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Using high resolution imaging and dye studies, we investigate experimentally the mixing
of a tracer by the eddies within a two-dimensional turbulent buoyant plume. Instanta-
neously, the plume consists of a series of eddies, and at each point along the centreline
of the plume, the along-plume speed of the leading edge of the eddies, we ≈ 1.3f1/3,
while the product of the length-scale, A, and frequency ω of the eddies ωA ≈ 0.15f1/3.
The circulation and flow associated with the eddies leads to longitudinal mixing relative
to the mean flow. To illustrate this mixing, we analyse the evolution of the horizontally
averaged dye front produced by adding a constant flux of dye to a steady plume for
times t > 0. We show that the centre of mass of the horizontally averaged dye front has
along-plume speed ≈ 1.04f1/3. This is consistent with the predictions of a time averaged
model for the evolution of the horizontally averaged mass, momentum and buoyancy flux
in the plume. The new data also show that the longitudinal spreading of the horizontally
averaged dye front can be described in terms of a dispersivity ≈ 0.02f1/3z, where z is
the vertical distance below the source . This model of longitudinal mixing enables cal-
culation of the residence time distribution of material in the plume, which may be key
in modelling the products of a reaction in which the reaction time is comparable to the
travel time in the plume.
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1. Introduction

Mixing and shear dispersion in turbulent flows is important in many natural and
industrial processes ( Pope 2000 and Prandtl 1954 ). Amongst the many different types
of flow, jets and plumes, which arise from localised sources and which are driven by
momentum or buoyancy are especially intriguing ( Turner 1979 and Carazzo et al. 2008 ),
with applications for modelling volcanic plumes in the atmosphere, hydrothermal plumes
in the ocean ( Woods 2010 ), effluent spreading in shallow estuaries and river outflows
into shallow lakes ( Daoyi & Jirka 1998 and Dracos et al. 1992 ). In the latter cases, the
flow may be confined leading to development of an effectively two-dimensional flow. Daoyi
& Jirka (1998) and Dracos et al. (1992) have described the motion of two dimensional
jets both experimentally and theoretically, using integral modelling techniques, and have
applied this modelling to understand the processes of formation and growth of large eddies
in river outflows and the ensuing transport of pollutants in shallow lake environments.
As well as modelling the mean properties of the flow, it is of interest to quantify the
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longitudinal dispersion in such flows, especially if they involve reactions or if chemicals
are added to the flow and then become diluted through mixing ( Ai et al. 2006 and
Chen & Jirka 1999 ). Recent experiments measuring the longitudinal dispersion within
two-dimensional jets ( Landel et al. 2012a ) suggest that the local turbulent diffusivity
is proportional to the product of the local size and speed of the eddies. By adopting
this model, accurate predictions of the longitudinal mixing of a dye front, produced by
adding a constant flux of dye to an established jet, can be obtained.
In this work we explore the complementary problem of quantifying the mixing in a

two-dimensional turbulent plume, driven by a buoyancy flux, f . In contrast to a jet, the
buoyancy flux causes the momentum flux to increase with distance from the source. We
therefore characterise the eddies in such two-dimensional plumes, and explore how they
influence the longitudinal dispersion in the flow. Although there have been a number of
experiments which explore the dynamics of three-dimensional line plumes produced by a
uniform line source of buoyancy, in which the scale of the line source exceeds the vertical
scale of the flow ( Paillat & Kaminski 2014 and Bremer & Hunt 2014 ), the dynamics of
a (confined) two-dimensional turbulent plume is different as the eddies can only grow in
the along and cross plume direction (figure 1).
First we describe our experimental system, and present some measurements of both

the plume width as a function of distance from the source and the speed of the centre of
mass of a dye front. We measure the speed of the leading edge of the eddies in the along-
plume direction and explore the variation with position of the product of the frequency
and size of the eddies. We use the data to motivate a phenomenological model of the
longitudinal dispersion produced by the eddies. We compare predictions of our model
with the dispersion of the dye front in a series of experiments in which a steady flux of
dye was added to the source of a steady plume, for t > 0. We conclude with a discussion
of the implications of our work for calculating the residence time distribution of material
in a two-dimensional plume, which is key for understanding the rate of dilution by a
plume or reactions in which the reaction time is comparable to or longer than the mean
travel time through the plume.

