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Intrinsically Disordered Energy 
Landscapes
Yassmine Chebaro, Andrew J. Ballard, Debayan Chakraborty & David J. Wales

Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the 
energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very 
different competing low-energy structures, are likely to characterise IDPs, and provide a useful way 
to address their properties. In particular, IDPs are present in many cellular protein interaction 
networks, and several questions arise regarding how they bind to partners. Are conformations 
resembling the bound structure selected for binding, or does further folding occur on binding the 
partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) 
protein, which adopts an α-helical conformation when bound to its partner, and is involved in the 
activation of apoptosis. Recent experimental evidence shows that folding is not necessary for 
binding, and supports an induced-fit mechanism. Using a variety of computational approaches we 
deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. 
We find significant barriers between partially folded states and the helix. Our results show that the 
favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, 
with structures resembling the bound state relatively unpopulated in equilibrium.

Intrinsically disordered proteins (IDPs) defy the textbook structure-function paradigm, according to 
which a protein folds into a single and unique 3D structure to accomplish its physiological function. 
With their flexibility and inherent plasticity, IDPs play an important role in protein-protein interactions1 
in many cellular processes, such as signal transduction and gene expression2, and therefore represent an 
important challenge in structural biology3. The presence of intrinsically disordered regions in 
cancer-associated proteins has highlighted their implication in human diseases4, as exemplified by p53 5 
and HPV6. Amyloid aggregation and pathological assembly of IDPs also characterise neurodegenerative 
diseases, for example, the Aβ peptide in Alzheimer’s7.

Although unsuitable for high resolution X-ray crystallography, increasing efforts have been invested 
in the last decade in many other experimental techniques to characterise the conformational ensemble 
of IDPs, such as NMR8,9, SAXS5,10, and mass spectrometry11.

As major components of protein-protein interaction networks, the disordered nature of an IDP is 
advantageous in many ways12, including fast association with alternative partners, highlighting the prev-
alence of IDPs in cell signalling pathways. From a structural point of view, disordered proteins are note-
worthy in undergoing a disorder-to-order transition upon binding to a partner, referred to as the ‘coupled 
folding and binding mechanism’13,14. This binding mechanism rules out a lock-and-key scenario, high-
lighting a key question: does binding occur through conformational selection or induced-fit? In the first 
case the binding partner selects a conformation closely related to the IDP-bound conformation, although 
not necessarily most populated in the unbound ensemble. In the latter case, the binding partner induces 
structure and folding of the disordered protein upon contact. These two scenarios are not mutually 
exclusive, but could be system dependent, and molecular simulation has proved to be a crucial tool in 
this challenging field. Monte Carlo simulations have recently shown how two different IDPs bind to the 
same partner in a similar manner15. Multicanonical molecular dynamics simulations were performed to 
enhance sampling, and identified a cooperative induced-fit and conformational selection procedure for 
the binding of a 15-residue IDP16. A sophisticated multistate Go-model was recently applied to show that 
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the NCBD disordered protein binds two different partners, mainly through an induced-fit recognition 
mechanism, although the authors do not exclude an alternative conformational selection pathway for 
binding17.

Here we focus on the PUMA protein (p53 upregulated modulator of apoptosis), belonging to the Bcl-2 
homology 3 (BH3)-only subclass of proteins, and leading to the activation of apoptosis when bound to 
its partner the antiapoptotic protein Mcl-118. The region of PUMA that binds Mcl-1 is called the BH3 
region; this motif is intrinsically disordered and adopts a helical structure when bound to its globular 
folded partner19. Recent biophysical studies have demonstrated that PUMA associates rapidly and tightly 
to its partner Mcl-120. Upon introducing proline substitutions in the peptide sequence21 (thus breaking 
helical structure), association rate constants with Mcl-1 are mainly unaffected, suggesting that particular 
residual helical structure does not seem to be essential for binding. Using rapid-mixing stopped flow, 
Rogers and coworkers22 have recently shown that neither folding nor specific interactions are required 
for association, suggesting that conformational selection for binding is unlikely. Thus, it seems that the 
IDP PUMA binds its partner in an induced-fit fashion. From a structural perspective, why then isn’t the 
alpha-helical conformation of PUMA stable in isolation?

