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Abstract 

Much of our knowledge of microbial life is only a description of average population 

behaviours, but modern technologies provide a more inclusive view and reveal that microbes 

also have individuality. It is now acknowledged that isogenic cell-to-cell heterogeneity is 

common across organisms and across different biological processes. This heterogeneity can 

be regulated and functional, rather than just reflecting tolerance to noisy biochemistry. Here, 

we review recent advances in our understanding of microbial heterogeneity, with an emphasis 

on the pervasiveness of heterogeneity, the mechanisms that sustain it, and how heterogeneity 

enables collective function.  

 

Introduction 

Colonies of microbes exhibit a large degree of physiological heterogeneity at the level of 

individual cells. One fundamental and long acknowledged type of heterogeneity is the 

accumulation of genetic mutations by subgroups in the colony [1]. Another, perhaps more 
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subtle, type of heterogeneity is the phenotypic cell-to-cell variation observed even in small 

isogenic colonies (i.e., when the whole population has the same genotype) and in spatially 

homogeneous environments [2] (Figure 1A,B).  

 

Technologies that deliver individual cell resolution data, such as time-lapse microscopy, flow 

cytometry, microfluidics and single-cell RNA-seq, are being increasingly used to precisely 

quantify cell-to-cell heterogeneity in isogenic populations [3]. At the same time, theoreticians 

have developed models of this heterogeneity to understand the principles underlying it [4]. It 

is now apparent that single-cell heterogeneity is a widespread phenomenon, spanning many 

microbial taxa. Single-cell heterogeneity can manifest itself in processes as diverse as 

developmental programmes [5,6], metabolism [7], or the partitioning of cytoplasmic content 

at cell division [8,9]. 

 

In this review we examine recent advances in characterising phenotypic heterogeneity, the 

regulatory mechanisms that generate it, and its functionality. Phenotypic heterogeneity may 

exist only as a consequence of the stochasticity inherent in biochemical interactions, or may 

be an adaptive trait. We must therefore test whether heterogeneity at the single-cell level 

provides functionality to the population (Figure 1). Only then can we properly assess 

phenotypic heterogeneity as a relevant microbial decision-making strategy. 

 

Phenotypic heterogeneity is a widespread phenomenon 

Cell-to-cell heterogeneity often reflects variation in the abundance of intracellular proteins. 

This variation can be inherited, and can be amplified by the biochemical circuitry or the cell 
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cycle progression. Is cell-to-cell variation in protein abundance regulated? High-throughput 

measurements reveal disparities in how noisy some genes are relative to others within the 

same organism [10-12]. These disparities are not arbitrary because essential genes are 

typically less noisy than genes that are associated with stress or certain metabolic functions 

[10,11,13]. This pattern suggests that noise can be harnessed to drive cell-to-cell 

heterogeneity, and that different growth conditions will promote different levels of 

heterogeneity. 

 

Stressful conditions can activate cellular responses that are heterogeneous at the single-cell 

level. In budding yeast, Msn2 is a general stress response factor, whose activity is regulated 

through a phosphorylation-dephosphorylation cycle [14]. When dephosphorylated, Msn2 

translocates from the cytoplasm to the nucleus and activates transcription of a number of 

stress response genes. Glucose limitation induces stochastic oscillations in Msn2 

translocation, which are desynchronised at the single-cell level (Figure 2A-C). The frequency 

of the oscillations is determined by the severity of the stress [15]. Interestingly, Msn2 shows 

different types of dynamics when induced by other types of stress. Under osmotic stress, for 

example, there is a single pulse of Msn2 translocation to the nucleus. There is little cell-to-

cell heterogeneity in the timing and amplitude of this single peak of activity (Figure 2D-F).  

Different stress inputs have also been observed to generate different single-cell activation 

dynamics in general stress regulators in Bacillus subtilis [16,17] and mammals [18]. Stress 

specific activation dynamics may have evolved  to allow the cell to choose the appropriate 

single-cell response (Figure 2) while maintaining a general stress regulator [14,19].  
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Some microbes respond to changing conditions by activating developmental decisions 

heterogeneously among the population, as is the case with the soil bacterium B. subtilis. 

