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We use extensive first-principles quantum mechanical calculations to show that, although the static
lattice and harmonic vibrational energies are almost identical, the anharmonic vibrational energy of
hexagonal ice is significantly lower than that of cubic ice. This difference in anharmonicity is crucial,
stabilizing hexagonal ice compared with cubic ice by at least 1.4 meV=H2O, in agreement with
experimental estimates. The difference in anharmonicity arises predominantly from molecular O-H
bond-stretching vibrational modes and is related to the different stacking of atomic layers.
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I. INTRODUCTION

Sixfold symmetric snow crystals are formed from hex-
agonal ice (Ih), which covers about 10% of Earth’s surface
and plays a prominent role in determining its climate [1–3].
A cubic form of ice also occurs in nature, but is very rare
[4,5]. The structures of pure hexagonal and cubic ice differ
only in the stacking of layers of tetrahedrally coordinated
water molecules (see Fig. 1). Yet, hexagonal ice is thermo-
dynamically more stable than cubic ice, with experiments
indicating the difference in stability to lie in the meV=H2O
range [6–15]. There is a growing realization that real “cubic
ice” typically contains many stacking faults and is not pure
cubic ice (Ic) as originally suggested by König [16].
Stacking faulted ice is a highly complex material, whose
nature and properties depend heavily on the free-energy
difference between pure Ih and Ic.
The very similar free energies of Ih and Ic have so

far prevented state-of-the-art first-principles quantum
mechanical calculations from explaining the stability of
Ih. Both density functional theory (DFT) and diffusion
quantum Monte Carlo studies have found that Ih and Ic are
almost degenerate in energy when nuclear motion is
neglected [18]. Our calculations show that the harmonic
zero-point vibrational energies of Ih and Ic are large, at
roughly 700 meV=H2O, but they are almost identical.
Consequently, when averaged over different proton order-
ings, the two phases are almost degenerate when harmonic
vibrations are included (see Fig. 2). However, the small
mass of hydrogen gives rise to large-amplitude vibrations
and large anharmonic effects.

A substantial body of theoretical work exists on water
and ice, based on force-field path-integral molecular
dynamics, first-principles classical molecular dynamics,
and first-principles vibrational calculations in the quasi-
harmonic approximation. This work has led to significant
successes in understanding the important role of quantum
vibrations and anharmonicity for various phenomena
observed experimentally. Examples include, but are not
limited to, (a) the isotope effects, e.g., on the melting
temperature, of Ih upon going from protiated to deuterated
ice [20–22], (b) accurate O-H bond lengths and infrared
O-H stretching frequencies in water [23–25], (c) reproduc-
tion of the anomalous thermal expansion, and the isotope
effect on the volume in Ih [26], and (d) the heat capacity of
water [27]. Attempts to calculate the relative stability of Ih
and Ic have either relied on empirical force fields such as
TIP4P [28,29] or have lacked an accurate description of
anharmonicity [18,30]. TIP4P has since been shown to
produce incorrect proton-ordering energetics and an incor-
rect static lattice energy difference between Ih and Ic
compared to highly accurate diffusion Monte Carlo meth-
ods [31]. Moreover, no successful attempts to explain the
origin of the greater stability of Ih have been made. With
our fully anharmonic, first-principles DFT study we show
that the inclusion of accurate anharmonic quantum nuclear
motion is decisive in stabilizing Ih with respect to Ic, and
relate the difference in stability to the different stacking of
the atomic layers.
The water molecules in both Ih and Ic are tetrahedrally