2. Experimental Observations

We have conducted a series of experiments to measure the mixing produced by two-
dimensional turbulent buoyant plumes, in which a finite flux of aqueous saline solution is
supplied to a tank of dimensions 70 x 70 x 1 cm from a localised source of cross-section
area 0.2 cm2 (D0 = 0.5 cm) placed in the centre of the top side of the tank. The tank was
open on the sides and base and was immersed in a larger reservoir tank, so that plume
fluid could leave the tank on reaching the base, and ambient fluid could enter the sides
as fluid was entrained by the plume. We carried out a systematic series of experiments
in which the aqueous solution which supplied the plume had flow rates in the range
1-20 cc/s and salinities which ranged from 1-17 wt % (Table 1). This led to flows with
Reynolds numbers of order 100-2000. As shown by Landel et al. (2012b) for such flow
rates, the frictional stress on the walls of the tank is small over the vertical extent of the
plume, and so to leading order the frictional effects may be neglected.
The tank was backlit by an electroluminescent sheet (W&Co LED panel 100 x 60 cm)

and the flow was recorded by a 3Hz series of photographs using a computer controlled
Canon D90 camera in an otherwise dark room. In each experiment, the plume fluid
was dyed with a uniform initial intensity of red food dye (3g/l). Prior to the actual
experiment, a series of calibration experiments were carried out in which mixtures of the
aqueous saline solution and fresh water were photographed. These were used to generate a
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Exp. s0 q0 f Lj Ri Re Exp. s0 q0 f Lj Ri Re
(wt%) (cm2/s) (cm3/s3) (cm) (wt%) (cm2/s) (cm3/s3) (cm)

1 1 1 6.9 0.55 1.7 99.8 18 4.8 9.7 327.4 3.95 0.1 998
2 1 2 13.9 1.35 0.4 199.6 19 4.8 14.5 491.1 6.8 0.0 1497
3 1 3 20.8 2.35 0.2 299.4 20 9.1 0.9 60.8 0.1 20.0 99.8
4 1 5 34.7 4.65 0.1 499 21 9.1 1.9 121.6 0.3 4.5 199.6
5 1 9.9 69.4 11.7 0.0 998 22 9.1 2.8 182.3 0.5 2.1 299.4
6 1 14.9 104.1 20.1 0.0 1497 23 9.1 4.7 303.9 1 0.7 499
7 1 19.9 138.8 29.55 0.0 1996 24 9.1 4.7 303.9 1 0.7 499
8 2.9 1 20 0.25 5.1 99.8 25 9.1 9.4 607.8 2.45 0.2 998
9 2.9 2 39.9 0.65 1.3 199.6 26 9.1 14.1 911.6 4.25 0.1 1497
10 2.9 2.9 59.9 1.15 0.6 299.4 27 9.1 18.8 1215.5 6.2 0.0 1996
11 2.9 4.9 99.8 2.25 0.2 499 28 17 0.9 110 0.05 38.2 99.8
12 2.9 9.8 199.7 5.65 0.1 998 29 17 1.8 220 0.15 9.5 199.6
13 2.9 14.7 299.5 9.7 0.0 1497 30 17 2.7 330 0.3 4.2 299.4
14 4.8 1 32.7 0.2 8.5 99.8 31 17 4.4 550 0.6 1.6 499
15 4.8 1.9 65.5 0.45 2.3 199.6 32 17 8.9 1099.9 1.5 0.4 998
16 4.8 2.9 98.2 0.8 1.0 299.4 33 17 13.3 1649.9 2.55 0.2 1497
17 4.8 4.8 163.7 1.55 0.4 499 34 17 17.8 2199.9 3.75 0.1 1996

Table 1. A summary of the experiments carried out specifying the initial salt concentration
(s0), the initial volume and specific buoyancy fluxes per unit length (q0 and f), the jet length
(Lj) and the source Reynolds and Richardson numbers.
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Figure 1. Series of five images illustrating the structure of a two dimensional plume, and its
evolution with time, using a false colour mapping of concentration to highlight the eddies. As
the plume advances from the source, eddies develop which mix with ambient fluid, leading to
dilution of the plume fluid. In this experiment s0 = 17wt% and q0 = 4.4[cm2/s]
.

