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ABSTRACT 1 

There has been a gradual shift in the definition of Parkinson’s disease, from a movement 2 

disorder to a neurodegenerative condition affecting multiple cognitive domains. Mild 3 

cognitive impairment (PD-MCI) is a frequent comorbidity in PD that is associated with 4 

progression to dementia (PDD) and debilitating consequences for patients and caregivers. 5 

At present, the pathophysiology underpinning cognitive impairment in PD is not 6 

established, although emerging evidence has suggested that multi-modal imaging 7 

biomarkers could be useful in the early diagnosis of PD-MCI and PDD, thereby 8 

identifying at-risk patients to enable treatment at the earliest stage possible. Structural 9 

MRI studies have revealed prominent grey matter atrophy and disruptions of white matter 10 

tracts in PDD, although findings in non-demented PD have been more variable. There is a 11 

need for further longitudinal studies to clarify the spatial and temporal progression of 12 

morphological changes in PD, as well as to assess their underlying involvement in the 13 

evolution of cognitive deficits. In this review, we discuss the aetiology and 14 

neuropsychological profiles of PD-MCI and PDD, summarize the putative imaging 15 

substrates in light of evidence from multi-modal neuroimaging studies, highlight 16 

limitations in the present literature, and suggest recommendations for future research. 17 

  18 
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INTRODUCTION 1 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting over 4 2 

million people above the age of 50, with prevalence in Western Europe and the world’s 3 

10 most populous nations expected to double to between 8.7 and 9.3 million by 2030 [1]. 4 

Although PD is classically conceptualized by its cardinal motor deficits, it is increasingly 5 

associated with a variable spectrum of cognitive impairment, most prominently in 6 

executive function, attention and working memory, visuospatial and language domains 7 

[2]. In addition, the trajectory of cognitive decline in up to 80% of PD patients progresses 8 

over time to mild cognitive impairment (PD-MCI) and dementia (PDD) [3].  9 

 10 

Cognitive impairment in PD has an adverse impact on quality of life [4], contributes to 11 

increased caregiver burden [5], and has been associated with depression and mortality 12 

[6]. Collectively, these negative consequences underscore the need to establish 13 

biomarkers, which would facilitate our on-going efforts to identify patients at risk of 14 

dementia, and develop disease-modifying treatments. In addition, early detection of 15 

dementia in PD will permit patients and their caregivers to make optimal plans for the 16 

future and monitor symptoms more closely. 17 

 18 

At present, the neuropathophysiology underlying cognitive impairments in PD has not 19 

been established, although accumulating evidence has suggested that multi-modal 20 

imaging biomarkers could be useful in the early diagnosis of PD-MCI and PDD. In this 21 

review, we outline current and emerging concepts of MCI and dementia in PD, discuss 22 
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putative neural substrates in light of evidence from neuroimaging studies, and highlight 1 

limitations in the present literature. 2 

 3 

COGNITIVE IMPAIRMENT IN PD 4 

 5 

Prevalence and epidemiology of PD-MCI and PDD  6 

Mild cognitive impairment, defined as cognitive decline that is more severe than 7 

expected for age but with preserved functional activities, is common in non-demented PD 8 

subjects with a prevalence of 20 – 50% [2,7]. PD-MCI subjects are also at increased risk 9 

of future dementia. In a prospective longitudinal study, Aarsland and colleagues reported 10 

that more than 80% of PD patients developed dementia over the course of the disease [3]. 11 

For the purpose of this review paper, we adopt the definition of PDD proposed by the 12 

MDS Task Force: PDD is diagnosed when dementia develops within the context of 13 

established PD [8]. There is substantial overlap of pathological and clinical features 14 

between PDD and dementia with Lewy bodies (DLB), indicating that both conditions are 15 

most likely two clinical entities along a spectrum of Lewy body diseases. In this regard, 16 

the Third Report of the DLB Consortium has recommended a diagnosis of DLB when 17 

dementia occurs before or concurrently with parkinsonism [9]. Several clinical and 18 

demographic risk factors for the development of PDD have also been described, 19 

including postural instability gait difficulty [10], neuropsychiatric symptoms such as 20 

depression and visual hallucinations, disease duration, and advanced age [11].  21 

