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The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt
activation has been implicated in both normal and disease processes, including in development andmetabolism,
as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising
therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence
suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular
compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice
show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review
summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm
formation, to provide a comprehensive overview of Akt function in vascular disease.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Identified in 1991 [1,2], the serine/threonine protein kinase Akt
(Protein Kinase B, PKB) has emerged as a key mediator of cell prolif-
eration, migration, apoptosis, angiogenesis and metabolism [3–6],
acting downstream of the insulin-like growth factor 1 (IGF1)/phos-
phatidylinositol 3-kinase (PI3K) signal transduction pathways.

Akt kinases comprise three mammalian isoforms (Akt1, Akt2 and
Akt3 or PKBα/β/γ), which are similar in structure but distinct in function.
All Akt isoforms contain an N-terminal regulatory pleckstrin homology
(PH) domain, a central kinase domainwith serine/threonine specificity,
and a C-terminal hydrophobic domain [1,7,8]. Studies over the last
decade using various transgenic and knockout mice have shown that
Akt isoforms have partly redundant but also distinct functions in
physiological and pathological processes, in part due to different
tissue-specific expression of Akt isoforms. For example, while Akt1 is
ubiquitously expressed, Akt2 is highly expressed in insulin-responsive
tissues such as adipose tissue, liver and skeletal muscle, and Akt3 is
highly expressed in the brain [9–11]. Mice lacking Akt1 are viable but
have significant neonatal mortality and are smaller in size than
littermate controls. Akt1-null cells display higher rates of apoptosis,
indicating a critical role for Akt1 in cell survival [12,13]. Total body
Akt2 knockout mice develop severe type-2 diabetes [13], and cells
deficient in Akt2 have impaired glucose utilisation [14]. Akt3-deficient
mice display no growth retardation but a 20% smaller brain size,
suggesting that Akt3 is important for postnatal brain development
[15]. Double knockout mice of Akt isoforms have been generated to
assess overlapping roles in homeostasis and development. Mice
deficient in Akt1/2 die shortly after birth [15], and Akt1/3 double
knockout mice are embryonic lethal [15]. In contrast, Akt2/3 double
knockout mice are viable but display impaired glucose homeostasis
and growth retardation [9], whereas Akt1+/−/Akt2−/−/Akt3−/− mice are
viable. This indicates that a single allele of Akt1 is sufficient to rescue
mice during embryonic development and postnatal survival.

Together with the double and triple knockout studies, there is
increasing evidence to show that each Akt isoform possesses non-
overlapping functions. In addition to differences in tissue expression,
different Akt isoforms localise to distinct subcellular compartments.
For example, Akt1 is predominantly localised to the cytoplasm and
activated at the plasmamembrane, whereas Akt2 is preferentially local-
ised to the cytosol but colocalisedwithmitochondria. In contrast, Akt3 is
localised both to the nucleus and nuclear membranes [16,17]. However,
subcellular localisation also varies between tissues. For example, Akt1 is
mainly located in the nucleus in murine peritoneal macrophages and
human THP1 cells, whereas Akt3 is located in the cytoplasm. In contrast,
Akt1 is predominantly cytosolic and Akt3 is nuclear in hepatocytes [18].
These findings strongly suggest that plasma membrane activation
processesmay not be required by all Akt isoforms, or by any one isoform
in different tissues. A further level of complexity exists based on acute vs
chronic activation of Akt. For example, acute Akt1 activation can
preserve the contractility of cardiomyocytes whereas chronic activation
leads to dilatation and hypertrophy [19]. Therefore, the functions of Akt
isoforms are tissue-specific, temporally-regulated and cell context-
dependent. Elucidation of the complex role of individual Akt isoforms
is therefore required for each tissue and cell type.

2. Role of Akt in vascular disease

Significant advances have been made in the last two decades to
elucidate the roles of Akt isoforms in cancer, development, metabolism
and cardiovascular disease. Several excellent reviews have summarised
the molecular regulation of Akt and its downstream signalling [11,20,
21]. The important role of Akt isoforms in cardiomyocyte survival
and cardiac hypertrophy, both under physiological or pathological
conditions, has also been reviewed [19,22–25]. Here we will summarise
the consequences of Akt activation, focusing on cell survival, cell
Please cite this article as: Yu H, et al, Akt isoforms in vascular disease, Vas
proliferation, and migration, and the role of individual isoforms in
cells whose abnormal function underlies vascular disease, including
endothelial cells (EC), vascular smooth muscle cells (VSMCs) and
macrophages. We will also review recent studies determining the role
of individual Akt isoforms in vascular disease, including atherosclerosis,
vascular remodelling and aneurysm formation.

2.1. Akt in survival signalling

Apoptotic cell death is a common feature in many physiological and
pathological processes in the cardiovascular system, including vessel
remodelling, atherosclerosis and vascular injury. However, survival
signalling pathways, especially the pleiotropic effects of Akt signalling
in cardiovascular disease, remain unclear. Critical survival signalling
pathways in the cardiovascular system whose effects are mediated
through Akt include circulating factors such as insulin-like growth
factor-1 (IGF-1) and platelet-derived growth factor (PDGF), cell–cell
and cell–extracellular matrix contact, and mechanical signals such as
stretch and shear stress from blood flow. Of these, one of the most
potent anti-apoptotic growth factors is IGF-1 [26–28]. The IGF-1 recep-
tor possesses intrinsic tyrosine kinase activity and a number of down-
stream mediators have been identified, including Insulin Receptor
Substrate-1 (IRS-1), PI3-K, and mitogen-activated protein kinase
(MAPK). The canonical PI3-K comprises a regulatory p85 subunit and
a catalytic p110 subunit that directly phosphorylates the ribosomal
protein kinase p70s6k [29], the rho family polypeptide Rac [30], the
serum and glucocorticoid-induced kinases SGK [31–33], and the
serine/threonine kinase Akt [34,35] (Fig. 1). Of all these pathways,
much of the anti-apoptotic function of IGF-1 resides in Akt [36,37].
PI3K activation leads to phosphorylation of phosphoinositides (PtdIns),
including PtdIns(3,4,5)P3 and PtdIns(3,4)P2 (PIP3 and PIP2). Plasma
membrane-anchored PtdIns(3,4,5)P3 and PtdIns(3,4)P2 bind to the
PH domains of Akt and the phosphoinositide-dependent kinase-1
(PDK1). Activated PDK1 stimulates Akt activity by direct binding and
phosphorylation of Threonine 308 in the central catalytic domain [38].
Further activation of Akt is regulated through phosphorylation by the
mammalian target of rapamycin complex 2 (mTORC2) on Serine 473
in the C-terminal regulatory domain. Once activated by phosphoryla-
tion at both sites, Akt disassociates from the membrane and further
phosphorylates multiple effectors to activate pro-survival or inactivate
pro-apoptotic signalling pathways.