To answer this question, we employ an array of computational methods, ranging from molecular 
dynamics to creation of a kinetic transition network23–25 using geometry optimisation. Our results show 
that indeed isolated PUMA is not stable as a contiguous α-helix and the conformational ensemble is 
populated by structures with mainly low to medium helicity content, in agreement with experiment20. 
Visualizing the energy landscape of PUMA in isolation reveals a frustrated26,27 multifunneled structure 
with no dominant energy minimum and molten globule-like structures at the bottom of the funnels. 
Most importantly, we show that (i) the barriers to folding for an α-helix from the most populated con-
formations are large, (ii) unfolding is orders of magnitude faster than folding, and (iii) the driving forces 
to unfolding of the contiguous helix are mainly electrostatic in nature, but not necessarily residue-specific. 
These results help to explain the instability of this IDP when isolated, as well as the induced fit mecha-
nism for binding determined by experiment22.

Diverse electrostatic and hydrophobic interactions are formed within the partially folded structures 
of PUMA, leading to the presence of the multiple partially folded conformations, and form the basis for 
the intrinsically disordered behaviour and the corresponding ‘intrinsically disordered energy landscape’, 
which seems likely to characterise such proteins. This structure provides a useful way to address emer-
gent observable properties from the energy landscape perspective.

Results
The α-helical conformation of the PUMA peptide unfolds in isolation. To obtain some initial 
insight into the 32-residue PUMA peptide when isolated, we performed 600 ns molecular dynamics 
simulations starting from the contiguous helical structure at 280 and 300 K in explicit solvent (Fig. 1). 
At 280 K, the percentage of residual helicity reaches 40% after 15 ns and fluctuates between 40 and 80% 
over a time scale of 200 ns. At 300 K, the helicity rapidly decreases to 35% after 20 ns. Over the last 100 ns 
of the MD simulations, the average helicity values are 32 and 30% at 280 and 300 K, respectively 
(Fig. 1A,B). To monitor the similarity to the contiguous helical PUMA, we calculated the backbone root 
mean square deviation (RMSD) and our results show a rapid increase to more than 3 Å after only 17 ns 

Figure 1. (A, B) The percentage of residual helicity and (C) backbone RMSD with respect to the minimised 
α-helix conformation of PUMA, where the MD starting points are the helix at 280 (A and black lines in C) 
and 300 K (B and grey lines in C).
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at 280 K. At 600 ns, we observe relatively large values for the RMSD, ranging from 10 to 12 Å in all sim-
ulations, following the trends of helical percentage (Fig. 1C). In each case, the structures become more 
collapsed, and their radius of gyration decreases from about 16 Å to around 10 Å (Supplementary Figure 
1A). This increase in the compaction of the isolated protein is evident from calculating distances between 
two residues located at the N- and C-terminal regions, which decrease from high (over 35 Å) to low 
(under 5 Å) values (Supplementary Figure 1B). From these results it is clear that the helix is not stable 
by itself, consistent with the induced-fit scenario identified experimentally20–22.

Conventional molecular dynamics simulations are prone to kinetic trapping, and to enhance the con-
formational sampling of the helical PUMA peptide in isolation, we performed 140 ns of replica exchange 
molecular dynamics (REMD)28 using 20 temperature replicas ranging from 223.7 to 650 K in implicit 
solvent, resulting in a total simulation time of 2.8 µs. The first 30 ns of the simulation were excluded from 
the analysis to allow for equilibration. REMD simulations were deemed to have converged when the heat 
capacity and residual helicity values calculated in the time intervals 30 to 85 and 85 to 140 ns showed 
similar behaviour (Supplementary Figure 2). A heat capacity peak appears at 313 K, where the residual 
helicity is about 24%.

At 280 K the average helicity in our simulations is 27.8% and that calculated with the AGADIR pre-
dictor29, used by Rogers and coworkers to design point mutations in the PUMA sequence21, is 28%. These 
values are consistent with CD experiments suggesting about 20% helicity at 298 K20. Calibrating simula-
tion temperatures and experimental ones is a difficult task, especially when force fields are used with an 
implicit solvent representation. The temperatures used for this comparison are not exactly the same, but 
we believe that 280 K approximates best the experimental room temperature, in view of the heat capacity 
curve obtained from our simulations (Supplementary Figure 2) suggesting that at 298 K the system is too 
close to the melting regime. Although slightly over-estimating the helicity with respect to experiment, 
the force field reproduces the experimental range of values with no significant differences. These results 
are supported by the comparison of different force fields using NMR scalar coupling data, which suggest 
that the AMBER representation we have used has the best agreement with experimental data among 
those tested30. We calculated the helical propensities at a residue level at 280 K for the last 110 ns of the 
REMD simulations and compared the values obtained with AGADIR29 (Fig. 2). Overall, the two profiles 
agree in the general trends of helicity, where the highest helical content is present mainly in the C-terminal 
region. The largest discrepancies appear at positions A150 and Q151, but the α-helical percentages for 
these residues are still elevated (≥30%).