 22 

Neuropsychological profiles  23 
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Cognitive deficits in PD have traditionally been conceptualized as ‘subcortical’ in nature 1 

[12], but accumulating evidence points to a heterogeneous profile featuring deficits in 2 

executive function, attention, processing speed, visuospatial ability, and memory [7], 3 

even during the earliest stages of the disease [13]. For instance, a community-based 4 

cohort of 159 newly diagnosed PD patients (CamPaIGN study) revealed deficits in 5 

frontostratial-based tasks (12%), temporal lobe-based tasks (8%), and global cognition 6 

(15%) [14].  7 

 8 

Given the near ubiquitous nature of cognitive deficits in PD, the relative importance of 9 

various cognitive profiles in the development of PDD is a topic of continuing debate. 10 

Although executive deficits and attention have been implicated in the development of 11 

PDD [15,16], a 3.5-years follow-up of the CamPaiGN cohort further clarified the 12 

evolution of cognitive deficits in PD by showing that cognitive deficits with a posterior 13 

cortical basis (i.e. semantic fluency and visuospatial ability) are most associated with 14 

progressive global decline [17]. Of note, these findings were also backed by genetic 15 

variations, with tau H1 haplotype associated with posterior deficit and increased risk of 16 

dementia, whereas the COMT genotype was associated with executive impairment but 17 

not dementia. Specifically, the pentagon copying test, a measure of visuospatial ability, 18 

was also proposed as a predictor of cognitive decline in PD while other studies have 19 

similarly reported that constructional deficits, most likely reflecting parietal lobe 20 

dysfunction, herald dementia in PD [18]. These inconsistencies warrant further 21 

investigation, although they could be attributed to varying definitions of PDMCI and 22 

PDD and sample heterogeneity. 23 
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Neuropathological substrates of cognitive impairment 1 

Immunohistochemical methods, particularly staining with anti-alpha-synuclein antibodies 2 

have allowed the investigation and recognition of cortical Lewy bodies (LB) as the 3 

primary substrate driving cognitive impairment in PD [19,20]. A longitudinal study that 4 

prospectively followed 22 PD subjects until their deaths found that instead of 5 

neurofibrillary tangles (NFTs), the severity of LB was the only pathological measure that 6 

significantly correlated with rates of cognitive decline [19]. A strong association was also 7 

found between dementia severity and regional LB scores in the entorhinal cortex of 22 8 

elderly PD subjects in whom parkinsonism preceded cognitive decline by 3 years [21]. 9 

Similarly, as retrospective study of 45 PD subjects revealed a significant association, 10 

particularly in the frontal and cingulate gyrus, between the severity of cognitive 11 

impairment and cortical Lewy bodies that was independent of AD [22]. However, there is 12 

also evidence – inconclusive as yet – that amyloid beta plaques and tau neurofibrillary 13 

tangles (NFTs) also underlie cognitive impairment in PDD [23,24]. These 14 

clinicopathological findings have provoked an on-going debate regarding a possible 15 

synergistic relationship between AD and LB pathology that is linked with progressive 16 

cognitive decline in PD. Evidence in support for this hypothesis has come from a 17 

previous study that showed that a combination of measures including cortical LB, NFTs, 18 

and amyloid plaques was most closely associated with PDD over any single pathological 19 

marker [23].  20 

 21 

Elucidating the neurochemical bases of cognitive impairment in PD-MCI and PDD is 22 

challenging, as it is most likely a consequence of multiple factors that may or may not be 23 
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independent of one another. Several theories have been proposed, including an imbalance 1 

in the dopamine-acetylcholine synergistic function leading to synaptic impairments [25]. 2 

