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Use of a fictitious Marangoni number for natural convection simulation
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In this paper, a method based on the use of a fictitious Marangoni number is proposed for
the simulation of natural thermocapillary convection as an alternative to the traditional effective
diffusivity approach. The fundamental difference between these two methods is that the new
method adopts convective mass flows in simulating natural convection. Heat transfer in the natural
convection simulation is calculated through the mass transport. Therefore, empirical Nusselt num-
bers correlations required in the effective diffusivity method are eliminated. This represents a clear
advantage in the context of design studies where flexibility in varying the geometry unconstrained
by the availability of appropriate correlations is highly desirable. The new method is demonstrated
using a simple geometrical model. An analytical expression of the fictitious Marangoni number
associated with convection between vertical plates is derived and a computational fluid dynamics
(CFD) simulation is performed to study the efficacy of the proposed method. The results show
that the new method can approximate real natural convection quite accurately and can be used to
simulate the convective flow in complex, obstructed or finned structures where the specific Nusselt
correlation is not known.

aKeywords. Natural convection, Effective thermal conductivity, Marangoni convection, Compu-
tational Fluid Dynamics (CFD)

I. INTRODUCTION

Natural convection in enclosed cavities is of great im-
portance in many engineering and scientific applications
such as energy transfer, boilers, nuclear reactor systems,
energy storage devices, etc. In the design of such systems
numerical simulation using computational fluid dynamics
(CFD) and experimental testing of prototypes are exten-
sively used. However, these methods are not well suited
to activities such as parametric analysis due to their time-
consuming nature and high cost [1].

Natural convection analysis often involves complex
simulations. Such simulations entail a set of relaxation
factors to converge and no easy way to find the relax-
ation factors except through continuous trials demanding
significant computational resources. This frequently dis-
suades thermal analysts and designers from attempting
3D simulations. In order to overcome this problem, the
traditional approach is to use an effective diffusivity term
(effective thermal conductivity) to convert effects of con-
vection into pure conduction [2, 3]. The fluid within an
enclosure behaves like a fluid the thermal conductivity κ
of which is modified by an effective thermal conductivity
κeff as κeff = κ ·Nu, with the Nusselt number Nu being
determined by an appropriate correlation. This provides
a challenge to engineers when they are designing a com-
plex or novel system. The engineers must have knowledge
of the appropriate Nusselt number correlation relation-
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ship for the specific geometry, such as finned structures;
however, these correlations are often not available. This
then motivates us to find an alternative approach that
does not require knowledge of Nusselt number correla-
tions.

In this paper, an alternative approach is proposed for
natural convection simulations in which the momentum
equation is modified and then the mass flow represented
by using a fictitious Marangoni term in the stress ten-
sor inducing thermocapillary currents. The heat trans-
fer is then the result of this mass flow. In the next
section the theoretical background behind the proposed
approach will be presented. Although prior knowledge
of Marangoni convection is not essential to understand
the material presented in the next section, the interested
reader is referred to the text by Kuhlmann and Rath
[4] for further information about fundamental Marangoni
theory and to recent research outputs [5–14] and the book
by Lappa [15] to obtain an overview of thermal convec-
tion and the state of the art.

II. THEORETICAL BACKGROUND

A. The fictitious Marangoni approach (FMA)

Let us start by considering the Navier-Stokes equation,
which has, in presence of a gravitational field, the follow-
ing tensorial form(

∂vi
∂t

+ vk
∂vi
∂xk

)
= −1

ρ

∂p

∂xi
+

∂

∂xk
{σ′ik}+ gi (1)
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where v is the velocity, p is the static pressure, σ′ik is the
viscous stress tension (described below), and gi is the
gravitational body force per unit volume.

The viscous stress tensor is given by

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

)
(2)

where η is the dynamic viscosity and δik is the Kronecker
delta.