coordinated, each donating and accepting two hydrogen
bonds and thus satisfying the “Bernal-Fowler ice rules”
[32]. The oxygen sublattices of Ih and Ic arise from an
ABAB and an ABC stacking of puckered layers of
oxygen atoms, respectively. Correspondingly, the basic
building blocks of Ih are chair- and boat-form hexamers,
while Ic is built exclusively from chair-form hexamers
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(Fig. 1). Pure Ic has so far proven elusive. Experimen-
tally synthesized “Ic” typically contains many stacking
faults which strongly affect its physical and chemical
properties [6,13,33]. Ice containing cubic sequences
interlaced with hexagonal sequences is commonly known
as stacking-disordered ice (Isd). Unlike Ih and Ic, which
refer to a unique stacking arrangement of puckered
layers, Isd refers to the infinite set of possible stacking
sequences. This set smoothly connects Ih as one end
member to Ic as the other. Isd has trigonal P3m1
symmetry [34–36]. As of yet, it is unclear whether
stacking disorder is kinetically or thermodynamically
driven. A full understanding of Isd will require under-
standing the properties of Ih and Ic, including their
relative stability. At the most basic level, the free-energy
difference between Ih and Ic is required to understand
why Isd is found to anneal to Ih rather than Ic.
The fraction of cubic stackings of layers, or “cubicity,”

typically does not exceed around 60% [33] in experiments,
and both the fraction itself as well as the nature of the
stacking arrangements depend heavily on the synthesis
pathway [13,33,37]. Crucially, ice synthesized via both
homogeneous and heterogeneous freezing of (supercooled)
water has a random stacking of cubic and hexagonal layers
[33,37], which is consistent with a layer-by-layer growth

mechanism. Heterogeneous freezing in particular is central
to atmospheric and climate physics and, due to random
stacking disorder, depends vitally on the free-energy differ-
ence between Ih and Ic. It is clear that Isd is an extremely
important and highly complex material.
Molecular dynamics and Monte Carlo simulations

using empirical ice potentials to model ice nucleation
processes have successfully reproduced stacking disorder
(see Refs. [29,37,38] and references therein). However,
they struggle, among other issues, with the accuracy of the
empirical potentials in describing the melting temperature
and the relative stability of Ih and Ic [39].
In the following we limit ourselves to the study of pure Ih

and Ic.

II. COMPUTATIONAL MODEL

Atomistic simulations of proton-disordered systems such
as Ih and Ic require sets of explicit atomic positions, and a
calculation must be performed for each proton ordering
studied. The number of proton-ordered, energetically
quasidegenerate structures allowed by the ice rules
increases exponentially with the size of the simulation
cell. This leads to Pauling’s residual configurational
entropy [40] Sconfig, which has been confirmed experimen-
tally [41,42]. For large systems with negligible surface
effects, the associated configurational free energies of Ih
and Ic ΔGconfig ¼ −TSconfig are almost identical [43,44].
We therefore neglect ΔGconfig in the following.
To gain an understanding of the effects of proton

ordering on the vibrational properties of ice, we consider
16 distinct proton-ordered eight-molecule Ih configurations
as constructed by Hirsch and Ojamäe [45], and 11 distinct
proton-ordered eight-molecule Ic configurations [18]. We
also consider the “conventional” hexagonal, 12-molecule
P63cm Ih and quasicubic, eight-molecule P43 Ic structures
(numbers 13 and 1 in Fig. 2, respectively). Details of the
proton-ordered structures and their numbering are provided
in Supplemental Table I [19].
We perform electronic structure calculations using

plane-wave pseudopotential DFT as implemented in the
CASTEP code [46] (version 7.02). We employ the Perdew-
Burke-Ernzerhof (PBE) [47] generalized gradient approxi-
mation to theexchange-correlationfunctional,andon-the-fly
generated ultrasoft pseudopotentials [48] with core radii of
0.7 and 0.8 Å for the hydrogen and oxygen atoms, respec-
tively. Supplemental Sec. V describes results obtained with
other density functionals [19]. We use a plane-wave energy
cutoff of 1600 eV and Monkhorst-Pack reciprocal space
grids of spacing less than 2π × 0.04 Å−1 for all total energy
calculations and geometry optimizations. The resulting
energy differences between frozen-phonon configura-
tions are converged to below 10−4 eV=H2O, the atomic
positions to within 10−5 Å, and the residual forces to within
10−4 eV=Å.