In addition, the heterogeneous profile of cognitive deficits could also reflect extensive 3 

neurochemical deficits beyond the dopaminergic system, including the cholinergic 4 

system [26] which has been implicated in the presence of dementia in PD [27,28], as well 5 

as cortical deafferentation of other ascending monoaminergic systems, such as the 6 

noradrenergic and serotoninergic pathways [29]. These pathological and neurochemical 7 

abnormalities are commonly associated with morphological brain changes, including 8 

atrophy, which could be detected in vivo by structural MRI studies.  9 

 10 

Considered together in the context of identifying targets for drug discovery in PDD, these 11 

findings highlight the complex and multifactorial nature of the pathogenesis underlying 12 

dementia in PD, although it can be argued that LB pathology should be considered as a 13 

the main pathological substrate of cognitive impairment in PD. Future research for targets 14 

in drug discovery endeavours should aim to delineate the relative contribution of other 15 

factors, such as ageing, concomitant AD pathology, as well as genetic susceptibility. 16 

 17 

STRUCTURAL NEUROIMAGING IN PD 18 

With the prospect of disease modifying therapies and the recent characterization of PD-19 

MCI as a distinct clinical entity [7], concerted efforts have been made to identify 20 

biomarkers that are capable of quantifying pathological changes in a sensitive and 21 

reproducible manner. Advances in computational analyses have allowed the investigation 22 

of subtle regional atrophy, contributing to the recognition of structural magnetic 23 
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resonance imaging (MRI) as a validated biomarker for AD [30] and MRI is also 1 

increasingly adopted as an outcome measure in clinical trials for AD [31].  In the 2 

following sections, we summarize principle findings from multiple imaging modalities 3 

across the cognitive spectrum of PD. A summary of candidates for neuroimaging 4 

correlates in PD-MCI and PDD can be found in Table 1.  5 

 6 

MR studies of grey matter changes in PDD 7 

The general consensus from the structural imaging literature suggests widespread cortical 8 

atrophy in PDD, although it is less severe compared to AD and DLB [32,33]. Using 9 

voxel-based morphometry (VBM) and cortical thickness analyses, the assessment of grey 10 

matter changes in PDD has also revealed a linear progression of atrophy across the 11 

cognitive stages in PD, affecting temporal, frontal, parietal [32,34–39], and less 12 

commonly, occipital regions [32].  13 

 14 

Regarding subcortical involvement, VBM and region of interest (ROI) studies in PDD 15 

have also revealed atrophy of the hippocampus [34,40–42], though less extensive than in 16 

AD [39].  Importantly, this finding is also consistent with clinicopathologic evidence 17 

indicating that the hippocampus is a major target for Lewy body inclusions in PD [43]. 18 

Other atrophic subcortical structures in PDD include the thalamus [32], putamen [32], 19 

amygdala [34,41], and the caudate [32,42].  20 

 21 

Imaging studies have also compared atrophy profiles between DLB and PDD. These 22 

results have converged to reveal a pattern of more pronounced grey matter loss in DLB 23 
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compared to PDD. Despite similar severity of dementia, DLB subjects had more cortical 1 

atrophy compared to subjects with PDD [33]. Reductions of grey matter volumes in 2 

prefrontal areas have been reported in DLB compared to PDD [44], while decreased GM 3 

volume in associative areas such as the precuneus and the inferior frontal lobe also 4 

correlated with visual hallucinations in DLB but not in PDD [45]. Together, these 5 

findings support the hypothesis that PDD and DLB represent two distinct subtypes of a 6 

spectrum of Lewy body diseases. 7 

 8 

MR studies of grey matter changes in PD-MCI 9 

Although grey matter atrophy is well established in PDD, the extent of grey matter 10 

changes in non-demented PD subjects continues to be a topic of contentious debate. 11 

Compared to PD subjects with no cognitive impairment (PD-NC), atrophy in temporal, 12 

parietal, and frontal cortices has been observed in PD-MCI using VBM [35,46]. In 13 

addition, thalamic [47] and hippocampal changes have also been implicated in PD-MCI 14 

while the latter has been associated with deficits in memory-encoding performance [36]. 15 

Interestingly, a study assessing volumetric changes in hippocampal subfields 16 

demonstrated preferential atrophy of the CA2-3 and CA4-dentate gyrus subfields in non-17 

demented PD compared to controls, which correlated with learning deficits [48].  18 