Akt critically regulates apoptosis in many cell types, following a
variety of stimuli, and constitutively active (CA) and dominant negative
(DN) forms of Akt can inhibit or promote apoptosis respectively [39,40].
Akt inhibits apoptosis via a variety of mechanisms (Fig. 1), including
phosphorylation of the pro-apoptotic proteins Bad and caspase 9 [41,
42]. Bad is a member of the Bcl-2 family, and promotes apoptosis by
interacting with other Bcl-2 family member proteins. Phosphorylation
of Bad sequesters this protein in an inactive form preventing this asso-
ciation [41]. In contrast, caspase 9 is a cysteine protease intimately
involved with regulating and executing apoptosis. Caspase 9 cleavage
occurs during formation of a pro-apoptotic complex, the apoptosome,
that is responsible for apoptotic signalling in response to the release of
cytochrome C from mitochondria. Akt phosphorylation of caspase 9
prevents its cleavage and activation, thus inhibiting apoptosis [42]. Akt
also phosphorylates glycogen synthase kinase 3β (GSK3β), which not
only regulates glucose metabolism, but also induces apoptosis [43].
Akt can also phosphorylate theO subclass of the forkhead family of tran-
scription factors [44–46], including FOXO1, FOXO3a, FOXO4 and FOXO6
in humans. Akt phosphorylation of FOXO3a leads to its association with
14-3-3 proteins and retention in the cytoplasm. Survival factor with-
drawal leads to FOXO3a dephosphorylation, nuclear translocation, and
activation of pro-apoptotic target genes, such as FasL, BIM, PUMA and
TRAIL [45]. In addition to inactivation of pro-apoptotic proteins, Akt
also upregulates anti-apoptotic genes such as Bcl-2, Bcl-XL [47], and
survivin [48]. Akt also activates IκB kinase-α (IKK-α), causing the
cul. Pharmacol. (2015), http://dx.doi.org/10.1016/j.vph.2015.03.003
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degradation of IκB, which in turn activates NF-κB [49], and can also in-
crease the transactivation potential of the RelA/p65 subunit of NF-κB
[50]. In endothelial cells (EC), Akt1 activates endothelial nitric oxide
synthase (eNOS), which promotes cell survival by nitrosylating the re-
active cysteine residue in caspases [51,52]. Although all of these path-
ways downstream of Akt activation have been described (Fig. 1), not
all are activated or important in different cell types. For example, Akt1
prevents apoptosis in vascular smooth muscle cells (VSMCs) predomi-
nantly via the inhibition of both FOXO3a and GSK3 [53].

2.2. Akt in cell proliferation

VSMCproliferation plays an important role in atherosclerosis, vascu-
lar remodelling and neointima formation. However, the role of Akt
activation in vascular cell proliferation is unclear, in part because of dif-
ferent effects on normal cells vs. those seen in disease. For example,
although Akt is frequently observed to be activated during proliferation
and invasion in cancer cells, Akt1 phosphorylation (Ser473) is reduced
in VSMCs in human atherosclerotic plaques [53], and reduced
phospho-Akt2 levels and phospho-AKT2/total AKT ratios are seen in
the media of human aortic aneurysms [54].

Akt1 may be necessary but not sufficient to promote VSMC prolifer-
ation. For example, inhibition of Akt signalling with a dominant nega-
tive Akt mutant (AA-Akt) potently inhibits VSMC proliferation, DNA
synthesis and G1/S exit, associated with increased p21 expression [55].
VSMCs from Akt1-deficient mice also show impaired increase in cell
number in culture, although this study did not examine proliferation
Fig. 1. Akt-mediated survival signalling. IGF1R possesses intrinsic tyrosine kinase activity. Once
autophosphorylation stimulates recruitment, phosphorylation and activation of the adaptor p
PIP2 to PIP3. Plasma membrane-anchored PIP3 and PIP2 attract and bind to the PH domains o
in the central catalytic domain by PDK1 and subsequent phosphorylation of S473 in the C-term
and further phosphorylates multiple downstream effectors to promote cell survival, either th
inactivate pro-apoptotic targets such as Bad, Caspase 9, FOXOs and GSK3.
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vs. apoptosis [56]. In contrast, serum and insulin/IGF-1 both stimulate
Akt phosphorylation in vitro, but only serum not insulin/IGF-1 pro-
motes MAPK activation and VSMC proliferation. Furthermore, tissue
specific activation of Akt1 in endothelial cells suppresses lesion forma-
tion after carotid ligation via increased NO production, preservation of
a functional endothelial layer, and suppression of VSMC proliferation
[57]. Similarly, forced expression of Akt1 in VSMCs does not induce
VSMC proliferation in normal arteries, after carotid ligation, or in ath-
erosclerosis [58]. In addition, cell proliferation was 50% lower in
VSMCs derived from Akt2/LDLr double knockout mice than LDLr KO
mice, suggesting a role of Akt2 in VSMC proliferation, although Akt1 is
the major isoform expressed in VSMCs [59].
2.3. Akt in cell migration

VSMCmigration from the media to the intima occurs in both neoin-
tima formation and vessel remodelling. Intimal VSMCs play a protective
role in plaque stabilisation, althoughmigrated synthetic VSMCs can also
secreteMMPs to degrade ECM, promoting features of plaque vulnerabil-
ity. Akt potently drives cell motility through dynamic polymerisation
and stabilisation of intracellular filaments [60,61]. Indeed, expression
of an activated Akt in fibroblasts was sufficient to remodel actin
filaments to promote migration, whereas disruption of Akt activity re-
versed the migratory effect [62]. Although Akt1 and Akt2 are differen-
tially required for migration by ECs, VSMCs and macrophages, the
general effect for Akt activation is to promote cell migration. However,
activated by binding to ligands such as insulin/IGF1 to its extracellular domain, receptor
rotein IRS1 and which in turn activates PI3K. PI3K activation leads to phosphorylation of
f Akt and PDK1. Inactive Akt is stimulated via direct binding and phosphorylation of T308
inal regulatory domain by mTORC2. Fully activated Akt disassociates from the membrane
rough phosphorylation to activate pro-survival signalling pathways such as NF-kB or to
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Akt regulates cell migration through distinct effectors and multiple sig-
nalling pathways.