A free energy surface for the PUMA peptide was constructed at 280 K, using as order parameters the 
fraction of residual helicity and the radius of gyration (Fig. 3). The lowest free energy minimum is rather 
broad and corresponds to a range of fractional helicity between 0.2 and 0.4, with a radius of gyration of 
about 10 Å. The other low-lying free energy minimum corresponds to a more extended structure, with 
a radius of gyration of around 12 Å, but covering the same range of helicity. It is important to note that 
regions with residual helicity greater than 0.6 exhibit relatively high free energies, and correspond to 
values around 15 to 16 Å for the radius of gyration (close to the contiguous helix), confirming that the 
helical structure of the PUMA peptide is unfavourable.

Figure 2. Helical propensities at the residue level for the PUMA sequence calculated from REMD 
simulations (black lines) and from the AGADIR29 helical propensity predictor (red lines).
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Visualising the conformational ensemble of the IDP using discrete path sampling. We used 
the discrete path sampling (DPS) approach31 to analyse the underlying potential energy landscape for 
PUMA. The DPS technique is based on geometry optimisation and efficiently produces stationary point 
databases corresponding to a kinetic transition network23–25. To extract relevant partially folded PUMA 
structures, clustering analysis was performed on the trajectory at 280 K, based on dihedral angles, which 
groups structures that display similar secondary structure content. We considered the ten most populated 
structures at 280 K, which in total account for 45% of the analysed simulation time frames, as starting 
points for building a connected database, together with the helical structure of PUMA. The combined 
stationary point database from DPS calculations is visualised using a potential energy disconnectivity 
graph32,33 in Fig. 4 and consists of a total of 205,677 minima and 191,392 transition states. The colouring 
in this figure corresponds to the percentage of helicity for each minimum in the database. At the bottom 
of the funnels, the helicity percentages are between 20 and 30%; the lowest and highest helicity values 
are not favourable, and such structures are located at branches near the top of the graph. Frustration26,27 
in the disconnectivity graph corresponds to low-lying morphologies separated by high barriers, and 
illustrates the diversity of competing conformations, with no single dominant structure. The correspond-
ing free energy disconnectivity graph is illustrated in Supplementary Figure 3, and it displays the same 
structure as the potential energy landscape for the relevant temperature range. The observed difference 
between the 2D free energy surface calculated from the REMD simulations and the disconnectivity graph 
obtained using the DPS technique occurs because some partially folded states are incorrectly lumped 
together on projection to obtain a low-dimensional representation. Such projections of configuration 
space do not generally preserve the kinetics, often producing artifically smooth surfaces that do not 
reflect the barriers properly, thus masking the complexity of the landscape25,34–36. In contrast, a kinetic 
transition network can faithfully represent the barriers25. Here we note that for complex biomolecular 
pathways a suitable progress coordinate may not exist. Such conformational transitions are therefore 
ideal targets for DPS, which only requires specification of product and reactant states.

Figure 3. Free energy surface at 280 K for the PUMA peptide in terms of fraction of residual helicity and 
radius of gyration. The free energy scale in kcal/mol is shown on the right. Typical conformations for the 
minima are represented, where the Cα of the N-terminal residue Val128 is indicated by a sphere.
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The multifunnel structure seems likely to be associated with the intrinsically disordered nature of the 
protein. Hence the disconnectivity graph representation provides a visual explanation for the induced fit 
mechanism of binding. In particular, it is clear that the contiguous helix conformation of PUMA (i) does 
not occupy a low energy funnel and (ii) the barriers to unfolding are much lower than the ones to fold 
into the helix. In fact, the funnel corresponding to the contiguous helix is relatively narrow and under-
populated with respect to the other funnels. The most populated structure at 280 K (12.4%) corresponds 
to the largest funnel in terms of local minima, although it competes with low energy funnels related to 
the other most populated structures.