Under stress, most cells in a colony activate a sporulation programme driven by the 

transcription factor Spo0A [5,20]. However, the transcription factor ComK can drive a small 

number of cells to activate a state of competence instead, causing the cells to uptake 

extracellular DNA. Given that spores are prevented from becoming competent, suggesting 

cells must choose one programme or the other, how is this decision made?  Kuchina et al. [5] 

followed the activity of both transcription factors using two fluorescent reporters. 

Surprisingly, they found that the sporulation and competence programmes may both progress 

independently of each other within a cell until a decision-point is reached. An alternative 

model has also been proposed where Spo0A can promote and repress ComK, resulting in a 

limited time window during which competence can be activated [20]. In both cases, the 

outcome of the competition is based on the relative activity of Spo0A and ComK [5,20]. 

Competence is effectively shut down only after sporulation emerges as the winner. Although 

competence is rare, the probability of an individual cell becoming competent is a 

stochastically regulated trait that becomes apparent at the population level. 

 

In bacteria, the best-known type of regulated cellular heterogeneity is the phenomenon of 

persistence. When exposed to a severe stress, such as antibiotics, most cells in a colony 

perish. However, a small fraction of cells can be unaffected and resume proliferation at a later 

stage [21,22]. Survival of these cells has been linked to a transient state of slow or arrested 

growth [21,23-25]. This phenomenon is different to antibiotic resistance, where cells express 

factors which directly inhibit the action of antibiotics. In some cases, the transition to a state 

of slow growth is a regulated, rather than passive, process [25-27]. This is likely to be a 

general characteristic of bacterial persistence, but very different underlying principles may be 
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involved, ranging from stochastic pulsing of regulatory enzymes [26] to a toxin-antitoxin 

competition controlled by auto-regulatory feedback [25]. 

 

The mechanisms of phenotypic heterogeneity are diverse 

Heterogeneity can be mechanistically driven by noisy gene circuits, such as stochastic pulses 

in the activity of regulatory factors [19]. These pulses have been shown to allow cells to 

alternate repeatedly between active and inactive states of  key cellular processes [15,16,19] 

(Figure 3A). If stochastic pulses are not coordinated across cells, two distinct subpopulations 

can coexist at any given time, and there is a dynamic turnover of cells from one group to the 

other. For many of these circuits the source of the noise has not been determined. One 

potential source of heterogeneity, transcriptional noise, has been well-studied in theory and 

experiment [28-30]. There are multiple examples of gene circuits that can use noise to 

generate alternative transcriptional states [4]. Bistable circuits are often generated by positive 

feedbacks (such as the mutual activation or inhibition between two genes), and underlie many 

mechanisms that can maintain heterogeneity (Figure 4A-C) [31-33]. In bistable circuits, a 

threshold crossing input will fix the system into one state (Figure 4B,C). This carries risks 

(e.g., the energetic cost of degrading the memory of the last transition), and so organisms 

may favour mechanisms which allow the transient entry into an alternative transcriptional 

state, such as excitable circuits (Figure 4D). Excitable circuits undergo a stereotyped pulse of 

activation after a threshold crossing event, and, during this pulse, are insensitive to further 

input (Figure 4E,F) [34,35]. 
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The mechanisms of cell-to-cell heterogeneity can be decisively influenced by extrinsic 

variation originating from other processes in the cell. Bulk-level studies have suggested that 

global physiological factors, such as growth rate and the cell cycle, affect gene expression the 

most [36-39]. Single-cell studies are now revealing how important the feedback of growth is 

to cell-to-cell heterogeneity [32,40-42] (Figure 3B). For example, fluctuations in metabolic 

gene expression can cause growth rate fluctuations, which can in turn perturb expression of 

not only metabolic genes, but also other unrelated networks [40]. A feedback loop between 

growth rate and gene expression can also play a role in bacterial resistance to antibiotics. 