Akt is a necessary and sufficient mediator of VEGF-induced EC
migration, through eNOS phosphorylation-mediated NO release, phos-
pholipase C-γ (PLC-γ) activation and F-actin reorganisation [63].
Importantly, Akt1, the major isoform regulating NO release in ECs, is
also critical for vascular permeability and leukocyte migration into
inflamed tissues, evident by reduced neutrophil and monocyte infiltra-
tion in Akt1−/− but not in Akt2−/− mice [64]. Akt mediates VSMC migra-
tion, which is mainly regulated through MMP activation and ECM
degradation. For example, Akt1 mediates VSMC migration through
MMP2 secretion, Rac1-GTP activation, and dorsal ruffle formation [56].
Genetic deletion or siRNA knockdown of Akt1 in VSMCs drastically
reduces MMP2 expression and VSMC migration, after either serum or
PDGF [56], and the reduced migration of Akt1-null VSMCs can be
rescued by Akt1 reintroduction. In contrast, how Akt2 promotes VSMC
migration is less clear. Although migration of VSMCs from Akt2/LDLR
double knockout mice was 50% lower than control LDLR null mice,
Akt2 null VSMCs showed increased MMP expression, especially MMP2
and MMP9 [59]. VSMCs of Akt2-null mice showed increased MMP9
but reduced TIMP1 expression. In vitro Akt2 also stimulates TIMP-1
and inhibits MMP9 In human aortic VSMCs through the inhibition of
FOXO1 [54].

Migration of macrophages is tightly regulated through chemotactic
signalling downstream of Akt2 but not Akt1. Thus, adhesion, spreading
and chemokine-induced migration are similar in monocytes from
Akt1−/− and control mice [56]. In contrast, migration of Akt2−/− macro-
phages is impaired when stimulated with monocyte chemoattractant
protein-1 (MCP-1/CCL2) or macrophage colony-stimulating factor (M-
CSF or CSF-1) [65]. Akt2−/− macrophages have reduced C-C chemokine
receptor type 2 (CCR2) expression, blunted Rac-1 activity and disrupted
F-actin structures, in comparison with Akt1-null or wt macrophages
[66].Moreover, Akt2 also plays a dominant role in promotingneutrophil
migration [67].

3. Role of different Akt isoforms in cell types comprising vascular
lesions

3.1. Akt isoforms in endothelial cells

Endothelial cells (ECs) predominantly express Akt1 [68,69] which
mediates EC survival andmigration [24,70], with important roles in pro-
cesses such as angiogenesis and regulation of vascular tone [71]. Various
stimuli such as vascular endothelial growth factor (VEGF) activate Akt
in ECs, resulting in Akt-dependent phosphorylation of endothelial nitric
oxide synthase (eNOS) to promote NO release; NO is a critical regulator
of vascular tone and blood flow, and also regulates vascular remodelling
and angiogenesis. The isoform-substrate specificity for Akt1 vs. Akt2 in
EC has been examined recently using conditional knockout mouse
models of Akt1−/− and Akt2−/− in combination with phosphoproteomic
analysis, demonstrating that eNOS is a preferential target of Akt1[69].
Indeed, loss of Akt1 but not Akt2 in ECs inhibited retinal angiogenesis,
indicating a non-redundant function of Akt1 in angiogenesis. Further-
more, Akt1 but not Akt2 in ECs uniquely phosphorylates protein sub-
strates implicated in cardiovascular disease, including FOXOs and eNOS
[69].

3.2. Akt isoforms in vascular smooth muscle cells

Akt1 is the predominant isoform expressed in VSMCs,where amajor
role is prevention of apoptosis [6,54,56,58]. For example, Akt1 is both
necessary and sufficient for the survival of cultured rat VSMCs following
oxidative stress, and dominant negative inhibition of endogenous Akt
suppresses IGF1-dependent survival in VSMCs [53,72], confirming also
that Akt is a major downstream target of the IGF1/PI3K signalling
pathway. Akt1-null VSMCs show increased susceptibility to serum
Please cite this article as: Yu H, et al, Akt isoforms in vascular disease, Vas
starvation and stress-induced apoptosis [73], whereas expression of
constitutive active Akt1 inhibits oxidative stress-induced VSMC apopto-
sis both in vitro and in vivo, through negative regulation of FOXO3a and
GSK3. In addition, as described above, Akt1 also regulates VSMC prolif-
eration and migration, the latter due to reduced Rac-1 activity and
MMP-2 secretion [56].

3.3. Akt isoforms in macrophages

The expression and activation of Akt isoforms are more complex in
macrophages than in ECs and VSMCs. Akt1 and Akt2 are both highly
expressed to similar levels in macrophages [59,65,66], whereas Akt3
accounts for only ~25% of total Akt expression [18]. Akt regulatesmacro-
phage survival, NO synthesis, cytokine secretion and programming [74].
For example, Akt1 promotes macrophage IFN-β expression by negative
regulation of GSK3β or direct phosphorylation of β-catenin [75]. Recent
studies show that Akt1 and Akt2 differentially regulate macrophage
polarisation [76,77]. Akt1−/− but not Akt2−/− macrophages show hyper-
sensitivity to lipopolysaccharide (LPS), and AKT1−/−macrophages display
a pro-inflammatory M1 phenotype, whereas Akt2−/− macrophages show
an anti-inflammatory M2 phenotype. In vitro, Akt1 deficiency has no ef-
fect on macrophage adhesion, migration or lipoprotein uptake, but po-
tently suppresses oxidised low-density lipoprotein (oxLDL)-induced
macrophage apoptosis [73]. In contrast, Akt2−/− macrophages have in-
creased expression of M2 markers, reduced foam cell formation and im-
paired migration [65,66]. The opposing effects of Akt1 and Akt2 in
macrophageM1/M2polarisation, inflammation and cholesterol accumu-
lation indicate that Akt isoformsmight have completely different or even
opposing effects on atherosclerosis. Finally, as a minor form of Akt in
macrophages, Akt3 is not involved in cell survival, but suppresses foam
cell formation by reducing lipoprotein uptake and promoting acetyl-
CoA acetyltransferase-1 (ACAT-1) degradation [18].