 19 

However, atrophy of grey matter structures in PD-MCI remains to be established, as it 20 

has not been universally reported [42,49–51]. This may reflect the limitations of VBM, in 21 

that it may not be highly sensitive for detecting subtle cortical atrophy in the early stages 22 

of PD [52]. In fact, surfaced-based analyses of cortical thickness appeared to be more 23 
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sensitive in detecting pathology-related grey matter changes in PD than VBM [53]. For 1 

instance, compared to PD-NC, cortical thinning in temporal and parietal regions has been 2 

demonstrated in PD-MCI by several studies [37,54,55] (Figure 1). 3 

 4 

Recent longitudinal analyses of cortical thinning patterns have suggested that frontal 5 

cortical thinning could be an early indicator for further cognitive decline to PDD [56]. 6 

Another longitudinal study of 35 months duration found that, while cortical thickness was 7 

similar between non-demented PD and controls at baseline, the PD group presented a 8 

more aggressive rate of cortical thinning than controls with a bilateral fronto-temporal 9 

pattern, extending to the parietal cortex [57]. This pattern of accelerated cortical thinning 10 

is corroborated by another longitudinal study of a shorter follow-up period (20 months), 11 

where faster rates of thinning were found in the frontal and temporal cortices, as well as 12 

the insular and supplementary motor areas [58]. The same study also demonstrated the 13 

clinical relevance of cortical thinning in PD, by revealing significant associations 14 

between rates of global cognitive decline and cortical thinning in the temporal and medial 15 

occipital lobe [58].  16 

 17 

Longitudinal assessment of global atrophy rates  18 

The rate of whole brain atrophy on serial MRI is increasingly recognized as a sensitive 19 

and objective marker of disease progression in several neurodegenerative diseases [59]. 20 

Accelerating rates of atrophy previously have been shown with increasing severity of 21 

dementia in AD, DLB and vascular dementia [60]. To date, there is only 1 study 22 

assessing global atrophy rates in PDD, which reported higher rates of global atrophy in 23 
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PDD (1.12%) compared to PD-NC (0.31%) and controls (0.34%) [61]. However, whether 1 

PD without dementia is also characterized by accelerating global atrophy rate remains to 2 

be established. Although one study has found significantly higher annual atrophy rates 3 

(0.81% vs -0.04%) in non-demented PD compared to controls [62], several other studies 4 

have found no significant difference in global atrophy rates [61,63]. These differences 5 

could be accounted for by sample heterogeneity, as PD-MCI was not distinguished from 6 

the PD cohorts. Furthermore, it is also noteworthy that three previous studies have 7 

reported similar rates of global atrophy in DLB compared to controls [64–66]. Indeed, 8 

considering the evidence that increased atrophy rates in AD may predate dementia by 3 9 

years [67], further research is warranted to investigate the potential clinical utility of 10 

atrophy rates in predicting progression from PD-MCI to PDD. 11 

 12 

Diffusion weighted imaging 13 

Diffusion weighted imaging (DWI) is commonly used to evaluate the microstructural 14 

integrity of white matter tracts. Contrary to inconclusive findings of grey matter atrophy 15 

in non-demented PD, numerous studies have demonstrated white matter deficits across 16 

the full spectrum of cognitive function in PD. In PD-NC, white matter abnormalities have 17 

been frequently found in the frontal and temporal regions [68–70]. 18 

 19 

Relative to controls, reduced fractional anisotropy values – an index of altered structural 20 

integrity of white matter – have been found in major white matter tracts in PD-MCI and 21 

PDD [49]. Importantly, white matter integrity may serve as a possible neural substrate for 22 

cognitive impairment in PD, with evidence suggesting an association with global 23 
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cognition [49,71] and executive impairment [72,73]. Interestingly, a previous study that 1 

performed a joint analysis of grey matter and white matter profiles in the same PD cohort 2 

also found extensive white matter abnormalities in subjects with PD-MCI and PDD 3 

whereas grey matter atrophy was only evident in the PDD group [49]. Given the earlier 4 

negative findings regarding grey matter reductions in PD-MCI, these consistent DWI 5 

findings challenge the classical view that white matter degeneration, including loss of 6 

axons and myelin, occurs secondary to grey matter pathology, and, in turn, raise the 7 

intriguing possibility that white matter alterations in PD might be a sensitive precedent 8 

for neuronal loss in associated grey matter regions. While the comparability of these 9 

findings might be hindered by different levels of sensitivity associated with each imaging 10 

modality [74], this view is also consistent with immunocytochemical evidence for the 11 

presence of ubiquitin and alpha-synuclein inclusions in the axons of Lewy body disease 12 

cases, which is presumed to impair axonal transport before cell body damage [75]. 13 