Under a translation-inhibiting antibiotic, expression of resistance genes reduces the effect of 

the antibiotic, increasing the relative growth rate, which in turn leads to higher expression of 

resistance [32]. For a range of expression and antibiotic concentrations, a bistable population 

emerges, containing some cells in a state of growth arrest. Although a different phenomenon, 

this observation is reminiscent of the growth arrest state observed in a subpopulation of 

persistent cells [21]. In both persistence and resistance, the existence of a non growing 

subpopulation,  involving an interplay among gene expression, growth and survival, may 

indicate the two phenomena are more similar than previously thought. 

 

The dynamics that generate cell-to-cell heterogeneity can also be non-noisy (Figure 3C). In 

budding yeast, for example, cell division is asymmetric with a small daughter cell budding 

off from a larger mother cell. The replicative age of individual cells relative to one another is 

therefore measurable by microscopy imaging. When switched from rich media to media that 

is poor in metal ions, the cell cycle of daughter cells is arrested in the G1 phase, and so the 

population differentiates into two types: older dividing cells (the cells that were already 

present before the switch), and younger non-dividing cells [8]. The vacuole (which is a 

reservoir for metals) is kept in the mother cell: in times of scarcity, some microbes opt to 
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retain limiting resources in a subset of cells, rather than diluting them in the larger population 

[8]. Replicative age is also an important factor in predicting resistance to stress [8,9].  

 

Organisms can take advantage of both stochastic and deterministic mechanisms to regulate 

their degree of heterogeneity. A noisy switch can be used to activate a phenotype and a 

deterministic switch to deactivate it. For example, in B. subtilis, the timing of the transition 

from a motile to a sessile state is highly variable, but the timing of the switch back to motility 

correlates tightly with the number of cell divisions undergone in the sessile state [6]. 

Similarly, in the sugar metabolism of E. coli, expression of the arabinose metabolic genes is 

heterogeneous at the single-cell level, with cells switching the arabinose system on at 

different times. However, once the sugar is exhausted, switching off appears to be abrupt and 

coordinated across the population [43]. 

 

Phenotypic heterogeneity implements population level functions 

While phenotypic heterogeneity hinges on the expression of single-cell individuality, 

understanding whether it provides a function or fitness advantage requires a careful 

consideration of the environmental and population dynamics. Natural environments change in 

unpredictable ways, and it may be energetically costly to sense the change, or to respond to it 

in time. One solution is for cells to switch randomly between phenotypes appropriate to each 

environment at a rate that matches the historical probability of environmental change [44,45].  

 

This behaviour forms the basis of the evolutionary strategy of bet hedging [46,47], in which 

different phenotypes coexist at any time, but only one phenotype is adapted to the 
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environmental conditions at that particular time (Figure 1C-G). The maladaptive phenotypes 

have lower fitness, but offer indirect fitness benefits because they free resources for their 

clonal sisters. More importantly, their phenotype may enable them to resist future 

catastrophes, thus ensuring the population survives [48]. Recent studies sought the 

mechanisms of stochastic phenotype switching by evolving heterogeneity-generating 

networks in silico [33,49]. Kuwahara and Soyer [33], for example, evolved bistability by 

selecting for non-linear protein production rates in stochastic environments. A common 

theme in all these models is to measure heterogeneity in relation to certain patterns of 

environmental variation [31]. 

 

Bet hedging has been proposed as the strategy behind bacterial persistence, and it is 

straightforward to see why it is a beneficial strategy [21,25]. Persistent cells pay a huge 

fitness cost in mild environments, because typically these cells do not grow [21], but the 

potential long-term payoff is survival to extinction. Presumably, the rate of antibiotic 

exposure in the wild is slower than the time scale of the cell cycle, and so persistent cells are 

usually a minority. Perhaps surprisingly, some microbes may bet hedge on their metabolic 

states [7]. A single-cell study of the diauxic shift from glucose to cellobiose in Lactococcus 

lactis shows this particular lag phase is not characterised by a coordinated population level 

acclimation to the second sugar, but by variable individual cell responses [7]. During the 

shift, two groups emerge: one that stops growing, and another that continues to grow by 

