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Summary

The extraction, transformation, use, and disposal of materials can be represented by directed,
weighted networks, known in the material flow analysis (MFA) community as Sankey or
flow diagrams. However, the construction of such networks is dependent on data that are
often scarce, conflicting, or do not directly map onto a Sankey diagram. By formalizing the
forms of data entry, a nonlinear constrained optimization program for data estimation and
reconciliation can be formulated for reconciling data sets for MFA problems where data are
scarce, in conflict, do not directly map onto a Sankey diagram, and are of variable quality.
This method is demonstrated by reanalyzing an existing MFA of global steel flows, and the
resulting analytical solution measurably improves upon their manual solution.
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Introduction

As noted by Brunner and Rechberger (2004), material flow
analysis (MFA) data are normally aggregated from a range of
different sources, including both direct and proxy measure-
ments, using diverse methods of data collection and processing
with a range of qualities. This is particularly true when MFAs
cross many industries and data collection entities. Cullen and
Allwood (2013, 3060) document the sources of uncertainty
in their MFA of global aluminium flows “ . . . misinterpretation
of survey questions and terminology used to describe process
and materials; unintentional or deliberate misreporting of data
in the surveys; incomplete coverage of . . . facilities, requiring
data to be scaled; calculation errors in the aggregation of data;
and miscommunication of data in published reports.”

The reconciliation of material flows for which there are con-
tradictory and incomplete data is often completed through the
use of ad-hoc methods of data choice, estimation, and manipula-
tion to ensure that such networks are self-consistent. A formal,
quantitative method to reconcile material flows, making best
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possible use of all known data, constraints, and expert opinion,
is needed.

A number of techniques have been documented for data
reconciliation of nonmatching data points, and estimation
of the value of variables where no data exists, in MFA.
However, such methods are generally restricted to the use of
basic classifications of flow data and linear constraints in the
reconciliation. We demonstrate that “unconventional” data
forms may exist as linear and nonlinear constraints to the MFA
analysis. This study extends current MFA data reconciliation
and estimation methods by formulating:

1. A mathematical classification system for incorporating
“unconventional” forms of data that do not directly map
onto Sankey diagrams.

2. A method for data reconciliation and estimation based
on a least squares minimization of total error in a Sankey
diagram using nonlinear optimization, with quantitative
weighting of data source quality and allowing for multiple
data points for any variable.
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A method to extend MFA methodology by classifying di-
verse input data forms, and estimating and reconciling data,
is presented here, using the MFA of global steel production
and use by Cullen and colleagues (2012b) as an example of its
application.

Literature Review

The basis of an MFA analysis is the construction of a
weighted, direct network. Such networks consist of a series
of processes connected by material flows. In the network liter-
ature, the terminology changes to “nodes connected by edges.”
Data on processes are normally given as a quantity over a unit of
time (e.g., kilograms per day), and material flows are defined as
either a quantity or as a fraction of their source process, the lat-
ter known as a transfer coefficient (TC). As defined in Schmidt
(2008a, 2008b), this article will use the term Sankey diagram to
refer to weighted and directed networks for MFA analysis and
will use the terminology “nodes connected by edges” to describe
parts of the Sankey diagram.

MFAs may have three distinct data problems: (1) There
may not be a complete set of data for the problem of interest;
(2) there may be nodes or TCs where multiple, conflicting
data points exist; and (3) the assembled data set for nodes
or TCs would violate the principle of conservation of mass
because of errors in the data. These data problems result in
considerable uncertainty in many MFA analyses, with Brunner
and Rechberger (2004) and Fischer-Kowalski and colleagues
(2011) both asserting that uncertainties of ±10% are common
in MFA analyses.

Perhaps the most common strategy for data reconciliation to
ensure that mass is conserved is to use a qualitative assessment
of the relative quality of the available data sources, and then ei-
ther manipulating the data quantity or choosing the data or data
source that appears to fit best or that is most consistent. Cullen
and colleagues (2012b), Brunner and Rechberger (2004), and
Bringezu and colleagues (2003) all acknowledge manipulation
based on qualitative assessment of data sources. In particular,
Bringezu and colleagues (2003) note that, with data collected
through Eurostat, direct material input and direct material con-
sumption data do not match and must be manually manipulated
to form the basis of coherent analyses. The documented errors
in data used for MFA analysis are indicative of the need for
systematic treatment of these errors. Based on their review of
economy-wide material flow accounting, Fischer-Kowalski and
colleagues (2011, 868) conclude that “a major problem con-
cerning the integration of physical trade data into MFA ac-
counts . . . is the lack of standardized procedures to handle the
manifold data gaps and flaws in the primary data.”

