manner.

Point 2: A basis for tiered charging? This work can
be used as the basis for finer-grained charging models.
In particular, we believe it supports the creation of effi-
cient tiered charging models where users can be grouped
not only by the amount of resource they require but also
by how quickly they require it. While a complete design
of such a system would require a supporting economic
model to ensure fair and equitable resource allocation,
it should be possible to retrofit a simplified implementa-
tion of the idea as a basic Dutch auction mechanism in
existing platforms.

Point 3: Pitfalls and limitations in Soroban.
Soroban requires that applications are modified to indi-
cate the start and end of every action that should be ac-
counted for. This requires additional engineering effort
for both cloud providers and application developers.

Moreover, we also require a training exercise to be per-
formed with data from running the application on bare-
metal, executing the relevant codepaths. An alternative
to this approach is that the cloud provider temporarily
migrates virtual machines onto a dedicated host, and al-
locates all resources to the virtual machine whilst train-
ing Soroban. Rather than reporting the total overheads of
virtualization such a scheme would report the overhead

Figure 5: Soroban shows the poor performance isola-
tion properties of containers running multiple processes
(workers). This limits the ability of Soroban to correctly
attribute increases in latency to guest activities.

of not having purchased the cloud provider’s premium
service.

Some of the benefits of Soroban could be achieved
even without performing machine learning, at the ex-
pense of doing manual statistical analysis on multi-
dimensional measurement data, while also having a good
knowledge about the low-level behavior of the applica-
tion under test.

Further issues may arise if cloud providers are reluc-
tant to expose hypervisor memory or metrics to guests.

The lower performance isolation of some virtualiza-
tion methods is also a concern. For example (Figure 5)
shows the poor isolation of containers when running
multiple worker processes to generate load, as opposed
to the one worker case seen in Figure 3. This is caused
by the kernel scheduler being shared between all con-
tainers running on the same machine, and translates into
a poor ability to distinguish between service and cloud
provider-induced latency (significant changes within ev-
ery line of the heatmap).

Point 4: Integration into existing platforms? In-
tegrating Soroban into existing systems is a necessary
component for its widescale adoption but it is still an
open question whether system-wide adoption of the plat-
form would be feasible across current production cloud
platforms. In particular, it is an open question whether
there is a business demand for this platform and how it
would be integrated into user business models.

Point 5: Practicality of instrumentation. Soroban
requires that developers augment their application with
instrumentation that specifies the semantics of process-
ing a request. At the moment this instrumentation is
manual and restricted to a single machine. Typically,
cloud services have a distributed model with many (vir-
tual) machines serving requests. We are investigating
ways of extending Soroban to operate across such dis-
tributed systems whilst minimizing the need for instru-
mentation. For instance, can Soroban be combined with
Protocol Buffers or Apache Thrift to infer the start and
end of requests?

https://www.cl.cam.ac.uk/research/dtg/rscfl/soroban.html#fig5

References

[1] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER,
A., AND TSAFRIR, D. The resource-as-a-service (raas) cloud.
In Proceedings of the 4th USENIX Conference on Hot Topics in
Cloud Ccomputing (Berkeley, CA, USA, 2012), HotCloud’12,
USENIX Association, pp. 12–12.

[2] AGMON BEN-YEHUDA, O., POSENER, E., BEN-YEHUDA, M.,
SCHUSTER, A., AND MU’ALEM, A. Ginseng: Market-driven
memory allocation. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments (New York, NY, USA, 2014), VEE ’14, ACM,
pp. 41–52.

[3] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C. Resource
containers: A new facility for resource management in server
systems. In Proceedings of the Third Symposium on Operating
Systems Design and Implementation (Berkeley, CA, USA, 1999),
OSDI ’99, USENIX Association, pp. 45–58.

[4] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using magpie for request extraction and workload modelling. In
Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6 (Berkeley, CA,
USA, 2004), OSDI’04, USENIX Association, pp. 18–18.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Princi-
ples (New York, NY, USA, 2003), SOSP ’03, ACM, pp. 164–177.

[6] BARTOLINI, D. B., SIRONI, F., SCIUTO, D., AND SANTAM-
BROGIO, M. D. Automated fine-grained cpu provisioning for
virtual machines. ACM Trans. Archit. Code Optim. 11, 3 (July
2014), 27:1–27:25.

[7] CHERKASOVA, L., AND GARDNER, R. Measuring cpu overhead
for i/o processing in the xen virtual machine monitor. In Pro-
ceedings of the Annual Conference on USENIX Annual Techni-
cal Conference (Berkeley, CA, USA, 2005), ATEC ’05, USENIX
Association, pp. 24–24.