FIG. 1. The oxygen sublattices in (a) hexagonal ice Ih and
(b) cubic ice Ic consist of ABAB and ABC stacked puckered
layers (red, blue, and green colors), respectively. Projections of
the periodic structures along the direction orthogonal to the
puckered layers are shown on the lower faces of the diagrams.
Ih is built of the chair- and boat-form hexamers shown in a-I and
a-II, respectively, while Ic is built exclusively from chair-form
hexamers as in b-I. The structures were visualised using
VESTA [17].
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We obtain harmonic vibrational free energies from the
harmonic frequencies calculated using the k-space Fourier-
interpolated dynamical matrix. The latter is obtained by
Fourier transforming the real-space matrix of force con-
stants constructed using a finite displacement method.
Anharmonic vibrational free energies are calculated using
the method described in Ref. [49], which has so far been
successfully applied to high-pressure systems [50,51]. As
in Ref. [49], we describe the 3N -dimensional Born–
Oppenheimer (BO) energy surface (whereN is the number
of atoms in the simulation cell) by mapping 1D subspaces
along the harmonic normal mode axes up to large ampli-
tudes of 4 times the harmonic root-mean-square (rms)
displacements, where anharmonicity is important. We then
reconstruct the 3N -dimensional BO surface from the 1D
subspaces. The resultant representation of the BO energy
surface is an approximation to the true 3N -dimensional BO
energy surface. This approximation only weakly affects the
free-energy difference between Ih and Ic (see Supplemental
Sec. VI [19]). The 1D energy surfaces are fitted using cubic
splines. The anharmonic vibrational Schrödinger equation
is solved within a vibrational self-consistent field frame-
work. The vibrational wave function is expanded in a basis
of simple harmonic oscillator eigenstates, and the inclusion
of 25 states for each vibrational degree of freedom is found
sufficient to obtain converged results.

III. RESULTS

Our calculations show that the static lattice energies of Ih
and Ic Estatic vary by up to 5 meV=H2O with proton
ordering. This agrees with Refs. [18,45,52] and, more
importantly, with Ref. [53], which evaluates DFT static
lattice energies for 16 eight-molecule orthorhombic, 14
twelve-molecule hexagonal, and 63 forty-eight-molecule

orthorhombic Ih proton orderings. This strongly suggests
that our sets of proton orderings provide a good represen-
tation of the distribution of energies in disordered ice.
We also find that the harmonic vibrational contributions

to the free energies of different proton orderingsΔGhar vary
by up to 2 meV=H2O. We have employed the vibrational
self-consistent field method described above to calculate
the anharmonic contribution to the vibrational free energy
ΔGanh, finding a variation between proton orderings of up
to 5 meV=H2O.
The free energies of Ih and Ic at the harmonic vibrational

level Ghar ¼ Estatic þ ΔGhar, averaged over the proton
orderings, are virtually indistinguishable:

ΔIc→Ih
av Ghar ≡GIc

har −GIh
har ¼ 0.2� 2.4 meV=H2O;

where the quoted errors are the rms variations across
different proton orderings. The anharmonic energies of
the Ih configurations ΔGanh, on the other hand, though
also positive, are systematically lower than those of the
Ic configurations, so that the total free energy Ganh ¼
Estatic þ ΔGhar þ ΔGanh, averaged over the different proton
orderings, is significantly lower for Ih than for Ic:

ΔIc→Ih
av Ganh ≡GIc

anh −GIh
anh ¼ 6.5� 3.1 meV=H2O:

The values obtained for ΔIc→Ih
av Ghar and ΔIc→Ih

av Ganh depend
significantly on the method of averaging. For example,
using a Boltzmann distribution for the free energy of the
proton orderings leads to values of ΔIc→Ih

BoltzmannGanh ≈ 5.5
and 6.1 meV=H2O at 10 and 100 K, respectively.
It is noteworthy that, given cell volumes that are

reasonably close to experiment, the differences in Estatic,
ΔGhar, and ΔGanh between Ih and Ic depend only weakly
on the details of the DFT calculations and in particular on
the choice of exchange-correlation functional (see Fig. 3
and Supplemental Sec. V [19]).
The most stable proton-ordered configurations of Ih and

Ic, referred to as XIh and XIc, display free-energy
differences very similar to ΔIc→Ih

av Ghar and ΔIc→Ih
av Ganh.