Such multifunnel energy landscapes have been extensively studied for atomic and molecular clus-
ters37, where they provide benchmarks for global optimisation, enhanced sampling schemes to address 
broken ergodicity38–41, and rare event dynamics31,42,43, corresponding to changes of morphology. The 
competing funnels lead to multiple relaxation time scales and features in the heat capacity profile25, and 
correspond to glassy behaviour in systems with an exponentially large number of low-lying amorphous 
states44. Consistent with the present results, a multifunneled energy landscape has previously been char-
acterised for an amyloid peptide derived from the disordered domain of the yeast prion protein Sup35. 
As for PUMA, this system exhibits competition between alternative conformations, which are β-sheet 
structures for the amyloid45. Hence, we suggest that IDPs are likely to correspond to intrinsically disor-
dered, multifunneled energy landscapes. We propose to test this hypothesis for other IDPs in future 
work.

We calculated the phenomenological rate constants for the unfolding and folding from the contiguous 
helix (conformation A) and the most populated structure at 280 K (conformation B), using graph trans-
formation46. The comparison of these rates indicate that folding is slow with respect to unfolding, indeed 
the estimate for ←k A B is 0.27 ×  10−20 s−1 (probably a weak lower bound) whereas ←kB A is over 10.5 s−1. 
We also calculated the rates for conversion of the helix to the other most populated structures (Table 1). 

Figure 4. Potential energy disconnectivity graph constructed from the most populated structures obtained 
in the REMD simulations at 280 K. The colouring of the branches corresponds to the α-helical percentage 
calculated for each minimum in the database, as defined in the key.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:10386 | DOi: 10.1038/srep10386

These transitions are also several orders of magnitude faster than the predicted folding rates of each of 
these structures to the helix. The numerical values cannot be compared directly with binding rate con-
stants, since the partner MCL-1 is absent in these calculations, and it is more appropriate to interpret the 
relative rather than the absolute rates. The particularly slow folding rate obtained for the helical confor-
mation supports the lack of evidence for a conformational selection for binding22 and suggests that the 
presence of the partner may accelerate this transition.

Rate constants between the initial partially folded minima used to build the energy landscape of 
PUMA were calculated using the same procedure (Supplementary Table S1). Apart from the first two 
conformations, which are similar in structure, (Cα -RMSD of 1.7 Å), the transitions are relatively slow 
between the partially helical states. Although no experimental results for these interconversion rates 
between partially folded states for the free PUMA protein have been reported so far, it is known that 
conformational fluctuations in IDPs can be slowed by the presence of residual structure47. Indeed, exper-
imental studies on an analogue of the BPTI show slow interconversion rates between two partially folded 
conformations with different degrees of order48. NMR relaxation experiments for the compact molten 
globule NCBD domain of transcription factor CBP reported the presence of slow conformational fluc-
tuations in this IDP49. A theoretical study on an archetypal IDP sequence revealed slow interconversion 
between distinct conformations of the peptide in water50.

To understand the molecular mechanism of unfolding, we calculated the electrostatic and van der 
Waals components of the potential energy for the successive minimum-transition state-minimum sta-
tionary points in the discrete path31 leading from the helix to the most populated structure at 280 K 
(Fig. 5). This pathway is mainly downhill in energy, and the most important forces driving the unfolding 
are electrostatic (Fig. 5B), with a gain of approximately 400 kcal/mol on forming a more globular struc-
ture. The corresponding change in the van der Waals energy is negligible in comparison, with only about 
10 kcal/mol differece between the two end points (Fig. 5C). Hence it seems that electrostatics drive the 
unfolding and determine the instability of the contiguous helical form.

Structural characterisation of the partially folded ensemble. To provide a more detailed 
understanding of the electrostatic characteristics of PUMA at the residue level, we first analysed the 
hydrogen-bond network, defined using a distance cutoff of 3 Å and a maximum deviation from a linear 
angle of 40°. All the hydrogen bonds present for more than 40% of the simulation time considered for 
the analysis are associated with side chains of charged residues. The four most prevalent hydrogen bonds 
involve residues D146 with R154 and R155, R142 and E132, and R143 and E159. Looking at the positions 
of these charged residues in the structure of the most populated cluster (Fig. 6A), we see that they are 
located around the center of the U-shaped PUMA conformation.