Laner and colleagues (2014) present a systematic review of
quantitative methods for data reconciliation in MFAs. How-
ever, the choice of reconciliation method will normally be de-
termined by the forms of data available for a particular analysis.
This literature review is organized to associate the available data
reconciliation methods with the forms of data that they accept.

In doing so, it can be demonstrated that existing methods do
not necessarily incorporate the full range of data types that may
be commonly available for MFA analyses.

Based on this review of data reconciliation methods for
MFA-style weighted and directed flows, a procedure may have
some combination of the following capabilities for reconciling
data forms:

(1) Reconciliation with node data;
(2) Reconciliation with TC (flow fraction) data;
(3) Reconciliation with flow quantity (edge width) data;
(4) Reconciliation with external or “unconventional” data

forms that may not directly map onto the Sankey diagram
format;

(5) Reconciliation that may incorporate multiple data points
for each variable;

(6) Reconciliation that incorporates information on upper
and lower bounds for the variables;

(7) Reconciliation that incorporates information on the
likely probability distributions of variables;

(8) Reconciliation that incorporates measures of data quality.

Formal, quantitative data reconciliation methods appropri-
ate for MFA analysis can be classified into four categories:
(1) linear methods; (2) constrained optimization; (3) Bayesian
techniques; and (4) the RAS family of input-output (I-O) ma-
trix data reconciliation techniques.

A linear method for data reconciliation is documented in
Brunner and Rechberger (2004), where a linear least squares
regression is used to reconcile node data to conform to con-
servation of mass constraints, while assuming that all TCs are
constants, and thus free of error. However, errors in TC data
may be of similar magnitude to those errors in node data and
should not in general be ignored. Matyus and colleagues (2003)
document an MFA data reconciliation procedure for node data
and generally assume that TCs are constants, but describe a
two-optimization procedure to include a TC data point with
a residual. The first optimization solves the problem without
the TC data or TC equation, and the second optimization as-
sumes that the TC value is constant, calculated as a mean of
the data and solved values. However, this procedure results in a
TC value that is only an average of the data point and the value
from the first optimization, so the value may not be a best-fit
value. Additionally, the procedure would be unlikely to produce
a valid solution for an MFA with a large number of TC data
constraints because of the elimination of a large number of TC
equations. These methods do not provide means of quantita-
tively comparing the quality of data sources that may be used in
an analysis. Linear least squares methods described here make
the implicit assumption that data for an MFA analysis will only
take the form of nodes or TCs.

A number of constrained optimization approaches have also
been formulated, primarily derived from the work of Van der
Ploeg (1985, 1988). These are generally extensions of linear
least squares methods. Fellner and colleagues (2011) structure
a nonlinear constrained optimization data reconciliation
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technique with bilinear equations to reconcile mass balance
data in fuels, though the formulation does not include inequal-
ity constraints, incorporation of external data, or information
about data quality. This technique is also used in the STAN
material flow analysis software, where it is further described by
Cencic and Rechberger (2008). The STAN software package
data reconciliation algorithm reconciles TC and flow quantity
data and bounds, and allows for additional linear relationships
(ALRs) to be defined between flows, but does not incorporate
data quality measures (besides bounds), unconventional data,
errors in ALRs, or multiple data points for each variable.
This technique also assumes that all variables follow a normal
probability distribution, though often a variable may follow
another probability distribution, if it is known at all.

Narasimhan and Jordache (2000) formulate a general least
squares approach to data reconciliation in problems with non-
linear constraints. This formulation relates measurements of
flow rate, temperature, and pressure, so the specific equations
may be less appropriate for MFA data reconciliation, though
the basic methodology is applicable to MFA. However, this for-
mulation does not allow for multiple data points per variable,
nor does it explicitly incorporate measures of data quality or
specific equations for unconventional data entry.

Cencic and Frühwirth (2014) describe a Bayesian technique
for data reconciliation in MFA that accepts probability dis-
tributions other than the normal distribution for variables.
Such probability distributions need to be known or estimated
before reconciliation. However, the technique is only valid
for linear equality constraints, and any data quality informa-
tion must be reflected in the known previous joint probability
distribution.

These techniques both take the form of weighted and di-
rected networks, so techniques used to balance economic and
social accounting matrix I-O tables (IOTs) can be applied to
MFA analysis. The RAS (named for “Richard A. Stone”) family
of matrix balancing data reconciliation techniques, commonly
used to balance IOTs, ensures that row and column sums (the
nodes/processes in an MFA) are consistent with the sum of
the I-O matrix elements (the “flows” in MFA). Lenzen and
colleagues (2009) provide descriptions of RAS and its variants,
where the original RAS algorithm is a biproportionate scaling of
an I-O matrix of initial guesses of either transfer coefficients or
real flows, using known column and row sums, which would rep-
resent the process values in MFA. Further developments of the
RAS method include MRAS, where some transfer coefficients
are known with certainty, and KRAS, the most developed of
the RAS family of algorithms. The RAS family of algorithms,
particularly KRAS, is well suited to MFA data reconciliation
problems where data are available as a set of process values, an
estimated set of either TCs or flow data, any external linear
constraints on process values, as documented by Lenzen and
colleagues (2014), and some data quality measure. However,
the inclusion of nonlinear data constraints is precluded, and a
user must choose between using TC or flow data for the recon-
ciliation.