However, the inclusion of anharmonic vibrational energies
changes the relative stability of the different proton order-
ings. XIh is experimentally and theoretically known to have
space group Cmc21 [45,61] (structure 15 in Fig. 2), a result
confirmed by our calculations. A structure of space group
I41md has been proposed [18] (structure 2) for XIc on
theoretical grounds. Our calculations support this proposal
at the harmonic vibrational level, but the inclusion of
anharmonic contributions suggests that Ic Pc, Pca21, and
Pna21 (structures 7, 9, and 12) may also be strong
candidates for XIc. Reference [62] reports experimental
evidence for Ic I41md and Pna21 in partially proton-
ordered Ic via Fourier-transform infrared spectroscopy.
This lends significant support to our result that anharmo-
nicity provides the decisive contribution to the energy
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zero-point nuclear motion for different Ih (blue) and Ic (red)
proton orderings (Supplemental Table I [19]). The averages over
proton orderings Ghar and Ganh are shown as thick horizontal
dotted and solid lines, respectively. All energies are measured
with respect to GXIh

har (Ih Cmc21, structure 15).
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differences between proton orderings, since Pna21 has a
high free energy at the static lattice and harmonic vibra-
tional levels and only becomes a low-free-energy structure
when anharmonicity is taken into account.
At typical experimental temperatures of below 100 K,

the proton ordering is largely frozen in. Consequently,
one cannot expect to measure a change in free energy
corresponding to a transition from Ic to Ih in thermal
equilibrium, but rather (assuming the Ic sample is annealed
at low temperatures and consists mostly of XIc) a change in
free energy corresponding to transitions from XIc to a
proton ordering of Ih, which is likely to be smaller than
ΔIc→Ih

av Ganh. As indicated in Fig. 2, we evaluate a lower
bound on the free-energy difference as

ΔIc→Ih
min Ganh ≡minfGIc

anhg −maxfGIh
anhg

¼ 1.4� 0.3 meV=H2O:

This lower bound is consistent with, but on the high
side of, experimentally measured free-energy differences
of 0.3–1.6 meV=H2O [7–15]. Notably, the experimental
value is rather uncertain, mainly because the free-energy
difference is very small, and because the Ic samples are
typically not fully characterized in terms of stacking faults
or proton ordering.
As shown in Fig. 4, this energy difference remains

roughly constant from zero temperature up to 273 K and
thus stabilizes Ih over a wide range of temperatures.
In D2O, the heavier mass of deuterium first leads to

reduced vibrational frequencies of the harmonic vibrational
modes and thus reduced vibrational energies. For XIh D2O,
ΔGhar ¼ 507.67meV=D2O compared to 692.34 meV=H2O

for XIh H2O. Second, D2O has smaller vibrational ampli-
tudes and consequently smaller anharmonic vibrational
energies than H2O, resulting in a smaller difference
between the free energies of Ih and Ic:

ΔIc→Ih
av GD2O

anh ≡GIc−D2O
anh −GIh−D2O

anh ¼ 3.7� 2.9 meV=D2O;

as shown in Fig. 5. This suggests that it could be easier to
synthesize deuterated than protiated cubic ice. Moreover,
the smaller anharmonic energy calculated for D2O com-
pared with H2O implies that the most likely candidate for
the ground state of cubic D2O has I41md symmetry
(structure 2) and is thus different from the ground state
of H2O. The predicted ground state of hexagonal D2O is
Cmc21, as for H2O.
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We have investigated the convergence of ΔGhar and
ΔGanh with respect to the size of the simulation cell using
cells containing up to 192 molecules for Ih P63cm and 128
molecules for Ic P43 as shown in Fig. 6.

The vibrational energies of the different proton orderings
are calculated using 64-molecule cells for the harmonic
vibrational energy and eight-molecule cells for the anhar-
monic energies. The latter is justified by the short-range
nature of anharmonicity, evidence for which is described in
Sec. IV. Calculations using cells with up to 192 molecules
for the P63cm Ih structure and 128 molecules for the P43 Ic
structure indicate that the difference between ΔGhar for Ih
and Ic is converged to within 0.1 meV=H2O using
64-molecule simulations cells. The anharmonic corrections
converge analogously, and the difference between ΔGanh
for the two structures is converged to within 0.2 meV=H2O
using 64-molecule simulations cells. More details may be
found in Supplemental Sec. II [19].