Now let us derive the equation describing the natural
convection. For the sake of simplicity, we will assume the
fluid is incompressible. This assumption implies that the
variation of density due to variation in pressure may be
neglected. We can express the variations in temperature,
density and pressure as functions of small variations dT ,
dρ and dp, respectively. This is the well-known Boussi-
nesq approximation (for buoyancy). Introducing this into
the Navier-Stokes equation (Eq. (1)), results in the fol-
lowing expression [16]:(

∂vi
∂t

+ vk
∂vi
∂xk

)
= −1

ρ

∂dp

∂xi
+

∂

∂xk
{σ′ik} − βdTgi (3)

where, with our assumption that the fluid is incompress-
ible, i.e. div · u = 0, the stress tensor is simplified as

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi

)
(4)

Let us now consider the situation of a boundary con-
dition that must be satisfied at the boundary between
the fluid and the walls, when surface-tension forces are
taken into account. If we assume that the surface-tension
coefficient γ is not constant over the surface (in our case
because of temperature variation), then a force tangen-

tial to the surface is developed ∂γ
∂xi

, and the stress tensor
then becomes

σ′ik = η

(
∂vi
∂xk

+
∂vk
∂xi

)
+
∂γ

∂xi
(5)

Now, our objective in this paper is to define a ficti-
tious surface-tension gradient, ∂γ/∂xi, which emulates
the buoyancy potential, βdTgi. Although there are sev-
eral ways in which to do this, perhaps the following anal-
ogy is easiest in applying this approach to cases involving
plates and finned structures.

In laminar, fully developed, two-dimensional (2D) flow
between parallel plates (see Fig. 1), the pressure drop is
given by [16]

dp

dxi

∣∣∣∣
loss

= −2
σ′ik
s

(6)

where s is the distance between the plates and the stress
tensor is given by

σ′ik = η

(
∂vi
∂xk

)
xk=0

(7)

or, considering the velocity profile between the parallel
plates [17],

dp

dxi

∣∣∣∣
loss

= −12
ηw

ρs3
(8)

where w is the mass flow rate per unit of width.
For natural convection flow, this flow resistance is bal-

anced by the buoyant potential [17] given by

dp

dxi

∣∣∣∣
buoy

= −ρβdTgi (9)

Equating the dp/dxi terms in Eq. (8) and Eq. (9) we
obtain the well-known solution given by Bar-Cohen and
Rohsenow [18] for the mass flow rate per unit width in
the channel:

w =
ρ2giβs

3dT

12η
(10)

As mentioned, we want to find an appropriate ficti-
tious surface-tension gradient ∂γ/∂xi. In this case, using
Eqs. (5) and (7), we can write the stress tensor as

σ′ik = η

(
∂vi
∂xk

)
xk=0

=
∂γ∗
∂xi

(11)

where ∂γ∗/∂xi is the fictitious surface-tension gradient
associated with the wall.

Taking into account Eqs. (6), (9) and (11) we find that
the fictitious surface-tension gradient must be given by

∂γ∗
∂xi

=
ρβgisdT

2
(12)

Given that

∂γ∗
∂xi

=
∂γ∗
∂Ts

∂sT (13)

where ∂sT = ∂Ts/∂xi and the subscript s means that
the temperature is evaluated at the wall, Eqs. (12) and
(13) can be combined to give

∂γ∗
∂Ts

=
ρβgis

2

[
dT

∂sT

]
(14)

Using the definitions of the Rayleigh number Ras and
the Marangoni number Ma:

Ras =
ρβgis

3

ηα
dT (15)

Ma = −∂γ∗
∂Ts

hdT

ηα
(16)

where α is the thermal diffusivity and h is a characteristic
length, here the length of the channel, Eq. (14) can then
be rewritten as

Ma =
C1

2

[
∂fT

∂sT

]
Ras (17)
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FIG. 1: Simulated cavity model with a bottom wall temper-
ature of Th, a top wall temperature of Tc and adiabatic side
walls.

where ∂fT = dT/h is the linear average fluid temperature
gradient and C1 is a geometry-dependent constant.

Eq. (17) presents a relationship between the fictitious
Marangoni number and the Rayleigh number. The dif-
ference between these two dimensionless numbers relates
to mechanism by which natural convection is initiated.
The Marangoni number is associated with natural con-
vection caused by a surface temperature gradient ∇sT
via mass transfer while the Rayleigh number is associated
with natural convection caused by buoyancy-driven flow.
This equation provides an important result. The Nusselt
number correlation, which is required in the traditional
effective diffusive approach, is no longer required. It can
be replaced by a ratio ∇fT/∇sT that is determined by
the specific geometry.