calibration curve relating the light intensity recorded by the camera with the dye content
and hence the salinity of the fluid. With this calibration, we were able to measure the
total salinity of the plume fluid in the tank, and during the course of each experiment
this was within 4-5 % of the known supply of salt in the aqueous saline solution.
In figure 1 we present a series of images illustrating the detailed evolving structure of

the plume. In this, and all subsequent images we show the plume fluid rising from the
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bottom to the top of the image, as would be the case for a positively buoyant flow. This
is for consistency and to help in interpretation with the existing literature (cf Morton
et al. 1956 and Papanicolaou & List 1988 ). In actual practice the flow was of negatively
buoyant aqueous saline solution, and descended to the base of the tank, and so the images
are shown upside-down. It may be seen that there are a series of eddies which migrate
forward with the flow, growing and mixing as they advance and engulf ambient fluid. In
developing a picture of the flow it is useful to consider the time-averaged steady motion
in which we assume the eddies entrain ambient fluid at a rate proportional to the mean
speed of the eddies ( Morton et al. 1956 ). If the ensemble time averaged steady plume has
speed w(x, z) and concentration c(x, z) where x is the horizontal position in the plume
and z the vertical distance from the source, then we can write the volume flux, specific
momentum flux and specific buoyancy flux, per unit distance in the y direction as

q = w̄b̄ =

∫ ∞

−∞
wdx ; m = w̄2b̄ =

∫ ∞

−∞
w2dx ; f = ḡw̄b̄ =

∫ ∞

−∞
wg′dx (1)

where w is the vertical speed, x is the location in the horizontal direction relative to the
centerline of the plume, b̄ is the effective width of the flow, w̄ the horizontally averaged
vertical speed, g′ is the local buoyancy and ḡ the horizontally averaged buoyancy. The
local buoyancy g′ is related to concentration s by the relation g′ = (s/so)g

′
o where g′o,

the buoyancy of the source fluid, is given by g′0 = (ρj − ρe)/ρe, with ρj and ρe being
the densities of the aqueous saline solution with concentration so and the environmental
fluid. g is the acceleration of gravity and so is the concentration of the source fluid. If we
assume the entrainment velocity is proportional to the mean vertical speed, εw̄, then the
conservation of mass, momentum and buoyancy take the form (cf. Paillat & Kaminski
2014 )

dq

dz
= 2εw̄ ; m

dm

dz
= kqf ; f = const = f0 (2)

where f0 is the source specific buoyancy flux and k is a constant which depends on
the horizontal structure of the ensemble time averaged velocity and buoyancy. These
equations have self-similar solution

w̄ =

(
kf

2ε

)1/3

b = 2εz (3)

with the buoyancy flux f being a constant in a uniform environment (cf Morton et al.
1956; Paillat & Kaminski 2014 ). This solution applies once the buoyancy driven mo-

mentum flux, as given by 2εz (kf/2ε)
2/3

exceeds the initial momentum flux mo: this
corresponds to points z >>Lj , where the jet length Lj = mo/(2ϵ)

1/3(kf)2/3. For most of
the experiments tabulated in Table 1, we estimate that Lj has value smaller than 15cm,
while the tank is 70 cm deep. Beyond this adjustment region, we expect the ensemble
averaged flow speed to be constant, and the plume width to increase linearly with depth.
In fact, in addition to the jet length, in our experimental system, the diameter of the
source is one-half the width of the tank, and so in the immediate vicinity of the source,
the plume is three dimensional; however, within 2-3 cm it evolves into a two-dimensional
plume following rapid entrainment and mixing.
Analysis of the ensemble averaged concentration of the plume, which is found by av-

eraging over 150 frames from a quasi-steady period of flow corresponding to about 50 s
(figure 2c), shows that the horizontal distance, d(z), over which the concentration falls
by a factor e scales linearly with height above the source, independently of the buoyancy
flux, according to the relation d = λz where λ = 0.142 ± 0.016 (figure 2d). This result
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is consistent with values obtained in previous 3D line source plumes studies: Kotsovinos
& List (1977) found λ = 0.13, while Yih (1977) and Paillat & Kaminski (2014) report
λ = 0.15.
We now explore the role of the eddies in causing the mixing and dispersion within this

flow. The nature of the mixing may be seen in the series of photographs of a steady plume
shown in figure 3 in which a steady flux of red dye is injected with the source fluid for
t > 0. The red dye is carried forward with the eddies in an irregular fashion, producing
a dispersed leading zone of dyed fluid, followed by a more uniformly dyed plume, once
the initial, spreading front of dye has passed.
We have measured the horizontal integral of the concentration of the dye in the plume