IV. DISCUSSION

The origin of the difference in the anharmonicities of Ih
and Ic can be traced back to the libration (80–140 meV)
and, predominantly, the molecular symmetric and antisym-
metric O-H bond-stretching modes (365–380 meV and
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395–410 meV, respectively) indicated in Fig. 7. The
vibrational density of states (DOS) and the distribution
of anharmonic corrections over the vibrational frequencies
show (Fig. 8) that the dominant anharmonic contributions
arise from the O-H bond-stretching modes, which corre-
spond to large-amplitude displacements of the hydrogen
atoms relative to their neighboring (essentially stationary)
oxygen atoms. The comparatively small role of the oxygen
atoms is confirmed by studying Ih and Ic analogues with
fixed oxygen positions, which recover the value of ΔGanh
observed for real Ih and Ic to within 5% (see Supplemental
Table III [19]). The O-H bond-stretching modes contribute
>2=3 of the difference in anharmonicity between Ih and Ic,
when averaged over proton orderings. Note that the energy
difference between Ih and Ic shown in Fig. 8 increases at
high frequencies.

Variations in vibrational frequencies with cubicity
have recently been identified in infrared absorption
experiments [6]. Carr et al. observed that the O-H stretching
modes were shifted to higher frequencies with increasing
cubicity of the Isd samples. They also observed an increasing
broadening of the absorption peak. According to Carr et al.,
both trends are thought to be associated with the stacking
disorder, which peaks at a cubicity of 50%. For samples with
cubicities of 50%, Carr et al. observed shifts of 28� 2 and
13� 2 cm−1 for protiated and deuterated Isd, respectively.
Our calculations reproduce thewidening of the O-H stretch-
ing peak in the vibrational DOS and produce shifts of
70� 5 and 30� 5 cm−1 for protiated and deuterated Isd,
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the anharmonic nuclear wave functions. For radii <3 Å the
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around 3 Å originate predominantly from differences in the static
structures of Ih and Ic.

FIG. 10. The (arbitrarily picked) central proton is labeled 0th.
The nearest- to fourth-nearest-neighbors are labeled 1st through
4th. From the point of view of the central proton, the fourth-
nearest-neighbor protons first lead to a distinction between chair-
and boat-form hexamers. The fourth-nearest-neighbor protons are
found at distances from the central proton ranging from around
3.5 to 5.0 Å. The green and blue planes are spanned by the
relevant O-O axes connecting the fourth-nearest-neighbor pro-
tons. (a) Typical chair-form configuration found in Ih and Ic.
(b) Typical boat-form configuration found only in Ih.
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respectively; i.e.,ataboutdoublethecubicityofCarretal.,we
calculate shifts that are about twice as large as those of Carr
et al. Thus, our values are consistent with the results of Carr
et al. if the shift scales roughly linearly with the degree of
cubicity rather than the amount of stacking disorder, and is
largest in pure Ic. In accurately reproducing the ratio between
the blueshifts of the molecular stretching frequencies for the
protiated and deuterated phases, our results also provide a
good account of the effects of isotopic substitution.
The role of the high-energy modes can be further

illuminated by considering the H-H radial distribution
functions (RDFs) [Fig. 9(b)] of Ih and Ic and rms displace-
ments of the protons (see Supplemental Table IV [19]). The
latter show that the harmonic vibrational amplitudes in Ic
are about 1% smaller than in Ih. Yet, at the harmonic level
the H-H radial distribution functions of Ih and Ic are
essentially identical for distances less than about 3 Å.
Beyond 3 Å the static structures of the two phases differ.
Unlike the rms displacements of the protons, the RDFs
measure a two-particle quantity that describes correlated
motions of pairs of protons. At the harmonic level the
protons in Ic move less with respect to their equilibrium
positions than in Ih, but they move by just as much with
respect to each other. We note that the O-H and H-H RDFs
for Ih shown in Figs. 9(a) and 9(b) agree well with, e.g., the
experimental RDFs in Ref. [63].
While the protons in both phases feel the same local