4. Role of Akt in vascular disease

4.1. Akt isoforms in atherosclerosis

The atherosclerotic plaque comprises an accumulation of vascular
smooth muscle cells, inflammatory cells (macrophages, mast cells)
and immune cells (T lymphocytes, dendritic cells) with both intracellu-
lar and extracellular lipid and debris. Endothelial dysfunction and
macrophage migration are both early and constant features of athero-
sclerosis, whereas, the dynamic balance of VSMC proliferation, migra-
tion, dedifferentiation and death plays an important role in both
atherogenesis and plaque stability. For example, VSMC apoptosis direct-
ly induces multiple features of plaque vulnerability in atherosclerosis,
including fibrous cap thinning, necrotic core expansion, and both local
and systemic inflammation [78]. Chronic low-level VSMC apoptosis
also promotes atherogenesis, calcification and medial degeneration
(cystic medial necrosis), characterised by depletion of VSMCs and
ECM degradation [79]. Macrophage apoptosis is also present in ad-
vanced plaques, promoting necrotic core formation and release of pro-
inflammatory cytokines [80].

Both Akt1 and Akt2 are expressed in blood vessels including the
aorta, femoral and carotid arteries. Akt1 is the predominant isoform
expressed in endothelial cells and VSMCs [6,68], whereas Akt2 ismostly
expressed in fibroblasts [4]. Akt3 is barely detectable in the vasculature.
Atherosclerosis results in changes in expression and phosphorylation of
both Akt and its downstream signallingmolecules. For example, medial
VSMCs maintain Akt activity and FOXO3a phosphorylation, whereas
plaque intimal VSMCs show reduced Akt phosphorylation and in-
creased expression of active (unphosphorylated) FOXO3a [53], suggest-
ing that Akt activity and Akt-mediated VSMC survival may play a
protective role in atherogenesis.

Indeed, genetic depletion of Akt1 induces endothelial cell dysfunc-
tion, reduces VSMC migration and survival, promotes atherosclerosis
cul. Pharmacol. (2015), http://dx.doi.org/10.1016/j.vph.2015.03.003
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Table 1
Studies and effects of Akt isoforms in atherosclerosis in mice.

Targeted Akt isoform Phenotype/morphology Mechanism Reference

Akt1 Tg SM22αAkt1ER/ApoE−/− ↓ atherosclerosis, VSMC survival [58]
Genetic depletion Akt1−/−/ApoE−/− ↑ atherosclerosis, ↑ coronary lesions Inflammation, EC and macrophage apoptosis [73]

Akt2−/−/LDLR−/− ↑ insulin resistance,
↓ atherosclerosis,

VSMC survival, collagen homeostasis [59]

Akt2−/−/LDLR−/− No effect – [65,66]
Akt3−/−/ApoE−/− ↑ atherosclerosis, ↑ foam cells Foam cell formation [18]

BMT Akt1−/− → ApoE−/− No effect – [66]
Akt1−/− → LDLR−/− No effect – [65]
Akt2−/− → LDLR−/− ↓ atherosclerosis Macrophage migration and polarisation [65,66]
Akt3−/− → ApoE−/− ↑ atherosclerosis, ↑ foam cells Foam cell formation [18]
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and coronary artery obstruction, and induces features of plaque vulner-
ability [56,73]. The detrimental effect of Akt1 deficiency on atheroscle-
rosis was not reversible by reconstitution with wild-type bone
marrow [73], demonstrating that the changes are mediated by vessel
wall cells.

Akt1 not only has multiple downstream targets but also can have
distinct targets in different cells. For example, Akt1 stimulates eNOS in
endothelial cells but not in VSMCs. Chronic Akt activation may even in-
duce apoptosis, by feedback inhibition of PI3K [81]. Studies usingwhole
body Akt1 knockoutmice have therefore been supplemented by studies
using tissue-specific knockout or overexpression. For example, VSMC-
specific expression of a hydroxytamoxifen-activated Akt1 allele (Akt-
ER™) reduced VSMC apoptosis, reduced plaque formation, and in-
creased plaque collagen and VSMC content, indicating that VSMC Akt1
protects against atherosclerosis and promotes plaque stability. In addi-
tion to well-established FOXO3a targets p27, cyclin D1, bim, bcl6 and
gadd45α, the apoptosome component Apaf1 was shown to be a novel
downstream apoptosis mediator regulated by Akt/FOXO3a signalling.

In contrast, a deleterious role for Akt2 in atherosclerosis has recently
been elucidated. In vitro, loss of Akt2 impairs VSMCproliferation,migra-
tion and collagen synthesis and alters the expression of MMPs and
TIMPs. However, Akt2 deficiency reduced atherosclerotic plaques in
both carotid arteries and aortic roots, characterised by reduced collagen
content, enlarged necrotic core and elevated apoptosis [59], despite
Akt2−/−/LDLR−/− mice having both diabetes and increased cholesterol
Fig. 2.Akt isoforms in EC, VSMCandmacrophage function in atherosclerosis. ECs andVSMCspre
VSMCs, Akt1 phosphorylates FOXO3a and GSK3 to inhibit apoptosis. Akt1 plays a protective ro
potently induces inflammation, the M1 phenotype, foam cell formation and CCR2-mediated m
macrophage foam cell formation and is found to be anti-atherogenic.
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levels. Although it was suggested that increased VSMC apoptosis in
the absence of Ak2 might be responsible for the phenotype, Akt1 is
the major isoform expressed in VSMCs, and a more likely effect may
be due to loss of macrophage Akt2. (see below).

Macrophage Akt1 and Akt2 also have different effects on atheroscle-
rosis. Transplantation of foetal liver cells from Akt1 or Akt2 deficient
mice to LDLR−/− mice showed that Akt2−/− → LDLR−/− but not Akt1−/−

→ LDLR−/− orWT−/−→ LDLR−/− dramatically reduced early atherosclerot-
ic lesion formation, and also suppressed advanced atherosclerotic le-
sions [65]. Bone marrow transplantation (BMT) studies demonstrated
a very similar protective role of macrophage Akt2 deficiency in athero-
sclerosis progression [66]. In both studies, in vitro data supported a role
for Akt2 in macrophage migration, inflammation and polarisation, sug-
gesting that Akt2 deficiency reduces atherosclerosis through impaired
macrophage function.

Finally, although predominantly expressed in brain, Akt3 also has
a protective role in atherosclerosis [18]. Genetic ablation of Akt3 in
ApoE−/− mice led to a 2-fold increase in atherosclerotic lesions, and
bone marrow transplantation of Akt3−/−/ApoE−/− to ApoE−/− mice
also resulted in a significant increase of atherosclerosis [18]. Akt3 de-
ficiency did not affect macrophage apoptosis, but promoted macro-
phage cholesterol accumulation, lipoprotein uptake and foam cell
formation in vitro, via stabilising Acetyl-Coenzyme A acetyltransfer-
ase 1 (ACAT1). The findings of transgenic, genetic deletion and
tissue-specific deletion studies for individual Akt isoforms in
dominantly express Akt1. In ECs, Akt1 activates eNOS andNF-κB to promote cell survival. In
le in EC and VSMC survival to inhibit atherosclerosis. In macrophages, Akt2 but not Akt1
igration, aggravating atherosclerosis. As a minor isoform in macrophages, Akt3 inhibits
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atherosclerosis are summarised in Table 1, and the role of Akt iso-
forms in different cell types and their effects on atherosclerosis are
shown in Fig. 2.