Alternatively, white matter abnormalities in PD may also be associated with activation of 14 

microglia [76]. 15 

 16 

Compared to PDD, more extensive white matter pathology in DLB was also found in 17 

temporal and visual association fibres extending into the occipital areas despite 18 

comparable global cognitive profiles [77], a finding that is in keeping with previous 19 

evidence of more severe grey matter atrophy in DLB compared to PDD. 20 

 21 

With the development of prospective neuroprotective agents, further longitudinal 22 

investigations are necessitated to establish the clinical utility of DWI as a biomarker 23 
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sensitive to early pathology, during which interventions might be most effective, as well 1 

as sensitivity to change over time. 2 

 3 

White matter hyperintensities 4 

Cognitive impairment in PD has been associated with cerebrovascular diseases, including 5 

white matter hyperintensities (WMH) [78–80], which are present in 30% of patients with 6 

PD [81]. WMH have been described to contribute to cognitive deficits in the elderly [82] 7 

and are highly associated with AD [83,84]. Increasing evidence, although inconclusive as 8 

yet, has suggested that WMH are also associated with cognitive impairment in PD. WMH 9 

burden is increased in PD-MCI and is also a significant predictor of conversion to PDD 10 

[85–89]. A previous study has reported higher levels of periventricular and deep WMH in 11 

PDD compared to a group of non-demented PD despite comparable cerebrovascular risk 12 

factors and other covariates such as education, age, and gender. Furthermore, deep WMH 13 

was significantly associated with MMSE scores [79]. However, the role of WMH in 14 

cognitive dysfunction, particularly in non-demented PD, remains a contentious topic with 15 

previous reports of similar WMH severity between PD-NC, PD-MCI and controls [90–16 

92]. Furthermore, a previous study did not find any significant differences in WMH 17 

progression over one year between PD and controls, and change in WMH did not 18 

correspond to global cognitive decline [93]. It is possible that cognitive effects of WMH 19 

may be more easily detectable in advanced stages of neurodegeneration such as in PDD. 20 

The involvement of WMH in PD should also be interpreted in light of current theories of 21 

the underlying pathology of WMH. This is likely multifactorial, involving vascular 22 

damages [94], reductions in myelin density due to Wallerian degeneration [95] as well as 23 
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hypotension [96]. As such, further longitudinal studies are needed to confirm these 1 

findings and investigate the impact of small vessel diseases on cognition in PD. 2 

 3 

Quantitative MRI 4 

Based on relaxometric parameters of MRI, quantitative MRI can potentially provide 5 

information at cellular and molecular levels, which are much smaller than the spatial 6 

scale of a MRI voxel [97]. In transgenic mouse models of dementia, ultra high-resolution 7 

T1 and T2 (longitudinal / transverse relaxation time) maps have been routinely used to 8 

visualise beta-amyloid deposition and iron load in vivo [98]. More recently, the 9 

application of quantitative MRI has been extended to investigate distinct biochemical 10 

properties of human brain tissues in Lewy body diseases such as PD (Bunzeck et al., 11 

2013) and DLB (Su et al., 2014). Quantitative MRI provides additional information over 12 

and above conventional volumetric MRI, tapping into cellular and molecular levels of PD 13 

pathology. A previous study has revealed increased T1p (an alternative MRI contrast 14 

mechanism – spin lattice relaxation time constant in the rotating frame) in the bilateral 15 

hippocampus in PDD compared to controls [101], most likely reflecting a complex 16 

interaction between multiple factors including iron-induced local field inhomogeneities 17 

due to neurodegenerative processes. Given these promising findings in PD and related 18 

dementias, further studies should investigate the potential of other quantitative MRI 19 

parameters such as T2 and T2* in diagnosing PD /  PDD, and their roles in disease 20 

progression and conversion from PD-MCI to PDD.  21 

 22 

FUNCTIONAL NEUROIMAGING IN PD 23 



 