Figure 1 Example of a material flow system.

This review indicates that, although there are many MFA
data reconciliation procedures, those that can incorporate a
wide selection of different forms of data, multiple data points
per variable, as well as measures of data quality, are relatively
underdeveloped. In particular, the use of unconventional data
forms is often not acknowledged in the literature on MFA data
reconciliation, and where it is, such unconventional data, such
as the ALRs in the STAN software, are assumed to be constants
rather than variables with their own attendant error. In this
article, we will provide a formulation of a general data reconcil-
iation procedure that can incorporate measures of data quality
as well as a wider array of data forms than current methods.

Material Flow Networks

The Sankey diagram provides a basis for structuring MFA
data. It is a weighted, directed graph where nodes represent
material or energy in a particular state and are connected by
edges to represent the flow or transformation of material from
the node representing a process i to another node representing
process j . The width of an edge is scaled to the size of the flow.
The basic structure of a Sankey diagram is defined in equation
(1), where the value of node x j is determined by the set of TCs
Aj i and the set of nodes xi , where TCs define the fraction of
material from a node that is transferred by an edge. In order to
conserve mass, equation (2) holds. Equations (1) and (2) are
the complete set of equations necessary to describe the structure
of a Sankey diagram, the structural constraint equations. The
Sankey diagram is assumed to be a highly structured network,
where all nonzero nodes and TCs are known to be nonzero and
are defined by equation (1).

x j =
∑

i

Aj i xi , ∀ j (1)

∑
j

Aj i = 1, ∀i (2)

We present a simple methodological example of such an
MFA in figure 1. In this system, there are five processes, num-
bered x1 through x5, and five flows between those processes.
This example will be used throughout this article to describe
the formulation of unconventional forms of data and the setup
and solution of the data reconciliation procedure.

Conventional and Unconventional Data
Input

Once the Sankey diagram structure for a particular problem
is defined, data are entered both for nodes and TCs. A data point
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for xi or Aj i is denoted by x̂i,q or Âj i,r , respectively, where q
and r are particular data points. Given that data points x̂i,q and
Âj i,r will have some error, each has an associated normalized
residual ri,q or r j i,r , respectively. Equations (3) and (4) describe
the relationship between the reconciled value of xi or Aj i and
their data points x̂i,q and Âj i,r .

xi = x̂i,q (1 + ri,q ) (3)

Aj i = Âj i,r (1 + r j i,r ) (4)

Equations (3) and (4) are the data constraint equations,
which describe the conventional data that populate the Sankey
diagram, whereas the structural constraint, equations (1) and
(2), describe the form of a Sankey diagram. As reflected in the
form of equations (3) and (4), all variables are assumed to be
independent.

Information that is useful to populate a Sankey diagram may
exist in forms other than nodes or TCs and is represented by
the variable γk . Perhaps the most common of these ‘unconven-
tional’ data forms is data about a flow magnitude (or edge width)
w j i , where γk = w j i = Aj i xi . Alternatively, information may
exist that indicates that the sum of a set of nodes xi , α ≤ i ≤ β

is equal to a quantity γk , such that
∑β

i =α xi = γk . Data of forms
that do not conform to the conventional MFA node or TC
data types are designated unconventional data forms. Though
the literature review covered a number of data reconciliation
methods used in MFA that accept data of various types, many
unconventional forms of data were classified in the data set used
by Cullen and colleagues in their global steel analysis. Table 1
classifies seven linear or nonlinear unconventional data vari-
ables γk and their relationships between the conventional node
or TC variables of a Sankey diagram.

Equation (5) specifies the relationship between γk and data
point γ̂k,s , where s is the data point, analogous to equations
(3) and (4). Equation (6) specifies any lower bounds l or up-
per bounds u on node, TC, or unconventional data constraint
variables.

γk = γ̂k,s (1 + rk,s ) (5)

xi ≥ 0, ∀i
0 ≤ Aj i ≤ 1, ∀ i, j
l i ≤ xi ≤ ui , for some i
l ji ≤ Aji ≤ uji, for some i, j
lk ≤ γk ≤ uk, for some m

(6)

Thus, the constraint equations for an MFA consist of a set
of structural equations (1) and (2), a set of conventional and
unconventional data constraint equations (3) through (5), any
upper and lower bounds on variables in equation (6), and a set of
unconventional data constraint equations from table 1. Likely
forms of unconventional data constraints are documented in
table 1, though the construction of other unconventional data
constraint forms beyond those in table 1 is possible, depending
on the data available for a particular analysis.