as a function of distance z from the source, at a series of times following the introduction
of the dye, for 15 of the experiments listed in Table 1 (figure 4a). We have then rescaled the
vertical axis by time, z/f1/3t, since we expect the speed of the plume to be a constant.
Figure 4b illustrates the rescaled profiles. The figure suggests that, beyond the flow
adjustment zone near the source, there is a region in which the horizontal integral of the
concentration is nearly uniform, noting that the structure of the flow involves a series
of eddies which lead to fluctuations of the concentration relative to this uniform value.
It also shows that there is a frontal dispersion region in which the horizontally averaged
concentration of dye falls back to zero. The rescaled figure 4b suggests that the length
of this dispersed front also scales with f1/3t. We have measured the ensemble average
position of the centre of mass of the dispersed front for the 15 experiments, and find
that the centre of mass appears to advance with mean speed 1.04f1/3. We describe the
ensemble average of the profiles of the horizontally integrated concentration as a function
of the scaled height later in the paper, when modelling the dispersion (Fig 7a), but note
here that this mean advection speed is consistent with the horizontally averaged model
of the time-averaged plume (equation 3).
In order to model the dispersion of the dye, relative to the front, we first characterise

the properties of the eddies. We have tracked the speed of the front of the eddies as
they advance through the tank by constructing a vertical time series along a line close
to the centreline (x = 3D0) of the plume (figure 5a). This line is shown in false colour to
enhance the contrast between the background and the plume fluid which is dyed red at
source. The image illustrates that there is a regular series of fronts which migrate through
the tank, and that as each front migrates, the colour contrast across the front decreases;
these correspond to the leading edge of successive eddies, which mix and become diluted
with ambient fluid. The speed of these fronts can be found by using a Hough transform
which estimates the gradient of the lines. This suggests that the eddies attain a nearly
constant speed within 10 cm of the source, and then advance through the next 50 cm
of the tank with a near constant speed. The procedure has been repeated for a series
of experiments with different buoyancy flux f (Table 1), and in figure 5b we show the
measured speed of the front of the plume (we) as a function of the buoyancy flux at the
source, illustrating that the data collapse to the relation

we = (1.3±0.1)f1/3 (4)

This value is larger than the speed of the centre of mass of the dye front, as seen in
figure 4 and 7a. This provides the ability for the eddies to disperse the dye longitudinally
relative to the centre of mass as they periodically carry dyed fluid beyond the location of
the centre of mass, and then mix this dye across the plume. We explore this in the next
section.
We now characterise the horizontal fluctuations in the position of the eddies. In figure

6a, we illustrate a time series showing the variation with time of the concentration of the
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Figure 2. (a) Photograph of the instantaneous structure of a typical two dimensional plume,
in steady state; (b) Location of the two bounding lines defined as the points at which the
concentration falls to value 1/e of the maximum concentration on each horizontal line; the
distance between these lines is denoted A∗; (c) Time average of 240 frames showing the time
averaged concentration profile. (d) Horizontal distance from the centreline at which the time
averaged concentration has a value 1/e times the time-averaged centreline concentration as a
function of the distance from the source (d). Also shown is a characteristic cross-plume length
scale (A). At each height, this scale is determined by first measuring the horizontal distance
between the two points at that height for which the concentration equals 1/e times the maximum
concentration at that level, A∗ (panel b) and then finding a time average of these values. Fig
2(a), 2(b) and 2(c) shows data for the case q0 = 4.4[cm2/s] s0 = 17wt%.
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Figure 3. Photograph of an evolving two-dimensional line plume, illustrating how red dye,
injected into the established steady plume evolves with time. Pictures are shown for the case
q0 = 2.7[cm2/s] s0 = 17wt%.

fluid along a horizontal line through the plume at a distance 42 cm below the source. This
false colour image illustrates how, as the plume evolves, the location of successive eddies
passing this point oscillates to the left (x > 0) and right (x < 0) of the source. Using
plots, such as figure 6a, it was possible to measure the frequency of the passage of the
vortices (ω), by measuring the frequency of the horizontal oscillation of the plume around
the centerline. On each horizontal line in the plume, we also measured the horizontal