 

15 

15 

 1 

Resting-state fMRI 2 

With recent developments in computational neuroimaging, the study of neural substrates 3 

underlying cognitive processes has witnessed a gradual shift from the focus of localized 4 

brain areas to an interconnected model of brain function [102]. This shift has also 5 

coincided with an exponential proliferation of resting-state studies in PD over the last few 6 

years, with the default mode network (DMN) emerging as a key functional substrate for 7 

cognitive deficits in PD [103,104]. Tessitore and colleagues [105] found decreased 8 

functional connectivity of the right medial temporal lobe and bilateral inferior parietal 9 

cortex within the DMN.  10 

 11 

Other resting-state networks have also been examined. In a previous study, PD-MCI had 12 

a reduction in connectivity between right frontoinsular regions and the dorsal attention 13 

network, which was also correlated with attention and executive deficits. Interestingly, 14 

functional connectivity was increased between posterior cortical regions and the default 15 

mode network, which was also associated with visuoperceptual deficits [106]. Using a 16 

graph-theory approach on the same subject sample, the same group demonstrated 17 

widespread deficits of long-range connectivity in PD-MCI between major cortical and 18 

subcortical areas. In contrast, increases in short-range connectivity, possibly reflecting 19 

compensatory mechanisms, were also observed within the fronto-temporal regions [107]. 20 

Rektorova and colleagues reported significant decreases of connectivity in the right 21 

inferior frontal gyrus in PDD compared to non-demented PD and healthy controls. The 22 
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PDD group also demonstrated reductions in the connectivity in the left and right inferior 1 

occipital gyrus compared to healthy controls [108]. 2 

 3 

Task based fMRI 4 

Functional imaging experiments have studied a range of cognitive dysfunctions with 5 

task-related brain activations. Abnormal fronto-striatal response during executive task 6 

performance was found in cognitively impaired PD compared to PD-NC [109]. Studies 7 

focussing on set-shifting paradigms have also found both hypoactivity and hyperactivity 8 

of prefrontal regions, depending on the involvement of the caudate nucleus [110]. 9 

Another fMRI study assessing working memory found increased prefrontal and parietal 10 

activations during the working memory task performance, which were positively 11 

correlated with errors made during the task [111]. These patterns of neural activations 12 

agree with those reported in a large incident PD cohort (ICICLE-PD study) [112], which 13 

revealed associations between regionally specific activations and deficits in executive 14 

function (prefrontal and caudate nuclei activation), visuospatial function (parietal 15 

activation), and memory encoding (hippocampal activation). Impaired deactivation of the 16 

default mode network during executive task performance has also been reported 17 

[113,114], suggesting that executive deficits in PD could arise from increased 18 

susceptibility to extraneous and irrelevant interference.  19 

 20 

Proton MR spectroscopy 21 

Magnetic resonance spectroscopy is a non-invasive technique that has been used to 22 

evaluate a range of metabolic changes in PD. In particular, the N-acetyl aspartate (NAA) 23 
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and creatine (Cr) ratio is a reliable marker of neuronal integrity, and studies in non-1 

demented PD have demonstrated that lower NAA/Cr ratios in the anterior and posterior 2 

cingulate cortices are associated with executive deficits [115] and mild memory 3 

impairment respectively [116]. However, these findings should be considered with the 4 

caveat that longitudinal studies evaluating NAA/Cr ratios make the assumption that  5 

creatine levels remain constant over time. Fewer studies have investigated brain 6 

metabolism in PDD. Compared to PD-NC and controls, Summerfield and colleagues 7 

demonstrated reduced NAA levels in the occipital regions in PDD, which were correlated 8 

with neuropsychological scores on backward digit span and block design tests [117].  9 

 10 

RADIONUCLIDE IMAGING TECHNIQUES  11 

Nuclear imaging modalities such as single-photon emission computed tomography 12 

(SPECT) and positron emission tomography (PET) represent well established, reliable 13 

imaging methods to assess molecular deficits in PD. There is compelling SPECT and 14 