metabolising the second sugar. The level of catabolite repression and activation of stringent 

response factors regulate growth arrest. Critically, when transferred to a medium with 

galactose as the sole sugar, the cells that did not metabolise cellobiose outgrew those that did 

metabolise cellobiose [7]. This suggests L. lactis cells are bet hedging to maximise long-term 

population level growth based on unpredictable availability of carbon sources in the future. 
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Despite being unicellular, many microbes form communities and aggregates of 

heterogeneous cells, where subgroups of cells perform specialised roles and interact with 

each other to enable new population level functions. Such ‘division of labour’ [24] underlies 

the formation and maintenance of biofilms (Figure 1H-J), which are highly heterogeneous in 

space and time [50-52], and the dynamics of infection by Salmonella typhimurium (in which 

division of labour can, in fact, occur in conjunction with bet hedging) [24]. These examples 

bridge the conceptual gap between unicellular and higher organisms, and demonstrate how 

microbes explore cell-to-cell heterogeneity to flirt with multicellularity. The most evocative 

demonstration of this is the de novo evolution of multicellular budding yeast in the laboratory 

by Ratcliff et al. [53]. Cells were grown in liquid culture and, over many generations, 

repeatedly selected for their ability to sink due to gravity. Clusters of cells sink faster than 

single cells, and so were selected. These clusters were maintained by post-division adhesion, 

which assures the cluster is made up of clonal cells, and by the emergence of division of 

labour: the coexistence of cells committed to cell death with cells committed to division was 

necessary for the reproduction of the cluster and the perpetuation of the system [53].  

 

Conclusion 

Single-cell technologies have transformed our knowledge of microbial behaviour, allowing 

us to move beyond the limitations of bulk-level observations, and feed a number of exciting 

scientific propositions. First, noise is pervasive in the cellular environment, generating cell-

to-cell heterogeneity [34]. Second, cells evolved genetic circuitry to regulate and use 

heterogeneity to implement single-cell level functions [14,16,19]. Finally, some single-cell 
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behaviours ought to be seen instead as demonstrations of collective functionality stemming 

from heterogeneity [54].  

 

Heterogeneity spans across different scales and levels of organisation, and so a 

comprehensive synthesis may be elusive. It will likely require an expansion of our set of 

quantitative tools. Time-lapse microscopy is currently the only technique that allows 

examination at the single-cell level through time, but is limited to three-four simultaneous 

products due to spectral overlap of fluorescent proteins. However, new single-cell high-

throughput techniques, such as single-cell RNA-seq [55] or super-resolution bar coding [56], 

could allow snapshots of single-cell expression across the genome. Presently, some of these 

methods remain difficult to apply to prokaryotic microbes, due to the size of these cells and 

their short-lived transcripts [12]. At another level, the demonstration of collective 

functionality will require a renewed focus on observing microbes in conditions as close as 

possible to their natural context. Biofilms, which incorporate single-cell behaviours, as well 

as cell-to-cell signalling, such as quorum sensing, offer a clear example [57]. It will also be 

critical to measure variation and heterogeneity away from the stereotypical, but likely rare in 

the wild, exponential growth phase [58]. These endeavours will likely nurture exciting new 

dialogues between microbial systems biology, ecology and evolutionary biology [47,59,60].  
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Figure Captions 

 

 

Figure 1:  The loop between population level and single-cell level studies. A) Much of 

what we know about microbial physiology comes from bulk assays, but these fail to capture 

the heterogeneity that can operate at the level of isogenic single cells. Single-cell techniques 

can identify differences between individuals. B) For example, an isogenic colony may 
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contain cells in two distinct cell states (light grey and dark green cells). C-J) Cell-to-cell 

heterogeneity often reflects collective strategies, so one must ‘zoom out’ back to the level of 

populations to understand it. C-G) The strategy of bet hedging copes with unpredictable 

environmental change. Often, a fraction of bacterial cells growing in rich media displays a 

phenotype that is not adequate for that particular environment (dark green cells) (C). These 

cells can, however, survive an unpredictable stress (e.g., antibiotic exposure) (D,E), thus 