Dispersion in two-dimensional turbulent plumes 7

0 0.5 1 1.5
0

20

40

60

80

100

120

C/C̄0

z
/
D

0

 

 

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C/C̄0

η

 

 t=1.3
t=2.3
t=3.3
t=4.3
t=5.3

t=1.3
t=2.3
t=3.3
t=4.3
t=5.3

Figure 4. (a) Experimental data showing the horizontally integrated concentration of dye in
the plume as a function of z at five times after the start of steady injection of red dye into
the plume at t = 0. (b) Integral of the concentration at different time steps as a function of

η = z/(t ∗ f1/3); q0 = 4.4[cm2/s] s0 = 17 wt%
.

distance A∗ between the two points where the concentration of the plume has decreased
to a fraction 1/e of the maximum concentration on that horizontal line (see figure 2a,
b), at a specific time instant. We then find a time-average of A∗, defined as A(z), for
each value of the vertical distance z from the source. Figure 2d shows the variation of
A as a function of z. A is considerably smaller than d, the width of the ensemble time
averaged flow (figure 2d). This reflects the difference between the actual dilution of the
fluid, as measured by A, and the width of the time-averaged concentration field d, which
captures the combined effect of the dilution plus the horizontal oscillation of the position
of the flow. If the horizontal variation of concentration, relative to the centre of the
plume, and the position of the centre of the plume relative to the centre of the tank,
both follow a normal distribution, with variance σA and σo then the variance of the joint
distribution, σd is the sum of the variance of each distribution, σd = σo + σA, with the
e-folding distances given by

√
σA, for the actual dilution of the fluid, and

√
σd for the

time-averaged concentration field. Given the e-folding distances d ∼ 0.28z and A ∼ 0.14z
(figure 2d) it follows that σo ≈ 3σA, so the variance in concentration associated with the
oscillations is about 3 times that of the actual dilution.
Since the plume flow is essentially composed of the eddies, we expect that the frequency

of the eddies passing this horizontal level, ω, times their characteristic length scale, A,
should scale with the mean speed of the flow. Since the speed is a constant proportional
to f1/3 (figure 4b, 5a), we anticipate that ωA will be independent of distance from the
source. We have also measured the eddy frequency, ω, at each horizontal surface in the
plume, and combining this with the measurement of A, in figure 6b we illustrate the value
of ωA/f1/3 as a function of the distance from the source. Similar data have been collected
for experiments with different buoyancy flux (Table 1) and suggest that, beyond a flow
adjustment zone which extends over a region of about 15 cm ahead of the source, the
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Figure 5. (a) Time series of the pixels along a vertical line positioned at x = 3 ∗ D0 from
the centerline of the plume, shown using false colour, to illustrate the passage of the front of
successive eddies. In this experiment, q0 = 4.4[cm2/s] and s0 = 17wt%. (b) Variation of the speed
of the front of the plume (we) for a large number of different buoyancy fluxes, as determined

from figures such as 5a for x=0. The data collapse to the simple relation w1(0, z) ≈ 1.30f1/3.
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Figure 6. (a) Time series of a horizontal line in the plume (z = 42[cm] q0 = 4.4[cm2/s]
s0 = 17wt%), using false colour to show how the stream of eddies pass by this line, with
successive eddies migrating left or right relative to the source. (b) Time average of the product
of frequency and the length-scale of the eddies as a function of distance from the source, z. Data
from one experiment is shown illustrating how the data collapse to a common limit away from
the source (q0 = 4.4[cm2/s] s0 = 17wt%).

quantity ωA/f1/3 ∼ 0.16± 0.01, This result is also consistent with dimensional analysis.
From the data presented in figures 5 and 6, we can now envisage how the eddies lead to
the longitudinal dispersion of the dye front seen in figures 3 and 4.

3. Model of the Dispersive Mixing

We now model the influence of the dispersive mixing on the horizontal integral of
concentration along the plume by assuming that the mixing is produced by interaction
of the time-dependent eddies with the mean flow. Using the results relating to the speed,
frequency and length-scale of the eddies, and adopting concepts from classical models of
mixing length theory ( Prandtl 1925 ) and turbulent dispersion ( Taylor 1954 ) we expect
that over time scales long compared to the eddy turnover time, the eddies lead to an
effective dispersivity which scales as zf1/3, where z is the distance downstream. We can
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then hypothesize that the horizontal-integral C(z, t) =
∫∞
−∞ c(x, z, t)dx of the ensemble-

averaged concentration evolves according to the phenomenological conservation law

∂C

∂t
+ αf1/3 ∂C

∂z
=

∂

∂z

(
βzf1/3 ∂C

∂z

)
(5)

where β is a constant of proportionality for the turbulent dispersion and α is the constant
which determines the mean speed of the dye front. By comparing the solutions of this
equation with our experimental data (figure 4), we now estimate values for α and β.