PET evidence indicating more severe striatal presynaptic dopaminergic deficiencies in 15 

PDD compared to non-demented PD, particularly in the caudate [118,119]. A previous 16 

longitudinal study also demonstrated increased rates of decline in striatal binding in PD 17 

and PDD, which were positively associated with global cognition at baseline [120]. 18 

Together, these findings are supported by frequent reports of associations between 19 

reductions in caudate dopaminergic tracer uptake and cognitive functions, such as verbal 20 

and visual memory [121] and executive functions [122]. In accordance with previous 21 

neuropsychological evidence suggesting that impairments with posterior cortical bases 22 

are predictors of future dementia in PD [17], a longitudinal PET study found that reduced 23 
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glucose metabolism in occipital and posterior cingulate regions heralded future 1 

conversion to PDD [123].  2 

 3 

The contribution of amyloid pathology to cognitive deficits in Lewy body diseases is still 4 

unclear, although differences in cortical amyloid burden between DLB and PDD have 5 

been investigated. There is a growing consensus from 
11

C-Pittsburgh  compound B (PIB) 6 

findings that PDD and DLB may be differentiated by relatively lower amyloid burden in 7 

the former group. Edison and colleagues reported increased amyloid pathology in DLB 8 

relative to PDD [124], a finding that is in keeping with the presence of greater cortical 9 

AD pathology in DLB [125].  At present, there is no conclusive evidence that PD and 10 

PDD patients show elevated amyloid load in the brain [124,126], although a recent 11 

review suggested that a subset of PDD subjects (35%) have increased cortical amyloid 12 

burden [127]. A previous study of 3 individuals with PDD who had both in vivo 
11

C-PIB 13 

PET imaging and autopsy found that 2 of the 3 subjects showed elevated cortical uptake 14 

of 
11

C-PIB [128]. Underscoring the specificity of 
11

C-PIB for fibrillar amyloid in ante-15 

mortem studies, the PIB-negative individual had abundant LB, diffuse plaques, no 16 

neurotic plaques and low NFT burden. Importantly, these finding raises an important 17 

future consideration to utilize 
11

C-PIB PET as an in vivo marker as for the identification 18 

of PDD subjects exhibiting an elevated amyloid profile for whom novel anti-amyloid 19 

strategies might be most effective. 20 

 21 

CURRENT LIMITATIONS AND FUTURE DIRECTIONS 22 

Heterogeneous characteristics of subject samples 23 
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While it is generally established that PDD is associated with significant morphological 1 

changes, studies in non-demented PD samples have yielded conflicting findings [35,129]. 2 

The inconsistency in the findings could, at least in part, be due to sources of 3 

heterogeneity in samples, such as variability of disease stages and differing severity of 4 

cognitive impairment. Therefore, the failure to stratify non-demented PD groups into PD-5 

NC and PD-MCI will predictably limit the sensitivity of imaging analyses to detect 6 

differences in cognitive and morphological profiles.  7 

 8 

Ambiguity of PD-MCI classification 9 

Although the recent formalization of the MDS criteria has addressed some of ambiguity 10 

surrounding the concept of PD-MCI, it remains a controversial topic for a number of 11 

reasons. For instance, the definition of PD-MCI implies a strict dichotomization of a 12 

continuous variable (i.e. memory scores), and the cut-off criteria may lead to an 13 

underestimation or overestimation of cognitive impairment in PD patients. This concern 14 

is particularly relevant for highly functioning persons, whose cognitive abilities might be 15 

considered normal despite a worrying decline from premorbid functioning. There is also 16 

continuing debate about the number of tests that should be used to define PD-MCI. 17 

Future studies will also need to adhere to homogenous criteria (e.g. deciding between 18 