[8] CHERKASOVA, L., GUPTA, D., AND VAHDAT, A. Comparison
of the three cpu schedulers in xen. SIGMETRICS Performance
Evaluation Review 35, 2 (2007), 42–51.

[9] CHOW, M., MEISNER, D., FLINN, J., PEEK, D., AND
WENISCH, T. F. The mystery machine: End-to-end performance
analysis of large-scale internet services. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 2014), OSDI’14, USENIX
Association, pp. 217–231.

[10] DEAN, D. J., NGUYEN, H., WANG, P., AND GU, X. Perf-
compass: Toward runtime performance anomaly fault localiza-
tion for infrastructure-as-a-service clouds. In Proceedings of
the 6th USENIX Conference on Hot Topics in Cloud Computing
(Berkeley, CA, USA, 2014), HotCloud’14, USENIX Association,
pp. 16–16.

[11] DU, J., SEHRAWAT, N., AND ZWAENEPOEL, W. Performance
profiling of virtual machines. In Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (New York, NY, USA, 2011), VEE ’11, ACM,
pp. 3–14.

[12] ELLARD, D., AND SELTZER, M. Nfs tricks and benchmarking
traps. In Proceedings of the Annual Conference on USENIX An-
nual Technical Conference (Berkeley, CA, USA, 2003), ATEC
’03, USENIX Association, pp. 16–16.

[13] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, I. X-trace: A pervasive network tracing framework. In

Proceedings of the 4th USENIX Conference on Networked Sys-
tems Design & Implementation (Berkeley, CA, USA, 2007),
NSDI’07, USENIX Association, pp. 20–20.

[14] JELLINEK, R., ZHAI, Y., RISTENPART, T., AND SWIFT, M.
A day late and a dollar short: The case for research on cloud
billing systems. In Proceedings of the 6th USENIX Conference
on Hot Topics in Cloud Computing (Berkeley, CA, USA, 2014),
HotCloud’14, USENIX Association, pp. 21–21.

[15] LLOYD, W., PALLICKARA, S., DAVID, O., LYON, J., ARABI,
M., AND ROJAS, K. Performance modeling to support multi-tier
application deployment to infrastructure-as-a-service clouds. In
Proceedings of the 2012 IEEE/ACM Fifth International Confer-
ence on Utility and Cloud Computing (Washington, DC, USA,
2012), UCC ’12, IEEE Computer Society, pp. 73–80.

[16] NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. Q-
clouds: Managing performance interference effects for qos-aware
clouds. In Proceedings of the 5th European Conference on Com-
puter Systems (New York, NY, USA, 2010), EuroSys ’10, ACM,
pp. 237–250.

[17] NIKOLAEV, R., AND BACK, G. Perfctr-xen: A framework for
performance counter virtualization. In Proceedings of the 7th
ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments (New York, NY, USA, 2011), VEE ’11,
ACM, pp. 15–26.

[18] NOVAKOVIĆ, D., VASIĆ, N., NOVAKOVIĆ, S., KOSTIĆ, D.,
AND BIANCHINI, R. Deepdive: Transparently identifying and
managing performance interference in virtualized environments.
In Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13) (San Jose, CA, 2013), USENIX,
pp. 219–230.

[19] SAMBASIVAN, R. R., AND GANGER, G. R. Automated diagno-
sis without predictability is a recipe for failure. In Proceedings of
the 4th USENIX Conference on Hot Topics in Cloud Ccomputing
(Berkeley, CA, USA, 2012), HotCloud’12, USENIX Association,
pp. 21–21.

[20] SCHWARZKOPF, M., MURRAY, D. G., AND HAND, S. The
seven deadly sins of cloud computing research. In Proceedings of
the 4th USENIX Conference on Hot Topics in Cloud Ccomputing
(Berkeley, CA, USA, 2012), HotCloud’12, USENIX Association,
pp. 1–1.

[21] SHIEH, A., KANDULA, S., GREENBERG, A., AND KIM, C.
Seawall: Performance isolation for cloud datacenter networks.
In Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing (Berkeley, CA, USA, 2010), HotCloud’10,
USENIX Association, pp. 1–1.

[22] VALLIS, O., HOCHENBAUM, J., AND KEJARIWAL, A. A novel
technique for long-term anomaly detection in the cloud. In Pro-
ceedings of the 6th USENIX Conference on Hot Topics in Cloud
Computing (Berkeley, CA, USA, 2014), HotCloud’14, USENIX
Association, pp. 15–15.

	Introduction
	Soroban
	Motivating Soroban

	Implementation
	Design
	Service API
	Xen Implementation
	Docker Implementation
	Latency Attribution

	Evaluation
	Related Work
	Conclusion
	Acknowledgments
	Discussion Topics