Equation (5) can be used to describe the advance of a front of dye within a steady
plume of buoyancy flux f . If there is a flux of dye Qc released into the plume at z = 0
for t > 0, then the horizontally averaged concentration may be written as

C(z, t) =
Qc

f1/3
H

(
z

f1/3t

)
(6)

where η = z
f1/3t

and H satisfies the relation

−η
dH
dη

+ α
dH
dη

= β
d

dη

(
η
dH
dη

)
(7)

and the expression for the global conservation of dye∫ ∞

0

H(η)dη = 1 (8)

This leads to the solution

H(η) =

∫∞
η

ζ(α/β)−1 exp
(
− ζ

β

)
dζ∫∞

o
ζα/β exp

(
− ζ

β

)
dζ

=
Γ
(

α
β ,

η
β

)
Γ
(

α
β + 1, 0

) (9)

where we require that H → 0 as η → ∞ and Γ(a, b) is the incomplete Gamma function.

We have compared the solution (9) for the horizontally integrated concentration with
our experimental data in which a steady flux of dye is added to an established plume
at t = 0. As the dye spreads downstream, we have measured the horizontal integral of
concentration as a function of the scaled distance z/f1/3t (figure 4; Table 1). By taking
the ensemble average of 15 experiments, we estimate that the best fit model (equation
9) corresponds to the parameters α = 1.04 ± 0.11 and β = (2.01 ± 0.25) ∗ 10−2 (figure
7a), where αf1/3 corresponds to the speed of the centre of mass of the front, and βf1/3z
the dispersivity relative to this point.

Using this model, we can also find the residence time distribution of a finite pulse of
dye added to the system at t = 0 (Danckwerts (1953)) ; the residence time distribution
provides information about the variation with time of the horizontally averaged concen-
tration of the tracer passing a horizontal plane above the source. Such information can
be key for modelling the products of chemical reactions in the plume produced, especially
when the reaction time is comparable to the travel time through the plume, so that the
distribution of travel times lead to different degrees of partial reaction. With a point
release of tracer of finite mass Vc (per unit distance in the y direction), the horizontal
integral of concentration follows a solution of the form

C(z, t) =

(
Vc

f1/3t

)
G(η) (10)
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Figure 7. (a) Mean integral of the concentration obtained by averaging the mean integral

concentrations of 15 experiments as a function of z/(tf1/3), the position of the center of mass
has been identified with a blue cross. (b) Variation of the horizontally averaged concentration
as a function of time, passing the point zo = 1, which results from an instantaneous release of
a finite mass of tracer at z = 0, as obtained from equation (13).

where the global conservation of mass requires∫ ∞

0

G(η)dη = 1 (11)

and G → 0 as η → 0. With these conditions, G(η) satisfies the equation

− d

dη
(ηG) + α

d

dη
G = β

d

dη

(
η
d

dη
G
)

(12)

and has solution

G(η) =
[
ηα/β exp (−η/β)

][∫∞
0

ηα/β exp (−η/β) dη
] =

[
ηα/β exp (−η/β)

]
β

α
β+1Γ

(
α
β + 1

) (13)

If an observer at position zo records the concentration with time, then the distribu-
tion of horizontally integrated concentration passing zo has time dependence C(zo, t) as
illustrated in figure 7b as a function of the dimensionless time t̂ = tf1/3/z0. The mean
time, τ and the variance in time, σ of the concentration pulse passing zo are given by

τ =

∫∞
0

tC(zo, t)dt∫∞
0

C(zo, t)dt
; σ =

∫∞
0

t2C(zo, t)dt∫∞
0

C(zo, t)dt
− τ2 (14)

Using the values for α and β based on our experimental data, then we find that the
dimensionless mean residence time is approximately 1.0 and the dimensionless standard
deviation