Table 2 in the next section documents the conventional
and unconventional data forms used for the methodological

example. The variable al t21 defines the width of the edge
(amount of the flow) going from x1 to x2, whereas the variable
al t42 defines the contribution of flow A42 to the value of node
x4. These unconventional data constraints make the problem
infeasible for data reconciliation methods documented in the
literature review.

A Nonlinear Program for Data
Reconciliation and Estimation

Once a material flow network is designed, and data are col-
lected and classified into equations (3), (4), (5), and (6), as
well as the unconventional constraint forms in table 1, a non-
linear constrained optimization program can be constructed to
reconcile data points and fill data gaps, deviating as little as pos-
sible from the available data. Therefore, the objective function
is constructed as a least squares-type function to minimize the
sum squared residuals r from equations (3), (4), and (5). The
equations in table 1 form the set of constraints for the nonlinear
program.

Owing to the diversity of data sources that will be used in
an analysis, it is useful to assign a quantitative quality measure
�i,q , � j i,r , or �k,s to each data point, where 1 ≤ � ≤ 100.
�i,q represents the data quality of the data point x̂i,q for node i ,
� j i,r is the quality for data point Âj i,r for TC Aj i , and �k,s is
the quality for data point γ̂k,s of unconventional data constraint
k. In this case, data points that are qualitatively judged to be
of higher quality are assigned a larger-quality value. Thus, the
objective function is given in equation (7), which normalizes
the objective function about each variable by dividing by the
number of data points for each variable so that no variable
is disproportionately weighted because of the total number of
data points that exist for a node (Qi being the total number
of data points for node xi ), TC (R j i being the total number
of data points for TC Aj i ), or unconventional data variable
(Sk being the total number of data points for unconventional
data constraint γk). I , J , and K are the set of nodes, TCs,
and unconventional data constraints with any associated data
points, respectively.

f (r ) =
∑

I

∑Qi
q=1

(
�i,q · (ri,q )2

)

Qi

+
∑

J

∑R j i

r =1

(
� j i,r · (r j i .r )2

)

R j i

+
∑

K

∑Sk
s=1

(
�k,s · (rk,s )2

)

Sk
(7)

Quality values contribute proportionally to the objective
function value. Thus, taking two variables xi and x j , each with
single data points only, then the gradient of the objective func-
tion will be larger in the xi dimension by a factor of �i ,1ri ,1

� j ,1r j ,1
.

Thus, where ri,1 = r j,1, the solver will preferentially reduce ri,1

by a factor of �i ,1

� j ,1
, and this understanding can be used when

assigning relative confidence values to data points.
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Table 1 Description of unconventional data constraint forms considered in this study, with examples from the global steel MFA of Cullen
and colleagues (2012a)

Description Equation form Example from Cullen and colleagues (2012a)
Linear constraints
a. Sums of variable

subsets

∑β

i =α xi = γk (for a node sum)
∑A,B

i, j =α,β Aj i = γk (for an
allocation sum)
∑β

l=α γl = γk (for an
unconventional data sum, e.g.,
edge widths or inverse
allocations)

Sum data constraints describe the value of a sum of nodes, TCs, edge
widths, or other constraints. For example, it is estimated that total
production of all tubes, bars, rods, and sections in figure S1 in the
supporting information on the Web is 553 Mt.

Nonlinear constraints
b. Edge widths γk = Aj i xi = w j i Edge width constraints define the width of an edge going from a node xi

to another node x j . For example, the amount of material flowing from
blast furnaces to electric arc furnaces in figure S1 is thought to be
44.6 Mt.

c. Inverse TCs γk x j = Aj i xi = w j i The inverse TC describes the portion of a node x j that is derived from a
contributing node xi . For example, 95% of inputs into section mills are
thought to come from blooms in figure S1.

d. Additional linear
relations (ALRs)

x j = γk xi , j �= i

Aj i = γk Al m, j �= l and i �= m

γm = γkγl , j �= i

Nodes, TCs, or unconventional constraints may have a relationship that
does not involve the transfer of material, so will not be reflected in the
structural constraints in equation (1). This is equivalent to the
additional linear relations defined by Matyus and colleagues (2003). For
example, it is estimated that losses from direct reduction are the same as
those from blast furnaces in figure S1, so in this case, γk = 1.

e. Percentage of sums
of variable subsets

xl =γk
∑β

i=α xi (for a node
sum)