4.2. Akt isoforms in vascular remodelling

Vascular remodelling occurs both physiologically and pathologically
in response to changes in flow. Thus, flow reduction results in remodel-
ling leading to reduced lumen size and vessel wall thickness, and vice
versa. Remodelling is regulated by Akt in both ECs and VSMCs, particu-
larly Akt1. For example, expression of an endothelial cell-specific consti-
tutively active Akt1 transgene significantly attenuated neointima
formation in carotid arteries after ligation [57], mediated through inhi-
bition of neointimal cell apoptosis and Akt1-mediated eNOS activation
in ECs. Similarly, although Akt1 activation in VSMCs does not promote
proliferation in vivo or induce neointimal formation, it potently
inhibitedmedial VSMC apoptosis and negative remodelling after carotid
ligation [58]. Consistent with these studies, Akt1-deficient mice show a
2-fold increase in neointima formation compared with Akt1+/+ mice,
and Akt1 also modulates phenotypic conversion of VSMCs, highlighting
a protective role of Akt1 in vascular remodelling [82].

4.3. Akt isoforms in aneurysm formation

Aortic aneurysms are characterised by N1.5 fold increase in diameter
of the aorta, and both the thoracic aorta (TAA) or abdominal aorta
(AAA) can be affected [83]. The aneurysm is characterised bymedial de-
generation, loss of VSMCs, VSMC apoptosis, activation of matrix metal-
loproteinases (MMPs) and inflammation [84–86].

Akt isoforms are implicated in aneurysm formation, although
there is a degree of controversy in the literature. For example, Akt2
appears to have a protective role in aortic aneurysm formation and
dissection [54]. Akt2 but not Akt1 levels were significantly reduced
in the whole aortic wall of human TAAs, and phospho-Akt473 levels
and phospho-Akt/total Akt ratios were significantly reduced in TAA
versus control tissues, indicating reduced activation of Akt. Although
Akt2−/− mice did not develop dissection spontaneously, Angiotensin
II challenge led to aortic aneurysms, with significant increase in the
diameter of aortic segments, lesions and ruptures in Akt2−/− vs. con-
trol mice. Severe elastic fibre disruption was observed followed by
increased apoptosis and inflammatory cell infiltration in the vessel
wall of Angiotensin II-infused Akt2−/− mice. Furthermore, expression
of MMP9 was increased whereas TIMP1 was decreased in lesion seg-
ments in these animals. Further experiments suggest that Akt2 in-
hibits MMP-9 and stimulates TIMP-1 expression by preventing
FOXO1-mediated MMP-9 transcription and GATA1-regulated TIMP-
1 transcription [54].

The role of Akt in AAA development was examined using an
elastase-treated mouse model [87]. Elastase-perfused aortas showed
increased phosphorylation of Akt308, but not Akt473 in male mice,
which correlated with increased AAA formation. Interestingly, this
study reported consistently elevated Akt activity both in human
and mouse AAA. These differing findings may be due to different an-
imal models and human tissue sites, and also the effect of isoform
compensation, where knockout of one isoform may result in com-
pensatory increases in other isoforms. Importantly, treatment with
a broad-spectrum Akt inhibitor significantly reduced Akt phosphor-
ylation, but only resulted in a small reduction in AAA development,
suggesting that phosphorylation of Akt is involved in AAA initiation,
but is not critical for AAA progression.

5. Conclusions and future perspectives

Significant progress has been made towards understanding the
precise roles of individual Akt isoforms in vascular disease, including
atherosclerosis, vascular remodelling and aneurysm formation. Based
Please cite this article as: Yu H, et al, Akt isoforms in vascular disease, Vas
on findings from tissue-specific transgenic or knockout animal models,
Akt1 is the predominant isoform expressed in the vasculature including
EC and VSMCs. Akt1 activation potently mediates cell survival and pro-
tects against atherogenesis and negative vessel remodelling. Akt3, a
minor isoform of total Akt, may also have similar anti-atherogenic ac-
tions to Akt1. In contrast, Akt2 is detrimental in atherosclerosis, through
aberrant macrophage migration, inflammation, polarisation, lipid
uptake, and foamcell formation. Thus, Akt1 andAkt2 are not only differ-
entially expressed in the vasculature but also have distinct and even op-
posite functions in vascular disease. Bearing in mind the weak
expression of Akt2 in ECs and VSMCs, the protective role conferred by
Akt2 in aneurysm formation and dissection needs to be further
validated.

The current studies also leave many unanswered questions. For
example, do the current animal findings correlate with human tissues,
and what is the clinical significance of altered Akt activity in human
disease? What level of Akt activation leads to distinct and non-
compensated actions achieved by individual Akt isoforms? How do we
account for the apparent disparate roles of Akt2 in diabetes and athero-
sclerosis, when atherosclerosis is the major cause of death in diabetes?
Are Akt or isoforms of Akt therapeutic targets considering the wide
tissue distribution and fundamental role in multiple processes? The
last decade has clarified the role of individual isoforms in animal tissues;
the next decade should clarify their relevance to human vascular
disease.

Acknowledgements

This work was supported by British Heart Foundation grants PG/11/
112/29272, RG/08/009/25841 and RG/13/14/30314, and the Cambridge
NIHR Biomedical Research Centre.

References

[1] Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to
follow. TIBS 2001;26(11):657–64.

[2] Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a
serine-threonine kinase containing an SH2-like region. Science 1991;254(5029):
274–7.

[3] Hixon ML, Muro-Cacho C, Wagner MW, Obejero-Paz C, Millie E, Fujio Y, et al. Akt1/
PKB upregulation leads to vascular smooth muscle cell hypertrophy and
polyploidization. J Clin Invest 2000;106(8):1011–20.

[4] Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, et al. Akt1/protein kinase B
alpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest 2005;
115(8):2119–27.

[5] Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival and
insulin responses? J Cell Sci 2001;114(Pt 16):2903–10.