We then performed a structural analysis of the PUMA protein and calculated contact maps for the 
structures in the four most populated clusters (Fig. 6B). Interactions between charged and hydrophobic 
residues are observed. For example, the strongest hydrophobic contacts involve I137, G138 and A139 
with L141, and M144 with L141. Significant interactions between charged residues occur for E132-R135, 
R143-D146 and R156-E158. These hydrophobic and charged interactions are also the most important 
ones observed in the contact map calculated for all the structures observed at 280 K (Supplementary 
Figure 4), where the number of the most populated hydrophobic and charged contacts lie within the 
same sequence ranges of 8 and 11 contacts, respectively. However, in the most populated cluster, it seems 
that the charged interactions are more prevalent than the hydrophobic ones, with 24 most populated 
compared to 10. Although some contacts are similar, different interaction patterns are observed for each 

Conformation 
B Population kB←A kA←B

1 12.4 10.5 0.27 ×  10−20

2 4.98 10.5 0.22 ×  10−16

3 4.4 0.43 ×  10−12 0.34 ×  10−37

4 4.1 0.35 ×  10−9 0.13 ×  10−30

5 3.98 0.43 ×  10−16 0.16 ×  10−32

6 3.25 0.26 ×  10−15 0.36 ×  10−37

7 2.98 0.97 ×  10−2 0.35 ×  10−19

8 2.94 0.21 ×  10−10 0.13 ×  10−29

9 2.89 0.5 ×  10−10 0.26 ×  10−18

10 2.82 0.16 ×  10−5 0.43 ×  10−22

Table 1.  Estimated rate contants (in s−1) at 280 K for the unfolding and folding from the contiguous  
α-helical conformation of the PUMA peptide to each of the 10 most populated structures from the REMD 
simulations, and their respective populations. The values for folding should be considered as lower bounds.
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cluster (Fig. 6B). This result could explain the diversity in the PUMA structures and hence the absence of 
one dominant single fold for the protein in the absence of binding partners, as suggested when looking 
at the population of each cluster at the same temperature (Table 1) and by the multifunneled character 
of the energy landscape.

Mutations of charged residues to alanine (for instance R143) do not destabilize the binding of PUMA 
to MCL-121. Although we cannot infer any details of the binding process, we can suggest explanations 
for this observation. It is conceivable that the disruption of just one charged residue does not perturb the 
electrostatic network much (Fig. 6A), as other charged residues may replace the missing contributions.

To characterise the effect of this substitution, we mutated one of the residues, R143, involved in the 
electrostatic network into an alanine in the structure of the most populated cluster at 280 K. The mutated 
structure was considered as a starting point for basin-hopping global optimisation using the GMIN 
program51. Here, we used rotation of side chain groups to explore the configuration space and hence 
investigate the effects of this mutation on the electrostatic network of the wild-type geometry. Overall, 
the resulting structures display the same pattern of charged interactions. The RMSD calculated using 
carbon atoms of the side chains is 0.6 and 1 Å for the six residues discussed previously (E132, R142, 
D146, R154, R155, E159) in the R143A mutant. This result again reflects the non-specific character of 
the electrostatic network formed within the PUMA protein.

Analysis of amino acid composition for IDPs has indeed shown that they typically contain numerous 
charged residues52,53, and the alternative electrostatic networks that can be formed in addition to hydro-
phobic contacts may contribute to the variety of molten-globule-like conformations observed in the 
PUMA protein when unbound, and hence its intrinsically disordered nature. Hydrophobic contacts 
could explain the overall preservation of helicity when varying the ionic strength, as determined exper-
imentally20. This globule-like phase in the conformational space of IDPs has been linked to the net charge 
per residue54 and the charge patterning in the sequence55. In strong polyampholytic IDPs, with an ele-
vated fraction of charged residues as for PUMA, the distribution of the charges in the sequence will 
influence the conformational properties of the protein. Das and Pappu55 have quantified this effect using 
a patterning variable termed κ, which ranges from 0 to 1, for a very symmetric distribution of charges 
and thus hairpin-like structures due to long-range electrostatic interactions between residues. For PUMA, 
κ is about 0.18 according to the webserver CIDER56, which correlates well with the partially folded states 
identified in our simulations.