For the sake of generality, the relationship between the
fictitious Marangoni number and the Rayleigh number
can be expressed through a simple polytropic equation:

Ma = C1Ran (18)

where C1 and n are constants. Based on Eq. (17), n
would be expected to be close to 1. The value of C1

depends on the specified geometry.

If the surface temperature gradient ∇sT is assumed to
be proportional to the thermal gradient of the fluid then:

∂sT ≈ C1
dT

s
(19)

In the Appendix a simple application for a finned geom-
etry is presented, for which the existence of a simple lin-
ear relationship between the surface temperature gradi-
ent ∇sT and the thermal gradient can be demonstrated.

Combining Eq. (19) with Eq. (14) then yields

∂γ∗
∂Ts

≈ C1
ρβgis

2

2
(20)

All parameters in this equation are known once the geom-
etry is specified. This then enables natural convection to
be simulated without knowledge of the appropriate Nus-
selt number correlation.

B. The effective diffusivity approach (EDA)

In the previous section we propose a new approach for
natural convection simulation based on the introduction
of a “fictitious” Marangoni term in the stress tensor in the
momentum equations. In this proposed approach heat
transfer will be obtained as a result of the induced mass
flow.

In contrast, the problem of computational natural con-
vection simulation is often these days tackled from a to-
tally different point of view using more traditional ap-
proaches. Instead of modifying the momentum equations
(and then considering mass transport) it is the energy
equation that is modified. There are several approaches
to representing the effects of convection by modifying
the energy equation: for example, by introducing em-
pirical velocities into the convection terms in the energy
equation [19]. However, undoubtedly the most commonly
used approach of this kind is the so-called effective diffu-
sive approach, so it is worth providing a brief outline of
that model here.

Let us consider the energy equation, and for the sake
of illustration, let us assume, as before, laminar flow in
the liquid where no external sources are present. The
energy equation is given by

cp
∂T

∂t
+ vi

∂T

∂xi
=

1

ρ

∂

∂xi

(
κ
∂T

∂xi

)
(21)

where cp is the specific heat capacity of the fluid. The

convective term in the above equation (vi
∂T
∂xi

) makes it
difficult to solve computationally, so it is modeled as an
effective diffusive term as [20]

vi
∂T

∂xi
= −1

ρ

∂

∂xi

(
D
∂T

∂xi

)
(22)

where

D = κCRaa (23)

or

D = κNu (24)

In this way, it is possible to eliminate the non-linear con-
vective term in the energy equation (Eq. (21)), represent-
ing the energy equation for a simple purely conductive
system [21]

cp
∂T

∂t
=

1

ρ

∂

∂xi

(
κeff

∂T

∂xi

)
(25)
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FIG. 2: Comparison of the Nusselt number predictions.

C. FMA versus EDA

In the previous section, two different alternative ap-
proaches for natural convection simulation were de-
scribed. The first, proposed in this paper, is through
the modification of the momentum equations by the in-
troduction of a fictitious Marangoni stress (Eq. (20)), an
approach that we have called the fictitious Marangoni
approach or FMA. The second is the traditional effective
diffusivity approach or EDA, in which the energy equa-
tion is modified by replacing the convective term by an
effective diffusive term (Eq. (22)).

As will be apparent to the reader, the FMA approach
offers a powerful tool for systems where, because the
Nusselt number is not known, it is not possible to de-
fine an effective thermal diffusivity (thermal conductiv-
ity), i.e. to apply the EDA directly. Such a situation fre-
quently arises in the simulation of complex designs with
dramatic variations in geometry (e.g. in the microelec-
tronics field) where there is no available Nusselt number
correlation for the specific system available in handbooks
or the literature, thus forcing thermal engineers adopting
the EDA to use the Nusselt number correlation for the
most similar geometry available. If this is not a good
approximation, poor results are inevitable.

Thus the FMA can be used either as a method for the
simulation of natural convection, or at least as a tool for
pre-screening and obtaining an estimate of the Nusselt
number, which can then be used in applying the EDA. In
the next section, we will examine a numerical comparison
between these models.