[6] Tucka J, Bennett M, Littlewood T. Cell death and survival signalling in the cardiovas-
cular system. Front Biosci 2012;17:248–61.

[7] Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-
regulated kinases: kinase activation by phosphoinositide-dependent phosphoryla-
tion. Annu Rev Biochem 1999;68:965–1014.

[8] Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT—a
major therapeutic target. Biochim Biophys Acta 2004;1697(1-2):3–16.

[9] Dummler B, Tschopp O, Hynx D, Yang ZZ, Dirnhofer S, Hemmings BA. Life with a
single isoform of Akt: mice lacking Akt2 and Akt3 are viable but display impaired
glucose homeostasis and growth deficiencies. Mol Cell Biol 2006;26(21):8042–51.

[10] Fayard E, Tintignac LA, Baudry A, Hemmings BA. Protein kinase B/Akt at a glance.
J Cell Sci 2005;118(Pt 24):5675–8.

[11] Gonzalez E, McGraw TE. The Akt kinases: isoform specificity in metabolism and
cancer. Cell Cycle 2009;8(16):2502–8.

[12] ChenWS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, et al. Growth retardation
and increased apoptosis in mice with homozygous disruption of the Akt1 gene.
Genes Dev 2001;15(17):2203–8.

[13] Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required
for normal growth but dispensable for maintenance of glucose homeostasis in
mice. J Biol Chem 2001;276(42):38349–52.

[14] Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, et al. Severe
diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in
mice lacking Akt2/PKB beta. J Clin Invest 2003;112(2):197–208.

[15] Tschopp O, Yang ZZ, Brodbeck D, Dummler BA, Hemmings-Mieszczak M,Watanabe T,
et al. Essential role of protein kinase B gamma (PKB gamma/Akt3) in postnatal brain
development but not in glucose homeostasis. Development 2005;132(13):2943–54.

[16] Gonzalez E, McGraw TE. Insulin-modulated Akt subcellular localization determines
Akt isoform-specific signaling. Proc Natl Acad Sci U S A 2009;106(17):7004–9.
cul. Pharmacol. (2015), http://dx.doi.org/10.1016/j.vph.2015.03.003

http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0005
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0005
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0010
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0010
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0010
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0015
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0015
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0015
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0020
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0020
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0020
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0025
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0025
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0415
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0415
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0420
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0420
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0420
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0030
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0030
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0035
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0035
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0035
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0040
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0040
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0045
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0045
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0050
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0050
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0050
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0055
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0055
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0055
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0060
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0060
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0060
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0065
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0065
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0065
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0070
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0070
http://dx.doi.org/10.1016/j.vph.2015.03.003


7H. Yu et al. / Vascular Pharmacology xxx (2015) xxx–xxx
[17] Santi SA, Lee H. The Akt isoforms are present at distinct subcellular locations. Am J
Physiol Cell Physiol 2010;298(3):C580–91.

[18] Ding L, Biswas S, Morton RE, Smith JD, Hay N, Byzova TV, et al. Akt3 deficiency in
macrophages promotes foam cell formation and atherosclerosis in mice. Cell
Metab 2012;15(6):861–72.

[19] Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordi-
nated cardiac hypertrophy and angiogenesis contributes to the transition to heart
failure. J Clin Invest 2005;115(8):2108–18.

[20] Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007;
129(7):1261–74.

[21] Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer:
implications for therapeutic targeting. Adv Cancer Res 2005;94:29–86.

[22] Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the
Akt/PKB signaling pathway. Genes Dev 2006;20(24):3347–65.

[23] Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signal-
ling pathways. Nat Rev Mol Cell Biol 2006;7(8):589–600.

[24] Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis.
Circ Res 2002;90(12):1243–50.

[25] O'Neill BT, Abel ED. Akt1 in the cardiovascular system: friend or foe? J Clin Invest
2005;115(8):2059–64.

[26] Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle
cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest
1995;95:2266–74.

[27] Harrington EA, Bennett MR, Fanidi A, Evan GI. c-Myc induced apoptosis in fibroblasts
is inhibited by specific cytokines. EMBO J 1994;13:3286–95.

[28] Bai HZ, Pollman MJ, Inishi Y, Gibbons GH. Regulation of vascular smooth muscle cell
apoptosis—modulation of bad by a phosphatidylinositol 3-kinase-dependent path-
way. Circ Res 1999;85(3):229–37.

[29] Chung J, Grammer TC, Lemon KP, Kazlauskas A, Blenis J. PDGF- and insulin-
dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase.
Nature 1994;370(6484):71–5.

[30] Hawkins PT, Eguinoa A, Qiu RG, Stokoe D, Cooke FT,Walters R, et al. PDGF stimulates
an increase in GTP-Rac via activation of phosphoinositide 3-kinase. Curr Biol 1995;
5(4):393–403.

[31] Kobayashi T, Cohen P. Activation of serum- and glucocorticoid-regulated protein
kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by
3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J
1999;339(Pt 2):319–28.

[32] Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA. Serum and
glucocorticoid-inducible kinase (SGK) is a target of the PI 3-kinase-stimulated
signaling pathway. EMBO J 1999;18(11):3024–33.

[33] Park J, Hill MM, Hess D, Brazil DP, Hofsteenge J, Hemmings BA. Identification of
tyrosine phosphorylation sites on 3-phosphoinositide-dependent protein kinase-1
(PDK1) and their role in regulating kinase activity. J Biol Chem 2001;276(40):
37459–71.

[34] Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH
kinase signal transduction. Nature 1995;376(6541):599–602.

[35] Franke TF, Yang SI, Chan TO, Datta K, Kazlauskas A, Morrison DK, et al. The protein
kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phos-
phatidylinositol 3-kinase. Cell 1995;81(5):727–36.

[36] Datta S, Brunet A, Greenberg M. Cellular survival: a play in three Akts. Genes Dev
1999;13:2905–27.

[37] Kauffman Zeh A, Rodriguez Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J, et al.
Suppression of c-Myc-induced apoptosis by Ras signalling through PI3K and PKB.
Nature 1997;385(6616):544–8.

[38] Franke T, Kaplan D, Cantley L, Toker A. Direct regulation of the Akt proto-oncogene
product by phosphatidylinositol-3,4 bi-phosphate. Science 1997;275:665–8.

[39] Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of
neuronal survival by the serine-threonine protein kinase Akt. Science 1997;
275(5300):661–5.

[40] Philpott K, McCarthy M, Klippel A, Rubin L. Activated phosphatidylinositol 3-kinase
and atk kinase promote survival of superior cervical neurons. J Cell Biol 1997;139:
809–15.