Discussion
Experimental evidence regarding the binding of the intrinsically disorered protein PUMA to its partner, 
involved in subsequent activation of apoptosis in cells, suggests an induced fit mechanism21,22. These 
recent results show that no specific residual helicity or particular fold seem to be required for binding. 
In the present contribution, we have used a combination of computational methods to understand the 
behaviour in the absence of the binding partner to explain the induced fit mechanism. Our results show 

Figure 5. Energies in kcal/mol along the fastest path for the transition between the contiguous helical 
conformation of PUMA and the partially folded structure corresponding to the most populated 
conformation at 280 K. The potential energy (A) of each starting point is decomposed into (B) electrostatic 
and (C) van der Waals components.
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that the contiguous helical conformation of the protein is unstable, and the protein conformation ensem-
ble is mostly molten globule with low to medium residual helicity, in agreement with CD results20. Most 
importantly, our aim was to understand the molecular mechanism that drives the destabilisation of the 
helix in isolation.

Visualisation of the corresponding energy landscape reveals a multifunnel structure, with a num-
ber of alternative low-lying morphologies separated by high energy barriers. The funnel representing 
the helical structure is clearly unfavourable with respect to the partially folded structures, explaining 
why conformational selection for this protein is unlikely and has not been observed experimentally22. 
The calculated rate constants corresponding to the transition from the PUMA helix to partially folded 
molten-globule-like states indicate a fast unfolding relative to folding, governed mainly by electrostatic 
forces, while the reverse process is predicted to be much slower. We have also shown that interactions 
between both charged and hydrophobic residues contribute to the stability of the partially folded states, 
and thus to the structure of the landscape and its emergent properties.

Mutations of single charged residues into alanine do not perturb either association or dissociation 
of PUMA to its partner MCL-121, and we believe the reason is that the electrostatic network involves 
several charged amino acids, so mutation of one of these components to alanine can be compensated by 
another nearby charged residue.

We suggest that the multiple funnel structure is likely to characterise the landscapes of intrinsically 
disordered proteins, and this hypothesis will be tested in future work. The characterisation of such intrin-
sically disordered energy landscapes may provide a general approach to understand and calculate the 
properties of such systems.

Methods
Structure preparation. To compare our results with the studies of Rogers and coworkers20, we chose 
to work with the sequence 128-161 of the PUMA protein (Uniprot Q99ML1). The α-helical structure of 
the peptide was built using the PyMol software and is very similar to the NMR structure of the peptide 
(residues 130-156) in the bound state with MCL-1 (pdb id: 2ROC)19, with an RMSD of 1 Å. Molecular 
dynamics simulations were carried out using the AMBER99SB57 force field via the AMBER12 package58. 
NMR structural and relaxation data of the Aβ peptide were obtained using this force field in good agree-
ment with experimental data, justifying its use for IDPs59. The N-terminus and the C-terminus were 
acetylated and amidated respectively. To eliminate steric clashes between atoms, a minimisation 

Figure 6. (A) Most populated structure at 280 K, where the hydrogen bonds with an occurrence greater 
than 50% of the simulation time are included for the analysis. Residues implicated in the bonds are 
represented by sticks, the N-terminal Cα of the PUMA sequence is indicated by a sphere. (B) Contact maps 
calculated for the structures for the four most populated clusters.
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consisting of 500 steepest-descent steps was performed, followed by 500 steps of conjugate gradient, until 
the root mean square (RMS) gradient of the potential energy reached 10−4 kcal mol−1Å−1.

Dynamics Simulations in Explicit Solvent. The initial helical structure was solvated with TIP3P60 
water molecules in a box of dimension 330 nm3, with periodic boundary conditions applied for all molec-
ular dynamics (MD) simulations. The SHAKE algorithm61 was applied to constrain bonds involving 
hydrogen atoms, and a time step of 2 fs was applied. The temperatures used in the MD simulations were 
280 and 300 K, and a Langevin thermostat62 was used with a collision frequency of 2 ps−1. An initial min-
imisation with position restraints using a force constant of 500 kcal mol−1Å−2 on the PUMA protein was 
performed using 500 and 1,500 steepest-descent and conjugate gradient steps, respectively, in order to 
locally equilibrate the water and ions. Another minimisation was performed without any restraints on the 
protein for 1,000 steepest-descent steps followed by 3,000 conjugate gradient steps. Both minimisations 
were continued until the RMS gradient of the potential energy reached 10−4 kcal mol−1Å−1. Next, the 
solvent was heated to the required temperature for 20 ps with moderate restraints on the protein using a 
force constant of 10 kcal mol−1 Å−2. To allow the solvent density to equilibrate, a 500 ps NPT simulation 
was then performed with isotropic position scaling to a reference pressure of 1 bar. Finally, the produc-
tion simulations using NVT conditions were run for a total of 600 ns at each temperature.