0.0 5.0x105 1.0x106 1.5x106 2.0x106 2.5x106 3.0x106

0.0

2.0x105

4.0x105

6.0x105

8.0x105

T
ot

al
 s

ur
fa

ce
 h

ea
t f

lu
x 

at
 h

ot
 p

la
te

, (
W

/m
2 )

Rayleigh number, Ras

  Natural convection simulation
   Using a Fictitious  Marangoni number (FMA)
  Effective Thermal Diffusivity  Approach (EDA) 

 

 

FIG. 3: Comparison of the total surface heat flux predictions.

III. RESULTS AND DISCUSSION

In order to demonstrate the efficacy of the proposed
FMA method, a computational fluid dynamics (CFD)
analysis using FLUENT-6.3r was performed on a sim-
ple cavity model (see Fig. 1) consisting of a square box
with a hot bottom wall, a cold top wall and adiabatic side
walls. Gravity acted downwards. The values of physi-
cal properties and operating conditions (e.g. the gravi-
tational acceleration) were adjusted according to the de-
sired Rayleigh number [22]. In this study, the values
were chosen as: ρ = 1000 kg/m3, cp = 11.030 kJ/kgK,
κ = 15.309 W/mK, η = 10−3 kg/ms, β = 10−5,
gi = 6.96× 10−5 m/s2, h = l = s = 1 m.

The case was set with a pressure-based, segregated,
steady solver with Green-Gauss cell-based gradient treat-
ment. The Semi-Implicit Method for Pressure Linked
Equations (SIMPLE) algorithm was selected for the
pressure-velocity coupling with relaxation factors of 0.3
for pressure, 0.7 for momentum and 1 for energy as
the defaults. The pressure was discretized with a
standard Rhie-Chow discretisation scheme [23] and and
Quadratic Upstream Interpolation for Convective Kine-
matics (QUICK) was chosen as the advection scheme for
momentum and energy discretization. The convergence
criteria were set for absolute residuals below 1×10−7 for
all the variables in all cases and the overall imbalance in
the domain was less than 1% for all variables, then con-
vergence of the solution was checked at each time step
by using the scaled residuals. The mesh resolution inde-
pendence was checked running an initial mesh and en-
suring that the convergency criteria of RMS of 10−7, and
an imbalance in the domain was less than 1%, then, a
second simulation was performed using a second mesh
with finer cells throughout the domain, then the sim-
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ulation was run until the convergency criteria and im-
balance in the domain were satisfied. The criteria for
selection of the mesh was that the temperature values
for two consecutive stimulations were less than a 1%,
then the mesh at the previous step was considered ac-
curate enough to capture the result. Finally, time step
independence was achieved using time-steps of 0.5 s. The
temperature difference between the top and bottom walls
was set based on Rayleigh numbers of Ra = 3.28× 104,
6.55×105, 1.31×106, 1.97×106 and 2.62×106. Simula-
tions were performed at each Rayleigh number for three
cases: 1) a real natural convection simulation; 2) using
the proposed FMA; and 3) using the traditional EDA.
For the FMA cases, the gravitational acceleration was
set to zero and Eq. (20) was used for the effective surface
tension gradient with the best fit using C1 = 0.06 and
∂γ∗/∂Ts = 1.2 × 10−8 N/mK. For the EDA cases, the
effective thermal diffusivity was calculated using

κeff = κNu (26)

where the Nusselt number was calculated from [21]

Nu = 0.27Ra
1
4
s (27)

Figs. 2 and 3 show comparisons between the Nusselt
numbers and the total heat fluxes at various channel
Rayleigh numbers for the three cases. It is found that
the proposed FMA-based method can track the real nat-
ural convection simulation far better than the traditional
EDA-based method.

Figs. 4–6 further demonstrate the advantage of the pro-
posed FMA-based method via comparison of the tem-
perature distributions obtained for the convection simu-
lations. It is obvious that the temperature distribution
obtained using the FMA agrees much better with the
real natural convection CFD simulation than that given
by the EDA-based method.