[41] Zha J, Harada H, Yang E, Jockel J, Korsmeyer S. Serine phosphorylation of death ago-
nist bad in response to survival factor results in binding to 14-3-3 not Bcl-X1. Cell
1996;87:619–28.

[42] Cardone M, Roy N, Stennicke H, Salveson G, Franke T, Stanbridge E, et al. Regulation
of cell death protease caspase 9 by phosphorylation. Science 1998;282:1318–21.

[43] Maurer U, Charvet C,Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3
regulates mitochondrial outer membrane permeabilization and apoptosis by desta-
bilization of MCL-1. Mol Cell 2006;21(6):749–60.

[44] Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME. Protein kinase SGK
mediates survival signals by phosphorylating the forkhead transcription factor
FKHRL1 (FOXO3a). Mol Cell Biol 2001;21(3):952–65.

[45] Brunet A, Bonni A, ZigmondMJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival
by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96(6):
857–68.

[46] Nakae J, Barr V, Accili D. Differential regulation of gene expression by insulin and
IGF-1 receptors correlates with phosphorylation of a single amino acid residue in
the forkhead transcription factor FKHR. EMBO J 2000;19(5):989–96.

[47] Jones R, Parsons M, Bonnard M, Chan V, YehW-C, Woodgett J, et al. Protein kinase B
regulates T lymphocyte survival, Nuclear Factor kB activation and Bcl-XL levels
in vitro. J Exp Med 2000;191:1721–33.

[48] Papapetropoulos A, Fulton D, Mahboubi K, Kalib R, O'Connor D, Li F, et al.
Angiopoetin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway.
J Biol Chem 2000;275:9102–5.
Please cite this article as: Yu H, et al, Akt isoforms in vascular disease, Vas
[49] Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF
signalling. Nature 1999;401(6748):86–90.

[50] Madrid LV, Wang CY, Guttridge DC, Schottelius AJ, Baldwin AS, Mayo MW. Akt
suppresses apoptosis by stimulating the transactivation potential of the RelA/p65
subunit of NF-kappaB. Mol Cell Biol 2000;20(5):1626–38.

[51] Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher A. Activation of
nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature
1999;399:601–5.

[52] Fulton D, Gratton J-P, McCabe T, Fontana J, Fujio Y, Walsh L, et al. Regulation of
endothelium-derived nitric oxide production by the protein kinase Akt. Nature
1999;399:597–601.

[53] Allard D, Figg N, Bennett MR, Littlewood TD. Akt regulates the survival of vascular
smooth muscle cells via inhibition of FoxO3a and GSK3. J Biol Chem 2008;
283(28):19739–47.

[54] Shen YH, Zhang L, Ren P, Nguyen MT, Zou S, Wu D, et al. AKT2 confers protection
against aortic aneurysms and dissections. Circ Res 2013;112(4):618–32.

[55] Stabile E, Zhou YF, Saji M, Castagna M, Shou M, Kinnaird TD, et al. Akt controls
vascular smooth muscle cell proliferation in vitro and in vivo by delaying G1/S
exit. Circ Res 2003;93(11):1059–65.

[56] Fernandez-Hernando C, Jozsef L, Jenkins D, Di Lorenzo A, Sessa WC. Absence of Akt1
reduces vascular smooth muscle cell migration and survival and induces features of
plaque vulnerability and cardiac dysfunction during atherosclerosis. Arterioscler
Thromb Vasc Biol 2009;29(12):2033–40.

[57] Mukai Y, Rikitake Y, Shiojima I, Wolfrum S, Satoh M, Takeshita K, et al. Decreased
vascular lesion formation in mice with inducible endothelial-specific expression of
protein kinase Akt. J Clin Invest 2006;116(2):334–43.

[58] Tucka J, Yu H, Gray K, Figg N, Maguire J, Lam B, et al. Akt1 regulates vascular smooth
muscle cell apoptosis through FoxO3a and Apaf1 and protects against arterial
remodeling and atherosclerosis. Arterioscler Thromb Vasc Biol 2014;34(11):2421–8.

[59] Rensing KL, de Jager SC, Stroes ES, VosM, Twickler MT, Dallinga-Thie GM, et al. Akt2/
LDLr double knockout mice display impaired glucose tolerance and develop more
complex atherosclerotic plaques than LDLr knockout mice. Cardiovasc Res 2014;
101(2):277–87.

[60] Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin
filaments. Cell 2003;112(4):453–65.

[61] Bugyi B, Carlier MF. Control of actin filament treadmilling in cell motility. Annu Rev
Biophys 2010;39:449–70.

[62] Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X, et al. PI3K induced actin filament
remodeling through Akt and p70S6K1: implication of essential role in cell migration.
Am J Physiol Cell Physiol 2004;286(1):C153–63.

[63] Morales-Ruiz M, Fulton D, Sowa G, Languino LR, Fujio Y, Walsh K, et al. Vascular
endothelial growth factor-stimulated actin reorganization andmigration of endothelial
cells is regulated via the serine/threonine kinase Akt. Circ Res 2000;86(8):892–6.

[64] Di Lorenzo A, Fernandez-Hernando C, Cirino G, Sessa WC. Akt1 is critical for acute
inflammation and histamine-mediated vascular leakage. Proc Natl Acad Sci U S A
2009;106(34):14552–7.

[65] Babaev VR, Hebron KE, Wiese CB, Toth CL, Ding L, Zhang Y, et al. Macrophage defi-
ciency of Akt2 reduces atherosclerosis in Ldlr null mice. J Lipid Res 2014;55(11):
2296–308.

[66] Rotllan N, Chamorro-Jorganes A, Araldi E, Wanschel AC, Aryal B, Aranda JF, et al.
Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis.
FASEB J 2015;29(2):597–610.

[67] Chen J, Tang H, Hay N, Xu J, Ye RD. Akt isoforms differentially regulate neutrophil
functions. Blood 2010;115(21):4237–46.

[68] Chen J, Somanath PR, Razorenova O, Chen WS, Hay N, Bornstein P, et al. Akt1 regu-
lates pathological angiogenesis, vascular maturation and permeability in vivo. Nat
Med 2005;11(11):1188–96.

[69] Lee MY, Luciano AK, Ackah E, Rodriguez-Vita J, Bancroft TA, Eichmann A, et al. Endo-
thelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic sub-
strates. Proc Natl Acad Sci U S A 2014;111(35):12865–70.

[70] Somanath PR, Razorenova OV, Chen J, Byzova TV. Akt1 in endothelial cell and angio-
genesis. Cell Cycle 2006;5(5):512–8.