Al m = γm
∑A,B

i, j =α,β Aj i (for an
allocation sum)

γm = γk
∑β

l=α γl (for an
unconventional constraint
sum)

A percentage of a sum constraint defines the value of a node, TC, edge
width, or other constraint as a percentage of the sum of a set. For
example, in figure S1, it is estimated that, of the sum of losses and
internal recycling flows for ingots, 25% is losses and 75% is internally
recycled. These constraints are also used where a TC is defined as a
fraction of the nonloss quantity, e.g., 30% of the nonloss output (yield)
from hot strip mills is sent to galvanizing plants. Where the desired value
is part of the set (e.g., l ∈ i for nodes), the sum is inclusive, and where it
is not (e.g., l /∈ i for nodes), the sum is exclusive. Inclusive vs. exclusive
percentage of sum constraints need to be differentiated because their
gradients take different forms in the optimization program.

f. Pro-rata inverse
allocations

γk = γl , k �= l

⇒ Aj i
x j

= Al m
xl

, i �= m

Pro-rata constraints describe data where two inverse TCs are equal. For
example, liquid steel from electric arc furnaces flows to blooms and
billets on a pro-rata basis, with the percent of blooms and billets that
come from electric arc furnace-produced steel equal.

g. Sequential
multiplications

xi = γkγl , k �= l

Aj i = γkγl , k �= l

Sequential multiplication constraints describe many types of data that
are multiplied together. For example, the aggregate efficiency of a blast
furnace in figure S1 is derived from a number of small steps, each with a
separate efficiency. These efficiencies were multiplied together to create
an aggregate efficiency for blast furnaces.

Note: MFA = material flow analysis; TCs = transfer coefficients; Mt = megatonnes.

With the objective function and the constraints from
table 1, the constrained nonlinear program is defined as:

minimise :
∑

I

∑Qi
q=1

(
�i,q · (ri,q )2

)

Qi

+
∑

J

∑R j i

r =1

(
� j i,r · (r j i .r )2

)

R j i

+
∑

K

∑Sk
s=1

(
�k,s · (rk,s )2

)

Sk

subject to : structural constraints
x j = ∑

i
Aj i xi , ∀ j

∑
j

Aj i = 1, ∀i

and data constraints

xi = x̂i,q (1 + ri,q ), for some i

Aj i = Âj i,r (1 + r j i,r ), for some i, j

γk = γ̂k,s (1 + rk,s ), ∀m

and unconventional data constraints from Tabl e 1.

Kopec et al., Data Reconciliation for MFA 5



M E T H O D S , TO O L S , A N D S O F T WA R E

Table 2 List of the variables, data points with data quality, and reconciled solution for the MFA in figure 1

Variable Type Equation form Data points (quality) Final value Residuals
x1 Node n/a none 25.2
x2 Node n/a None 6.8
x3 Node n/a 15 (60) | 18 (90) 18.4 0.23 | –0.03
x4 Node n/a None 15.3
x5 Node n/a 10 (60) 10.0 0.00
A21 TC n/a None 0.27
A31 TC n/a None 0.73
A42 TC n/a None 1.00
A43 TC n/a None 0.46
A53 TC n/a 0.6 (90) 0.54 –0.1
al t21 Edge width al t21 = A21x1 20 (30) 6.8 –0.66
al t42 Inverse TC al t42x4 = A42x2 0.4 (90) 0.45 0.12

Note: MFA = material flow analysis; TC = transfer coefficient; n/a = not applicable.

and boundary constraints
0 ≤ Aj i ≤ 1, ∀i, j
xi ≥ 0, ∀i
l i ≤ xi ≤ ui , for some i
l j i ≤ Aj i ≤ u j i , for some i, j
lk ≤ γk ≤ uk, for some m

Because any data type may have error associated with it,
some of the constraints in this program contain multiplicative
nonlinearities, generally bilinear, including the mass flow struc-
tural constraints and some unconventional constraints. Thus,
the set of constraints is not generally a convex set. The pooling
problem, as defined by Greenberg (1995) and others, formulates
mass flow as a set of nonlinear (bilinear) constraints similar to
the formulation in this article. Thus, this problem is a bilinear,
global, nonconvex program. However, pooling problem formu-
lations generally assume perfect data and use the objective func-
tion to optimize a cost metric for the TC of source material to
a set of intermediate pools and final products. The formulation
of pooling problems under conditions of stochastic or uncertain
data is limited to the use of data scenarios, as Li and colleagues
(2011) describe in their work on design of natural gas networks.