Replica Exchange Molecular Dynamics. Replica exchange molecular dynamics (REMD)28 simula-
tions were performed using the relaxed conformation of PUMA with 20 replicas at temperatures ranging 
from 223.7 to 650 K. The generalised Born model was used for an implicit solvent representation63. 
Temperatures were controlled using a Langevin thermostat with a collision frequency of 2.0 ps−1. The 
maximum interatomic distance for computing the effective Born radii was set to 25 Å, and no truncation 
was applied to the nonbonded interactions. Each simulation was equilibrated for 400 ps to reach the 
selected temperature for the REMD simulations. The production run consisted of a total of 140 ns for 
each replica, resulting in a total simulation time of 2.8 µs. Exchanges were attempted every ps leading to 
an acceptance ratio of approximately 22%. The analysis was performed using the ptraj tools in the 
AMBER program, excluding the first 30 ns of the simulation for convergence purposes. The multistate 
Bennett acceptance ratio method (MBAR) of Shirts and Chodera64, a binless-equivalent to the weighted 
histogram analysis method65, was used to analyse the REMD trajectories. Clustering of the trajectories 
was performed on dihedral angles using the cluster tool in the MMTSB toolset66 with an angle cutoff of 
40º. Secondary structure analysis was performed using the DSSP implementation in the AMBER trajec-
tory analysis tools67.

Exploring the potential energy landscape with basin-hopping. Exploration of the potential 
energy landscape was performed largely via basin-hopping68,51, an efficient strategy for global optimi-
sation. The method consists of trial perturbations in configuration space, each followed by local energy 
minimisations, resulting in a set of configurational minima on the potential energy landscape. The 
acceptance criteria for a given trial move are determined by the energy difference between minima, as 
well as a user-specified temperature parameter. Because detailed balance is not required, the method 
affords great flexibility in choosing step sizes and temperature parameters that optimise sampling. As a 
result, basin-hopping can rapidly explore the potential energy landscape.

Basin-hopping was performed for the PUMA mutation R143A with ×2 104 steps. The trial moves 
consisted of Cartesian displacements, pivot moves (i.e. rotations of the amino acid chain about a back-
bone dihedral angle), and rotations of R-group segments about various R-group bonds.

Discrete path sampling. After clustering the REMD trajectory at the desired temperature, path-
ways connecting the 10 most populated clusters of PUMA were calculated, along with the contigu-
ous helical conformation of the protein. Transition state candidates were produced as initial guesses 
using the doubly-nudged69 elastic band algorithm70. These candidates were tightly converged using a 
hybrid eigenvector-following approach71. Local minima were obtained using a modified limited-memory 
Broyden-Fletcher-Golgfarb-Shano (L-BFGS) algorithm72. Once an initial connected path between the 
chosen end points was found, the stationary point database was grown by addition of all minima and 
transition states identified in successive connection attempts for pairs of minima already existing in the 
database73. This approach, discrete path sampling (DPS)31, is implemented in the program PATHSAMPLE, 
which organises parallel connection attempts using the OPTIM program.

The rate constant between the two selected end points can be expressed as the sum over all discrete 
paths between product and reactant states31,74. The discrete paths that make the largest contribution to 
this rate constant were calculated using the Dijkstra algorithm, and the highest potential energy barriers 
on this path were identified. The procedure SHORTCUT BARRIER45 implemented in PATHSAMPLE 
was used to refine the database, until the rate constants converged to within an order of magnitude. 
Artificial kinetic traps were eliminated using the UNTRAP procedure45, which attempts to connect min-
ima close in distance to the product set but separated by high barriers. The resulting database consisted 
of 205,677 minima and 191,392 transition states and was visualised using disconnectivity graphs32,33. 
The database of minima obtained from the DPS method was used to calculate free energies using the 
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harmonic superposition approximation75. Phenomenological two-state rate constants, denoted kAB and 
kBA for the transitions from B to A and A to B respectively, were calculated using the graph transfor-
mation approach74,76 from the complete database after regrouping self-consistently structures that were 
separated by free energy barriers below a certain threshold77 (3 kcal/mol in this work).
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