[71] Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of
endothelium-derived nitric oxide production by the protein kinase Akt. Nature
1999;399(6736):597–601.

[72] Allen TR, Krueger KD, Hunter WJ, Agrawal DK. Evidence that insulin-like growth
factor-1 requires protein kinase C-epsilon, PI3-kinase andmitogen-activated protein
kinase pathways to protect human vascular smooth muscle cells from apoptosis.
Immunol Cell Biol 2005;83(6):651–67.

[73] Fernandez-Hernando C, Ackah E, Yu J, Suarez Y, Murata T, Iwakiri Y, et al. Loss of
Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell
Metab 2007;6(6):446–57.

[74] Zhang Y, Wang X, Yang H, Liu H, Lu Y, Han L, et al. Kinase AKT controls innate
immune cell development and function. Immunology 2013;140(2):143–52.

[75] Gantner BN, Jin H, Qian F, Hay N, He B, Ye RD. The Akt1 isoform is required for
optimal IFN-beta transcription through direct phosphorylation of beta-catenin.
J Immunol 2012;189(6):3104–11.

[76] Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, et al.
The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating
microRNAs. Immunity 2009;31(2):220–31.

[77] Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, et al.
Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization.
Proc Natl Acad Sci U S A 2012;109(24):9517–22.

[78] Clarke MC, Figg N, Maguire JJ, Davenport AP, Goddard M, Littlewood TD, et al. Apo-
ptosis of vascular smooth muscle cells induces features of plaque vulnerability in
atherosclerosis. Nat Med 2006;12(9):1075–80.
cul. Pharmacol. (2015), http://dx.doi.org/10.1016/j.vph.2015.03.003

http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0075
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0075
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0080
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0080
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0080
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0085
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0085
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0085
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0090
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0090
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0425
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0425
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0095
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0095
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0100
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0100
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0105
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0105
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0110
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0110
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0115
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0115
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0115
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0120
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0120
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0125
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0125
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0125
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0130
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0130
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0130
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0135
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0135
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0135
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0140
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0140
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0140
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0140
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0145
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0145
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0145
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0150
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0150
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0150
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0150
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0155
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0155
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0160
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0160
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0160
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0165
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0165
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0170
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0170
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0170
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0175
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0175
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0180
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0180
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0180
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0185
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0185
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0185
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0190
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0190
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0190
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0195
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0195
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0200
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0200
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0200
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0205
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0205
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0205
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0210
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0210
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0210
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0215
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0215
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0215
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0220
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0220
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0220
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0225
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0225
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0225
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0230
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0230
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0235
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0235
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0235
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0240
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0240
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0240
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0245
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0245
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0245
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0250
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0250
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0250
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0255
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0255
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0260
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0260
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0260
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0265
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0265
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0265
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0265
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0270
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0270
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0270
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0275
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0275
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0275
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0280
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0280
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0280
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0280
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0285
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0285
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0290
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0290
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0295
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0295
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0295
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0300
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0300
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0300
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0305
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0305
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0305
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0310
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0310
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0310
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0430
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0430
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0430
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0315
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0315
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0320
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0320
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0320
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0325
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0325
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0325
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0330
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0330
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0335
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0335
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0335
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0340
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0340
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0340
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0340
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0345
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0345
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0345
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0350
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0350
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0355
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0355
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0355
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0360
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0360
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0360
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0435
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0435
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0435
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0365
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0365
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0365
http://dx.doi.org/10.1016/j.vph.2015.03.003


8 H. Yu et al. / Vascular Pharmacology xxx (2015) xxx–xxx
[79] Clarke MC, Littlewood TD, Figg N, Maguire JJ, Davenport AP, GoddardM, et al. Chron-
ic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and
promotes calcification and medial degeneration. Circ Res 2008;102(12):1529–38.

[80] Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis.
Nat Rev Immunol 2010;10(1):36–46.

[81] Nagoshi T, Matsui T, Aoyama T, Leri A, Anversa P, Li L, et al. PI3K rescues the detri-
mental effects of chronic Akt activation in the heart during ischemia/reperfusion
injury. J Clin Invest 2005;115(8):2128–38.

[82] Yun SJ, Ha JM, Kim EK, Kim YW, Jin SY, Lee DH, et al. Akt1 isoform modulates
phenotypic conversion of vascular smooth muscle cells. Biochim Biophys Acta
2014;1842(11):2184–92.

[83] Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC. Suggested
standards for reporting on arterial aneurysms. Subcommittee on Reporting
Standards for Arterial Aneurysms. J Vasc Surg 1991;13(3):452–8.
Please cite this article as: Yu H, et al, Akt isoforms in vascular disease, Vas
[84] Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P. Death of
smooth muscle cells and expression of mediators of apoptosis by T lymphocytes
in human abdominal aortic aneurysms. Circulation 1999;99(1):96–104.

[85] Daugherty A, Powell JT. Recent highlights of ATVB: aneurysms. Arterioscler Thromb
Vasc Biol 2014;34(4):691–4.

[86] Lopez-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW.
Decreased vascular smooth muscle cell density in medial degeneration of human
abdominal aortic aneurysms. Am J Pathol 1997;150(3):993–1007.

[87] Ghosh A, Lu G, Su G, McEvoy B, Sadiq O, DiMusto PD, et al. Phosphorylation of AKT
and abdominal aortic aneurysm formation. Am J Pathol 2014;184(1):148–58.
cul. Pharmacol. (2015), http://dx.doi.org/10.1016/j.vph.2015.03.003

http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0370
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0370
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0370
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0375
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0375
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0380
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0380
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0380
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0385
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0385
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0385
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0390
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0390
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0390
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0395
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0395
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0395
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0400
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0400
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0405
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0405
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0405
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0410
http://refhub.elsevier.com/S1537-1891(15)00039-7/rf0410
http://dx.doi.org/10.1016/j.vph.2015.03.003

	Akt isoforms in vascular disease
	1. Introduction
	2. Role of Akt in vascular disease
	2.1. Akt in survival signalling
	2.2. Akt in cell proliferation
	2.3. Akt in cell migration

	3. Role of different Akt isoforms in cell types comprising vascular lesions
	3.1. Akt isoforms in endothelial cells
	3.2. Akt isoforms in vascular smooth muscle cells
	3.3. Akt isoforms in macrophages

	4. Role of Akt in vascular disease
	4.1. Akt isoforms in atherosclerosis
	4.2. Akt isoforms in vascular remodelling
	4.3. Akt isoforms in aneurysm formation

	5. Conclusions and future perspectives
	Acknowledgements
	References