When the form of the objective function is included, the
program is a quadratically constrained quadratic program, as de-
scribed by Mehanna and colleagues (2015). Owing to noncon-
vexity, global optimization methods must be used to solve the
constrained nonlinear program. Because such a program may
have many local minima, an initial set of guesses g o is supplied
so that the numerical constrained nonlinear optimization solver
starts in a well of attraction, increasing the probability that the
solution will be a local minimum that is superior to a manual
solution. For this implementation, Matlab’s fmincon algorithm,
documented in the Matlab documentation (Matlab 2013) and
by Byrd and colleagues (1999), was used. The fmincon solver
uses an interior point algorithm to find a minimum of the objec-
tive function. As noted by Misener and Floudas (2010), similar
solvers are used in the “pooling problem” formulation.

The validity of a solution is assessed by examining whether
the maximum constraint violation is within limits. Once the

validity of a result has been determined, the quality of the re-
sult is based on how well the solution fits the available data
and can be assessed according to: (1) the value of the ob-
jective function, which can be compared between solutions,
and (2) the value of individual residuals as well as the average
and standard deviation of the absolute value of the residual
set.

In summary, the proposed methodology consists of the
following steps:

(1) Design a material flow network.
(2) Collect data to populate the node, TC, and any uncon-

ventional data constraints, recording relative quality val-
ues for the data.

(3) Place the structural and data constraint equations, as well
as the objective function, into forms that can be used by
a numerical nonlinear optimization solver and solve.

(4) Review the results of the optimization. If the solver can-
not find a feasible solution that satisfies all constraints,
or if a feasible solution is found that does not conform to
expectations, there are several options: (a) data quality
values may be updated; (b) initial values g o may be added
so that the solver starts in a well of attraction that is more
likely to provide a satisfactory solution; or (c) structural
or data constraints may be missing and should be added
to the program. The MFA can then be iterated starting
at step 1 or 2, as appropriate.

The methodological example contains 15 constraint equa-
tions (nine linear and six nonlinear), as seen in table 2, and
a feasible solution was found in approximately 1 second. As
would be expected, the solution deviates further from the data
points with the lowest-quality ratings.

Results of the Global Steel Reanalysis

The effectiveness of this reconciliation method was tested
against the “manual” MFA of global steel flows from Cullen
and colleagues (2012a,b). The manual analysis represents the
researchers’ best estimate, through qualitative selection and
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Table 3 Global steel reanalysis problem setup

a)
Type of variables Quantity
Node variables 211
TC variables 389
Unconventional variables 58
Total variablesa 658
b)
Type of constraints Quantity
Structural constraints 390
Node data constraints 33
TC data constraints 121
Unconventional data constraints 58
Total constraintsb 602

The number of a) variables and b) constraints for the global steel flow
Sankey nonlinear constrained optimization program.
aExcludes residual variables.
bExcludes boundary constraints.
TC = transfer coefficient.

manipulation of data, of the flow of global steel. In the main
article and the supplementary information, the researchesr
document their manipulation of data points in order to satisfy
the structural constraints of mass flow and conservation of mass.
For example, data from the World Steel Association (2010)
indicates that 44.5 million tonnes (Mt) of steel were used for
welded tube in 2009, but the value that Cullen and colleagues
(2012a) assign is 62.4 Mt in order to ensure that conservation
of mass constraints are met. The Sankey diagram produced
by Cullen and colleagues (2012a) is shown in figure S1 in the
supporting information available on the Journal’s website.

Structuring this analysis according to the system of nodes,
TCs, and unconventional data constraints gives the problem
in table 3, while also providing a consistent structure for the
Sankey diagram in Cullen and colleagues (2012b) and the net-
work diagram in the supplementary information of Cullen and
colleagues (2012a). The analysis by Cullen and colleagues in-
volves a large number of nodes, TCs, and data sources. It was
clearly a large undertaking and is likely at the limit of what
is possible using a manual method for MFA construction and
reconciliation.

The Sankey diagram structure used in this analysis is func-
tionally the same as that described in the supplementary infor-
mation of Cullen and colleagues (2012a), though some nodes
and edges have been added to ensure mathematical consistency.
The system of equations is underdetermined, with more vari-
ables to solve for than constraints, demonstrating the utility
of the proposed method, given that such a system potentially
has many solutions unless an objective function is used. Of 600
node and TC variables to solve for, data were directly provided
for only 154 nodes or TCs.

The reconciliation was implemented using only the data
sources cited by Cullen and colleagues in their article and sup-
plementary information (2012a, 2012b) so the solutions are
comparable. Quality values � for each data point were deter-
mined through consultation with the original authors, based

Table 4 Results

Value
Cullen and
colleagues This study

Objective function,
equation (7)

145.62 99.05

Objective function
without confidence values

1.95 1.35

Maximum residual value 0.887 0.692

Note: Comparison of the results of this study with results from Cullen and
colleagues.

on the trustworthiness of each data source. Data points from
sources considered to be more reliable and representative of
the global steel industry, such as the World Steel Association
statistical yearbook (2010), were given relatively higher-quality
values (�WS A = 90) than data points from regional sources that
might not be representative of the global industry, or sources
considered to be less reliable. For example, data points from the
Japan Iron and Steel Federation might not be representative of
the global steel industry, so were given a lower-quality value
(�JISF = 60).