1SD – 2SD below normative values) to minimize discrepancies between results.  19 

 20 

Methodological differences across imaging analyses 21 
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There are also inherent limitations in current imaging analyses. Although the VBM 1 

technique is by far the most widely used approach to evaluate grey matter atrophy in PD, 2 

its sensitivity is limited by mis-registration errors during the segmentation process, which 3 

could be misinterpreted as cortical folding or thickness reductions. There are also 4 

inconsistencies across studies over the selection of covariates to control for potential 5 

cofounds. By default, we recommend that all imaging studies must include age and 6 

gender as covariates. Correction for inter-subject variability in head sizes should also be 7 

accounted if necessary. 8 

The association of WMH with cognitive impairment in PD remains controversial due to 9 

highly conflicting findings, partly owing to methodological differences in measurement 10 

of WMH. Semi-quantitative visual ratings [79] and fully-automated volumetric analyses 11 

[130] are commonly used to evaluate WMH in PD. Although visual ratings have the 12 

advantage of ease of use, it requires subjective judgments. Furthermore, the ordinal 13 

grading (e.g. 4 – 10 being the most severe) precludes accurate information about the 14 

location or volume of the lesions. Furthermore, the use of different visual rating systems 15 

makes it challenging to compare WMH findings in the literature. The majority of studies 16 

have assessed global WMH scores, which might be insensitive to cognitive deficits that 17 

are topographically associated to the location of WMH. The development of a fully 18 

automated technique to segment and localize WMH will increase reproducibility of 19 

studies, and allow robust longitudinal analyses of within-subject WMH progression over 20 

time. Finally, statistical analysis and modeling for DTI and quantitative MRI data remain 21 

a challenge, and robust methods to systematically integrate data from multimodal dataset 22 

still await future research and validation.  23 
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21 

Lack of histopathological validation 1 

While there is still a lack of histopathological gold standard in PD [131], most of the 2 

studies in the literature have relied on clinical diagnosis, though we acknowledge that this 3 

is a common drawback in ante mortem studies. The combination of both post-mortem 4 

and in vivo imaging studies would be highly desirable to establish the neuroanatomical 5 

correlates of cognitive impairment in PD. To increase diagnostic confidence, a 6 

longitudinal design should include repeated monitoring of clinical symptoms to verify 7 

diagnosis at each time-point. 8 

 9 

Scarcity of longitudinal studies 10 

Lastly, there is a paucity of longitudinal studies to support cross-sectional findings. 11 

Additional longitudinal evidence is warranted to determine the progression of pathology, 12 

and how its trajectory relates to cognitive decline. There are also several advantages with 13 

a longitudinal design. As each subject serves as his or her own control, a longitudinal 14 

design can reduce the confounding effect of inter-individual morphological variability, 15 

thereby increasing statistical power. More importantly, monitoring non-demented PD 16 

subjects over a period of time offers an ideal opportunity to study the earliest regional 17 

morphological changes (biomarkers) underlying dementia. 18 

 19 

CONCLUSION 20 

Accumulating evidence from various neuroimaging approaches has increased our 21 

understanding of the neural substrates underlying cognitive impairment in PD. Specific 22 



 

 

22 

22 

patterns of grey matter atrophy and white matter disruptions, as well as their associations 1 

with specific cognitive profiles have been well documented. There is increasing evidence 2 

that white matter abnormalities as revealed by DTI precede for grey matter atrophy in 3 

non-demented PD, although the role of WMH in cognitive decline in PD is still debated. 4 

More recently, functional neuroimaging (i.e. connectivity deficits of the default mode 5 

network) have emerged as promising candidates for biomarkers for PD-MCI and PDD 6 

but further studies are needed to confirm their prognostic utility. Considering the 7 

heterogeneous profile of cognitive deficits in PD, multimodal neuroimaging studies, for 8 

example, analyzing brain grey matter changes along with diffusion and perfusion 9 

imaging) could provide novel insights regarding the relative contributions of pathologic 10 

processes to cognitive impairment, especially with regards conversion to PDD. 11 
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 23 

Figure Legends 24 

Figure 1. Vertex-wise comparisons of cortical thickness between (a) controls (CTR) and 25 
cognitively normal patients with Parkinson disease (PD-CN), (b) controls and patients 26 
with PD and mild cognitive impairment (PD-MCI), and (c) PD-CN and PD-MCI. The 27 
color scale bar shows the logarithmic scale of p values. Lh = left hemisphere; MDS = 28 
Movement Disorders Society; Rh = right hemisphere.  29 
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