allowing the population to survive and thrive again in the future (F,G). H-J) Many microbes 

form multicellular aggregates and implement a strategy of division of labour, which allows 

the population to endure stress and activate developmental programmes. In microbial 

biofilms, the colony grows from a small aggregate (H) to a large sized community. Biofilms 

accommodate significant cell-to-cell heterogeneity. The growth of the structure relies on 

spatial and temporal regulation of apoptotic programmes (orange cells with dashed lines) (I), 

while the survival of the colony (J) is dependent on the successful sporulation, dispersal and 

future germination of a sub fraction of cells (dark blue spores).  
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Figure 2: Heterogeneity reflects signal processing dynamics at the single-cell level. 

General stress regulators (e.g., Msn2 in yeast [14,15] and sigB in B. subtilis [16,17]) can 

respond to different stress inputs with different single-cell activation dynamics and 

distributions. In this example, Signal A (e.g., glucose limitation for Msn2 in yeast) (A-C) 

generates stochastic pulses in the activity of the general stress regulator (B), which results in 

a heterogeneous distribution of single-cell states (C). In contrast, Signal B (e.g., osmotic 

stress for Msn2 in yeast) (D-F) generates a single pulse of activation of the general stress 

regulator (E), which occurs in all cells and is homogeneous (F).  Dark green cells and light 

grey cells represent two distinct cell states.  
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Figure 3: Mechanisms of cell-to-cell heterogeneity. A) Left: in a stochastic pulsing 

mechanism [15,16,19], a regulator protein switches randomly between two states of activity, 

generating two cellular phenotypes (dark green cells and light grey cells). The state of two 

sister cells need not be correlated. Right: the single-cell traces of the state of two cells reveal 

uncoordinated state switching. B) Left: growth rates can feedback on gene expression and 

amplify heterogeneity [32,40,42]. In this example, after the first cell division, two sister cells 

stochastically diverge in their expression of a particular gene (green shades). This causes a 

difference in growth rates (represented by cells of different lengths in subsequent divisions). 

Lower growth may, in turn, further downregulate gene expression, resulting in 

subpopulations of slow growing, low expressing cells (short light grey cells), and fast 
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growing, high expressing cells (dark green cells). Right: the single-cell traces of two cells 

detail the feedback between expression (cell state) and growth. C) Left: cell-to-cell 

heterogeneity can be driven by a deterministic mechanism that differentiates cells by their 

age [8]. Some microbes, such as budding yeast, divide asymmetrically producing a smaller 

daughter cell from a larger mother cell. In rich media (Environment 1), all cells are dividing 

normally. In a resource-limited environment (Environment 2, to the right of the dashed purple 

line), only the mother cells divide, keeping limiting resources with them (dark green 

organelle). Right: single-cell traces of the growth of a mother cell (blue) and its daughters 

(red) in a resource limited environment (Environment 2) show the daughters in a state of 

growth arrest. 

 

 

Figure 4: Bistable and excitable circuits generate cell-to-cell heterogeneity. A) Bistable 

circuits [31-33] are generally driven by positive feedback loops, such as a two-gene mutual 

inhibition circuit. An external signal acts on component X, which downregulates an output Y. 

Y, in turn, downregulates X. B, C) Two cells are repeatedly stimulated by a step-like signal 

that is of the order of a threshold (dashed line). Owing to stochastic fluctuations, cell 1 (red 
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line) senses a signal above the threshold and switches to a low output state. Cell 2 (blue line) 

remains in a high output state. D) Excitable circuits [34,35] are generally driven by positive 

and negative feedback loops with different time-scales. An external signal acts on an output 

Y. Y auto-regulates itself with a fast positive feedback loop and a slow negative feedback 

loop . E, F) Cell 1 (red line) senses a signal above the threshold and undergoes a pulse of 

activation. Excitable circuits are unresponsive to further stimulation during a characteristic 

relaxation period, and so cell 1 does not respond to the second step, whereas cell 2 (blue line) 

does. Dark green cells and light grey cells represent two distinct cell states. 
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