environment, differences occur starting with the fourth-
nearest-neighbor protons (see Fig. 10). Also, for systems
as small as 8 to 12 molecules ΔGanh is already about 3=4
of the converged value (Supplemental Fig. 1 [19]). This

system size limits the wavelength of the vibrational modes
responsible for the difference in anharmonic energies to
roughly the same distance as the separation of fourth-
nearest-neighbor protons. Together, these observations
indicate that the influence of more distant nuclei is small.
Allowing for both chair- and boat-form hexamers, there are
12 distinct arrangements of fourth-nearest-neighbor pairs of
protons. Out of these 12 arrangements only 8 are realized in
the proton orderings we have considered. These are shown
in Fig. 11. Three of these arrangements (numbers VI–VIII)
are associated with boat-form hexamers of H2O molecules,
which only exist in Ih, and five (numbers I–V) are
associated with the chair-form hexamers of H2O molecules
found in Ih and Ic. The RDFs in Fig. 11 show that, on going
from Ic to Ih, arrangements II and IV are depopulated. For
arrangements II and IV the displacement of the first proton
of the pair from its equilibrium position along its hydrogen
bridge bond leads to a large displacement relative to the
second proton. Conversely, arrangements VI–VIII, for
which the same displacement of the first proton leads to
a far smaller displacement relative to the second, are
populated. This explains why on average the protons in
Ic move less with respect to their equilibrium positions than
in Ih, while moving by just as much with respect to each
other, resulting in the same Ghar as in Ih.
Going beyond the harmonic approximation, anharmo-

nicity reduces the rms vibrational amplitudes in Ih and Ic by
around 1% and 2.5%, respectively, localizing the nuclear
wave function more in ice Ic than Ih. On the level of the
collective vibrational modes, the localization is typically
driven by a strong quartic contribution to the respective BO

FIG. 11. Anharmonic H-H RDF decomposed into contributions from different bonding configurations of fourth-nearest-neighbor
pairs of protons. The upper part shows the components corresponding to the chair-form hexamer configurations I–V found in both Ih
and Ic. The lower part shows the components corresponding to the boat-form hexamer configurations VI–VIII, which are exclusive to Ih.
In configurations VI–VIII the hydrogen bridge bonds associated with the pairs of protons (shown as small white spheres) are at a larger
angle to each other than in I–V.

ANHARMONIC NUCLEAR MOTION AND THE RELATIVE … PHYS. REV. X 5, 021033 (2015)

021033-7



energy surfaces (see Supplemental Fig. 6 [19]). Moreover,
at the anharmonic level the RDFs show that the protons in
ice Ic move less with respect to each other than in Ih,
instead of just moving less with respect to their equilibrium
positions, as they do at the harmonic level. This difference
in the relative motion of pairs of protons is the origin of the
difference in ΔGanh between Ih and Ic. The larger effect of
anharmonicity in Ic is again due to the stronger geometric
“coupling” between pairs of protons.

V. PERSPECTIVE

Ih and Ic are important in various branches of science.
Examples include climate modeling and the simulation of
ice nucleation and formation, where cubic ice plays an
important role and for which ΔGanh is an essential input
parameter. As an example of the relevance in biological
sciences, the benign shape of cubic ice crystals is of
potential interest for cryopreservation [64]. Here we have
demonstrated that accounting for anharmonic nuclear
vibrations is central to understanding and correctly pre-
dicting the free-energy difference between Ih and Ic.
However, the importance of anharmonic vibrations in
hydrogen-bonded systems reaches far beyond ice. An
accurate treatment of anharmonicity is likely to be crucial
in correctly describing the energy differences between very
similar polymorphs of hydrogen-bonded molecular crystals
which are important in, e.g., pharmaceutical materials
science.
Calculating anharmonic vibrational energies in solids is

a challenging computational task, which has only recently
been successfully achieved using first-principles quantum
mechanical methods. Anharmonic effects are particularly
important for light elements, such as the hydrogen atoms in
H2O. Anharmonic vibrations are also expected to be
important at the surfaces of ice, and when impurities or
other defects are present.
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