√
σ ∼ 0.15τ . In dimensional variables, the mean residence time and standard

deviation in residence time at a point zo then have values zo/f
1/3 and 0.15zo/f

1/3.
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4. Discussion

In this paper we have investigated mixing within a two dimensional turbulent plume
confined between two parallel plates. The flow is controlled by the dynamics of large ed-
dies which form in the plume and migrate downstream, stirring and mixing ambient fluid
into the plume. We have explored the turbulent dispersion produced by these meandering
eddies. By parameterising the mixing of the horizontally averaged concentration of tracer
in terms of a longitudinal dispersion coefficient, which depends on the length scale and
speed in the flow, 0.02f1/3z we have been able to formulate a model for the mixing. This
has been tested with experimental data for the horizontal integral of concentration, and
in the case that a steady flux of dye is added to a steady plume at t = 0, the advance of
the dispersing dye front is well modelled by our phenomological relation.
In developing models of reacting plumes in which the reactions may be passive, or

may in fact generate buoyancy, for example through the release of thermal energy or
production of small bubbles or particulate, quantification of the longitudinal mixing may
be key. Equation (15) leads to a prediction of the residence time distribution of a passive
tracer carried by the plume: the model shows that the standard deviation in the residence
time may be a fraction 0.15 of the mean.

REFERENCES

Ai, Jiaojian, Law, Adrian Wing-Keung & Yu, S. C. M. 2006 On Boussinesq and non-
Boussinesq starting forced plumes. Journal of Fluid Mechanics 558, 357.

Bremer, T S Van Den & Hunt, G R 2014 Two-dimensional planar plumes and fountains.
Journal of Fluid Mechanics 750, 210–244.

Carazzo, G., Kaminski, E. & Tait, S. 2008 On the rise of turbulent plumes: Quantitative
effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra
terrestrial explosive volcanism. Journal of Geophysical Research 113 (B9), B09201.

Chen, By Daoyi & Jirka, Gerhard H 1999 LIF study of plane jet bounded in shallow water
layer. Journal of Hydraulic Engineering 125 (August), 817–826.

Danckwerts, P. V. 1953 Continuous Flow Systems, Distribution of Residence Times. Chemical
Engineering Science 2 (1).

Daoyi, Chen & Jirka, Gerhard H. 1998 Linear stability analysis of turbulent mixing layers
and jets in shallow water layers. Journal of Hydraulic Research 36 (5), 815–830.

Dracos, T, Giger, M & Jirka, G H 1992 Plane turbulent jets in a bounded fluid layer.
Journal of Fluid Mechanics 241, 587–614.

Kotsovinos, Nikolas E. & List, E J 1977 Plane turbulent buoyant jets . Part 1 . Integral
properties. Journal of Fluid Mechanics 81 (1), 25–44.

Landel, Julien R., Caulfield, C. P. & Woods, Andrew W. 2012a Meandering due to
large eddies and the statistically self-similar dynamics of quasi-two-dimensional jets.

Landel, Julien R., Caulfield, C. P. & Woods, Andrew W. 2012b Streamwise dispersion
and mixing in quasi-two-dimensional steady turbulent jets.

Morton, B. R., Taylor, G. & Turner, J. S. 1956 Turbulent Gravitational Convection from
Maintained and Instantaneous Sources. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 234 (1196), 1–23.

Paillat, S. & Kaminski, E. 2014 Entrainment in plane turbulent pure plumes. Journal of
Fluid Mechanics 755, R2.

Papanicolaou, Panos N. & List, E. John 1988 Investigations of round vertical turbulent
buoyant jets. Journal of Fluid Mechanics 195 (-1), 341.

Pope, Stephen B. 2000 Turbulent flows. Cambridge University Press.
Prandtl, Ludwig 1925 Bericht uber Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift

fur angewandte Mathematik und Mechanik 5 (2).
Prandtl, Ludwig 1954 Essentials of fluid dynamics. Blackie, London.
Taylor, G 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond.

223, 446–468;.



12 Stefano Rocco and Andrew W. Woods

Turner, John Stewart 1979 Buoyancy Effects in Fluids. Cambridge University Press.
Woods, Andrew W. 2010 Turbulent Plumes in Nature. Annual Review of Fluid Mechanics

42 (1), 391–412.
Yih, Chia-Shun 1977 Turbulent Buoyant Plumes. Physics of Fluids 20 (8).