The initial values g oused in this reanalysis were, in decreas-
ing order of preference, single data points, averages of multiple
data points, and the solution of Cullen and colleagues (2012a).
Thus, the set of initial values did not constitute a feasible so-
lution, but did represent the best information available. It was
found that, for a nonlinear program of this size, reasonable ini-
tial values need to be provided in order to arrive at a feasible
solution.

The final value of the objective function was calculated for
both this method and for Cullen and colleagues’ manual solu-
tion, with the result shown in table 4. The value of the objective
function is the determinant of the quality of the solution, and
the value of the objective function from this study is superior to
that from the manual solution of Cullen and colleagues (2012b).
As a robustness check, the value of the objective function with
all quality values set to 1 is also calculated for the solution of the
weighted problem, and the value from this study also is superior
to Cullen and colleagues.

Figure 2 shows the individual and cumulative values of the
residuals for five histogram bins, and it shows that the final value
of the objective function for Cullen and colleagues’ solution was
dominated by residuals of value greater than 0.25, whereas the
final value of the objective function for the numerical solution
was dominated by the residuals greater than 0.5. Thus, the
algorithm was able to find a better solution, as defined by the
objective function, by reducing large (>0.25) value residuals.

The histogram in figure S2 in the supporting information on
the Web shows distribution of the values of the residuals for
the numerical answer and Cullen and colleagues. For Cullen
and colleagues, the majority of residuals are zero, given that
most data points were used “as is,” whereas a relatively small
number of data points had large residuals to reflect conflicting
data sources or where manual adjustments were made to ensure
that conservation of mass constraints were met. In contrast, the
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numerical solution has many residuals with small values that
do not contribute significantly to the final objective function
value, but are necessary in order to meet all constraints. The
least squares-type objective function ensures that small resid-
ual values are penalized less than large ones, so it follows that
the optimized solution would redistribute error so that a larger
number of variables have small residuals, whereas the manual
solution would have a relatively higher number of variables
with large residuals.

The final results for the global steel analysis show that this
solution surpasses Cullen and colleagues’ solution with respect
to the objective function metric. This yields additional flexibil-
ity and capability for interactive analysis of data inconsistency.
Table S1 in the supporting information on the Web shows that
the sets of variables in this solution and Cullen and colleagues’
solution that have a deviation of greater than 10% from the
data wholly overlap. This total intersection indicates that the
method can produce superior results, as defined by the objective
function and constraints, compared to manual methods while
incorporating concerns about certain data sources that an MFA
author can faithfully reflect in the constraints, quality values,
and objective function of this method.

Whereas the approximate solution time for the method-
ological example of 18 variables and 15 constraints was ap-
proximately 1 second, the time for the objective function to

converge for the global steel reanalysis with 878 variables (in-
cluding residuals) was approximately 10 minutes, with both
analyses being run using Matlab version 2014b, run on a stan-
dard laptop computer with an Intel R© CoreTM i5-3360M CPU
with 8.00 gigabytes of RAM. The objective function value and
the maximum constraint violation value for the global steel
reanalysis converged after approximately 600 iterations of the
solver, as seen in figure 3. Figure 3 shows that the solution starts
off infeasible, as measured by the maximum constraint viola-
tion, because the initial values g 0 are, where possible, set to data
points that violate conservation of mass and other constraints.
The solver then finds a feasible solution where the maximum
constraint violation is acceptable and the objective function
value is superior to Cullen and colleagues’ objective function
value.

Discussion

The method proposed here is able to incorporate a wide
variety of both linear and nonlinear data constraints into the
data reconciliation procedure. Table 5 compares the capacity
of this method to incorporate these data types with a number
of other commonly used data reconciliation methods in MFA.
Any data reconciliation procedure will have advantages and
disadvantages. For example, the RAS family of algorithms is

8 Journal of Industrial Ecology
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able to reconcile data from large numbers of variables, and the
class of problems to which it is usually applied will normally
have conventional node or TC data points only. Similarly, the
techniques of Brunner and colleagues and STAN are appropri-
ate for MFAs where most data are available in conventional
forms and has normal probability distributions.