The advantage of the proposed FMA method is due its
use of mass transfer. The FMA method emulates the con-
vective flow via mass transport which is associated with
the momentum balance. This method can easily take into
consideration the effect on mass transfer of the real ge-
ometry of the system. It provides a powerful tool for the
simulation of 2D natural convection in complex geome-
tries such as finned structures, obstruction-type struc-
tures and generally dramatically varying geometries for
which the Nusselt number correlation is unknown. In
contrast, the EDA method relies on knowledge of the
Nusselt number correlation which can vary significantly
with subtle changes in geometry. In particular, when the
real geometry has unusual shapes or variations from stan-
dard shapes, it is hard to find an accurate Nusselt number
correlation in the literature for the specific geometry.

As mentioned before, there is a certain trick behind
the apparently good results given through the use of the
EDA depicted in Fig. 3, a trick that is also a weakness.
The good results are basically due to the introduction
of the Nusselt number correlation, but in a way that is

FIG. 4: Temperature distribution calculated using the pro-
posed FMA-based method.

FIG. 5: Temperature distribution of the real natural convec-
tion CFD simulation.

precisely what we are trying to calculate. So, if we in-
troduce a geometrical variation and re-launch the same
calculations, the weakness of the EDA is exposed and
the difference between it and the proposed FMA is made
manifestly clear.

To illustrate, let us consider the case of the cavity
model shown in Fig. 1 where now the flow is obstructed
by a sphere of radius 0.5 m located at the center of the
cavity. The calculated results for the total surface heat
flux in this new scenario are shown in Fig. 7. It is clear
that the effect on the natural convection of the modi-
fication to the system geometry can be easily and well
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FIG. 6: Temperature distribution calculated using the tradi-
tional EDA-based method.

captured by the FMA method. However, the results ob-
tained from the EDA method are unchanged (and there-
fore now very inaccurate) if the same Nusselt number
correlation as before is used (as has been done here).

If a more appropriate Nusselt number correlation is
known then, of course, it can be used with the EDA
method instead and improved results will follow, but
such an adjustment is only possible if the new correla-
tion is known. Restricting the thermal engineer/designer
to the consideration of geometries for which correlations
are already known will severely limit the range of system
designs can that be analysed and may well exclude the
optimal geometry for the application in question.

IV. CONCLUSIONS

A fictitious Marangoni number method has been pro-
posed and demonstrated for 2D natural convection sim-
ulation. It was shown that the proposed method is much
superior to the traditional effective thermal diffusivity
approach often used in 1D or 2D modeling of natural
convection. The key conclusions are:

• The proposed fictitious Marangoni number method
can realistically simulate convective flow via mass
transport and does not rely on prior knowledge of
any empirical Nusselt number correlations. It can
model the real natural convection flow field accu-
rately.

• The proposed fictitious Marangoni number method
can easily incorporate the effects of the system ge-
ometry (and changes to that geometry) on natural
convection simulation. It eliminates the disadvan-
tage of the traditional effective thermal diffusivity
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FIG. 7: Comparison of the total surface heat flux predictions
for the case of a cavity with a sphere of radius 0.5 m at its
center.

approach which requires knowledge of the Nusselt
number correlations associated with different ge-
ometries. The new method is especially suitable
for application to complex geometries.

• A further advantage of the proposed fictitious
Marangoni number method is the possibility that it
can be applied not just to steady-state convection
simulation but also to transient cases where the sur-
face temperature profile follows the bulk tempera-
ture profile of the fluid and thus the relationship
between these used in the definition of the ficti-
tious Marangoni number is maintained during the
transient. Such a relationship may hold (to a good
approximation) in many transient cases where no
abrupt changes take place. Additional research is
required to investigate the applications and limita-
tions of this novel approach in simulating natural
convection transients.

V. APPENDIX

A. Finned geometries

In the main body of the paper, for the sake of illustra-
tion, it was assumed that there was a simple linear rela-
tionship between the surface temperature gradient ∂sT
and the thermal gradient in the fluid ∂fT (see Eq. (19)).
Although the specific relationship between ∂sT and ∂fT
will depend on the specified geometry, we demonstrate
here in a more rigorous way that for finned geometries
a linear approximation is good enough for preliminary
calculations.
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FIG. 8: Detail of the straight rectangular fin studied.