In general, the choice of data reconciliation method will
depend upon problem structure. The method proposed in this
article is likely to be most appropriate in problems of medium
size for which (1) a significant proportion of the available data
exist in unconventional forms; (2) problems where the number
of unknowns is significantly greater than the number of con-
straint equations; and (3) where the structure of the problem is
amenable to an iterative approach of assuming reasonable start-
ing values for variables which lack data. Problems for which
the RAS family of algorithms are normally used, where there
may be significantly more than 1,000 variables, may be too large
for standard nonlinear solvers to solve. Smaller problems that
contain data in standard node and TC formats can be recon-
ciled using algorithms that are simpler and less computationally
expensive to implement. The method presented here can only
implicitly incorporate probability distributions through use of
upper and lower bounds at an appropriate multiple of the stan-
dard deviation.

Thus, this reconciliation method is generally able to incor-
porate more data than other quantitative reconciliation meth-
ods and is likely superior to, and quicker than, the manual
adjustment method used by Cullen and colleagues (2012a).
Despite the metrics listed in table 4, it is impossible to prove
that this method provides an overall better solution than a
manual solution, for two reasons. First, the numerical solver
used finds a local, rather than global, minimum for the ob-
jective function. The second reason is model error, for exam-
ple, constraints are improperly formulated or data exist that

are not expressed in constraint equation form. This method
is dependent on the assumption of reasonable starting values
for larger problems in particular, so that there is potential to
use other data reconciliation procedures, such as those dis-
cussed in the literature review, for providing those starting
values, although this has not been investigated in this study.
The value of the inclusion of unconventional data forms is
apparent because running the reconciliation using this pro-
cedure, but without any unconventional data points, results
in a solution where 53% of node variables have a value that
deviates more than 5% from either Cullen and colleagues’ so-
lution or the solution that includes the unconventional data
constraints.

The numerical solution might also be improved upon if lo-
cal numerical linearization methods are used. The usefulness of
such methods would be highly dependent on finding good start-
ing values for the optimization. A large literature on relaxation
or linearization of the pooling problem exists (e.g., Narasimhan
and Jordache 2000; Gounaris et al. 2009; Faria and Bagajewicz
2012). A future article will explore relaxations and lineariza-
tions of this particular program.

This analysis has led to four lessons to ensure that future
implementations produce solutions that are superior to manual
solutions. First, numerical nonlinear constrained optimization
solvers cannot guarantee that a solution is a global, rather than
local, minimum of the objective function. Thus, particularly
for larger problems, it is useful to supply a reasonable guess for
the initial value of all variables, even those for which no data
are available, increasing the chance that the initial values, and
thus the solution, will be in the attractor well that corresponds
to the global minimum, or at least to a sensible local solution,
of the objective function.

Second, it is useful to run the optimization with only
structural and conventional data constraints before running

10 Journal of Industrial Ecology
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an optimization that includes the alternative data constraint
forms. The first optimization solution is useful because it is easy
to identify obvious errors in the structural or node or TC data
constraints.

Third, it may be beneficial to place common sense bounds on
some variables in order to constrain the solution to reasonable
values. In the global steel flows analysis, the only known bound
on the amount of iron ore extracted per year is that it must not
be less than zero (xi ≥ 0). However, one might reasonably infer
that true value is 1,000 Mt ± 25%. Replacing the original non-
negative lower bound with this inference (750 ≥ xi ≥ 1250)
will further constrain the solution and make it more likely
that the final value of the objective function is a global, rather
than local, minimum. If the intended confidence interval of the
analysis is 95%, then the bounds for certain variables could be
set at ±2σ .

Fourth, the method described in this article is iterative. The
objective function, node, TC, and residual values should be ex-
amined to ensure that they are sensible. A relative error or aver-
age relative error value that is large may indicate an insufficient
number of, or wrongly applied, structural or data constraints.
If the solution is not sensible, new structural constraints, data
constraints, bounds, and quality values may be added to the op-
timization program. In particular, new forms of unconventional
data constraints may be considered if information exists that is
not compatible with the forms listed in table 1.

Conclusions and Future Work

The MFA data reconciliation method described here is (1)
able to accept a comprehensive array of nonlinear conventional
and unconventional data forms than other reconciliation meth-
ods and (2) formulates a nonlinear data reconciliation program
without the requirement to assume that some pieces of data are
constants while incorporating quantitative data quality mea-
sures and multiple data points for the same variable.

The methodology described in this study can be expanded
upon in two directions. First, the list of alternative constraints
in table 1 can be expanded to account for additional data types.
In particular, the availability of remotely sensed data as well
as “big data” availability means that new data sets, particu-
larly translations between data at different spatial and temporal
scales, could be incorporated into MFA analysis through the
addition of new data constraint equations. Second, the bilin-
ear problem here can be linearized to decrease the difficulty in
finding a global minimum of the program.
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