Let us consider, as an example, the straight rectangu-
lar fin depicted in Fig. 8. Assuming that the Marangoni
stress will act on all the available walls, then from mo-
mentum balance considerations

(2hl + sh)σ′ik = −ρβgi∆T (hsl) (28)

where ∆T = Th − Tc. The fictitious surface tension gra-
dient then gives

∂γ∗
∂Ts

=

[
ls

2l + s

]
ρβgidT

∂Ts
(29)

The only unknown parameter in Eq. (29) is the surface
temperature gradient ∂Ts which can be calculated from
the following considerations. The temperature distribu-
tion profile along the length of a fin of finite length l with
an insulated end can be expressed as [24]

T (z)− Ta = [T0 − Ta]
cosh(m(l − z))

cosh(ml)
(30)

where T0 is the temperature at the base of the fin and Ta
is the ambient temperature, and

m =

√
hfP

κAc
(31)

where hf is the heat transfer coefficient along the fin, P is
the perimeter of the fin and Ac is its base-area. Although
Eq. (30) is valid for a fin of finite length with an insulated
end and in general the end of a fin is not insulated, this
is a good approximation if the heat transfer from the end
of the fin is negligible in comparison to the heat transfer
from the surface of the fin, a common situation since
the area of the end of a fin is frequently negligible in
comparison to the total exposed surface area [24].

Differentiating Eq. (30), the surface temperature gra-
dient along the fin is

∂sT = −[T0 − Ta]m · sinh(m(l − z))
cosh(ml)

(32)

The fin efficiency ηfin is defined as the ratio of the heat
transferred to that transferred for an infinitely long fin of
the same cross-section. For this kind of fin ηfin is given
by [21]

ηfin = tanh(ml) (33)

Thus, in practice, a fin length that corresponds to ml ≈ 1
will transfer 76.2% of the heat that can be transferred
by an infinitely long fin, and offers a good compromise
between heat transfer performance and fin size [21]. So,
assuming ml = 1, Eq. (32) becomes

∂sT = −0.648
∆T

l
sinh

(
1− z

l

)
(34)

where ∆T = T0 − Ta. The function f(z) = sinh(1 − z
l )

is integrable on [0, l]. This an average value f(z) for z in
the interval [0, l] may be defined by:

f(z) =
1

l

∫ l

0

sinh
(

1− z

l

)
dz = 0.543 (35)

Incorporating this value into Eq. (34) yields

∂sT ≈ −0.352
∆T

l
(36)

Inserting Eq. (36) into Eq. (29), we have for our ficti-
tious surface gradient

∂γ∗
∂Ts

= 2.85C1

[
l2s

2l + s

]
ρβgi (37)

where a constant C1 has been introduced to take into
account the error introduced by the use of an average
value from Eq. (34).

NOMENCLATURE

Ac = fin base-area
C1 = constant
cp = specific heat capacity
D = diffusion coefficient
gi = gravitational acceleration
h = channel or plate length
hf = heat transfer coefficient
l = plate width or fin length
m = fin temperature profile parameter
Ma = Marangoni number
n = exponent
Nu = Nusselt number
P = fin perimeter
Ra = Rayleigh number
s = plate spacing
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T = temperature
v = velocity
w = mass flow per unit width
z = length coordinate

Greek symbols
α = thermal diffusivity
β = thermal expansion coefficient
γ∗ = fictitious surface tension
κ = thermal conductivity
ρ = density
σ = surface tension
η = dynamic viscosity
ηfin = fin efficiency

Subscripts
a = ambient value
c = cold
eff = effective value
f = fluid
h = hot
i, j, k = coordinate directions
s = surface
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[21] Y.A. Çengel, A.J. Ghajar, Heat and Mass Transfer,
Fundamentals & Applications, 4th Edition, McGraw
Hill, New York (2007)

[22] FLUENT 6.3 Tutorial Guide, Chapter 5: Modeling
Radiation and Natural Convection, Fluent Inc., Lebanon,
New Hampshire (2006)

[23] C.M. Rhie, W.L. Chow, Numerical study of the tur-
bulent flow past an airfoil with trailing edge sep-
aration. AIAA J., 21 (11) (1983), pp. 1525–1532

[24] M. Thirumaleshwar, Fundamentals of Heat and
Mass Transfer, Pearson Education India, New Delhi,
India (2006)


