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Multi-institutional Validation of a Novel Textural
Analysis Tool for Preoperative Stratification of Suspected
Thyroid Tumors on Diffusion-Weighted MRI
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Purpose: Ultrasound-guided fine needle aspirate cytology fails
to diagnose many malignant thyroid nodules; consequently,
patients may undergo diagnostic lobectomy. This study

assessed whether textural analysis (TA) could noninvasively
stratify thyroid nodules accurately using diffusion-weighted

MRI (DW-MRI).
Methods: This multi-institutional study examined 3T DW-MRI
images obtained with spin echo echo planar imaging sequences.

The training data set included 26 patients from Cambridge,
United Kingdom, and the test data set included 18 thyroid cancer
patients from Memorial Sloan Kettering Cancer Center (New

York, New York, USA). Apparent diffusion coefficients (ADCs)
were compared over regions of interest (ROIs) defined on thyroid

nodules. TA, linear discriminant analysis (LDA), and feature
reduction were performed using the 21 MaZda-generated texture
parameters that best distinguished benign and malignant ROIs.

Results: Training data set mean ADC values were significantly

different for benign and malignant nodules (P¼0.02) with a
sensitivity and specificity of 70% and 63%, respectively, and a
receiver operator characteristic (ROC) area under the curve

(AUC) of 0.73. The LDA model of the top 21 textural features
correctly classified 89/94 DW-MRI ROIs with 92% sensitivity,

96% specificity, and an AUC of 0.97. This algorithm correctly
classified 16/18 (89%) patients in the independently obtained
test set of thyroid DW-MRI scans.

Conclusion: TA classifies thyroid nodules with high sensitivity
and specificity on multi-institutional DW-MRI data sets. This

method requires further validation in a larger prospective
study. Magn Reson Med 000:000–000, 2015. VC 2015 The
Authors. Magnetic Resonance in Medicine published by
Wiley Periodicals, Inc. on behalf of International Society
for Magnetic Resonance in Medicine. This is an open
access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is
properly cited.
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INTRODUCTION

Thyroid cancer is the most common malignant endocrine
tumor, with an annual incidence in the United States of
12.2 per 100,000 in men and women per year (1). Thyroid
nodules may have benign or malignant pathology and are
diagnosed before surgery using ultrasound-guided fine
needle aspirate cytology (FNAC), the current gold stand-
ard. Thyroid nodules are common and ultrasound is an
excellent screening tool to determine which nodules
require FNAC. Despite repeated aspirates, however, up to
7% of nodules yield nondiagnostic cytology, classified as
Thy1 (2). A further 15%–30% of FNACs represent an
indeterminate cytology (Thy3), where a follicular or
Hurthle cell neoplasm is reported (3). The risk of malig-
nancy within these Thy1 and Thy3 indeterminate nod-
ules is 20%–30% (4). These cytological categories with
management recommendations are shown in Table 1.

A thyroid lobectomy may be therapeutic for Thy3
(indeterminate) patients if the histology is benign. How-
ever, if a malignant diagnosis is made, patients are likely
to need completion thyroidectomy with central compart-
ment lymph node dissection followed by radioiodine
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therapy. Accurate preoperative diagnosis would therefore
improve surgical planning as well as reduce unnecessary
operations, since patients with malignant tumors would
receive one definitive operation. Thus, more research is
needed to explore new modalities that discriminate
between malignant and benign thyroid nodules.

Recent interest has centered on DW-MRI, which meas-
ures the apparent diffusivity of tissue water. When
diffusion-sensitizing magnetic gradients are applied,
Brownian motion of water protons creates a DW-MRI sig-
nal that can be used to generate maps of the apparent dif-
fusion coefficient (ADC). Diffusion measurements can
provide insight into tissue structure and organization, and
can discriminate between benign and malignant tumors in
organs such as the breast, liver, and uterus (5). It is hypothe-
sized that because of the increased cell proliferation in

malignant tumors, water protons undergo less Brownian
motion, thus lowering ADC. Several recent studies of thy-
roid nodules in small cohorts of patients have supported
this hypothesis, as delineated in Table 2 (6–12).

Textural analysis (TA) has become an attractive clini-
cal tool, as it quantifies pixel intensity variation other-
wise invisible to the naked eye and thus aids in
characterizing underlying tissue structures. Several TA
studies have shown good discrimination of thyroid nod-
ules on ultrasound images (13–15) and better distinction
between benign and malignant thyroid lesions on nuclear
chromatin images (16), but none have used TA on DW-
MRI scans of the thyroid. The aim of this study was to
assess whether textural analysis could improve the accu-
racy, sensitivity, and specificity of DW-MRI for the strati-
fication of malignancy in suspicious thyroid nodules.

Table 1
Thyroid Nodule Cytology Classification Schema According to the 2007 British Thyroid Association Guidelines

Thy1 Thy2 Thy3 Thy4 Thy5

Definition Nondiagnostic/cysts Nonneoplastic Indeterminate Suspicious for malignancy Malignant
Current management

recommendations
Repeat FNAC and

ultrasonography

at follow-up

Repeat FNAC
3–6 months

Diagnostic
lobectomy

Repeat FNAC, then either
diagnostic lobectomy

or radical treatment

Radical treatment

Table 2

Comparison of Thyroid Tumor DW-MRI Studies

Study/Tissue Type n Mean ADC (�10�3 mm2/s) 6 SD Optimum ADC Threshold

Razek et al. (6) 0.98 � 10�3 mm2/s

Benign
Adenomatous nodule 42 1.8 6 0.14

Follicular adenoma 6 1.7 6 0.17
Cyst 8 1.9 6 0.38

Malignant

Papillary 4 0.68 6 0.23
Follicular 3 0.77 6 0.17

Bozgeyik et al. (7) 0.62 � 10�3 mm2/s

Benign 88 1.15 6 0.43

Malignant 5 0.30 6 0.20

Schueller-Weidekamm et al. (8) 2.25 � 10�3 mm2/s

Benign 20 1.93 6 0.25
Malignant 5 2.73 6 0.65

Contralateral 20 1.44 6 0.65

Erdem et al. (9) NA

Benign 52 2.75 6 0.60
Malignant 9 0.70 6 0.31
Control normal 24 1.34 6 0.28

Nakahira et al. (10) 1.60 � 10�3 mm2/s

Benign 23 1.93 6 0.37

Malignant 19 1.20 6 0.25

Mutlu at al. (11) 1.60 � 10�3 mm2/s

Benign 46 1.6 6 0.1
Malignant 5 0.8 6 0.2

Dilli et al. (12) NA

Benign 40 1.98 6 0.48

Malignant 19 0.83 6 0.18

Abbreviations: NA, not available; SD, standard deviation.

2 Brown et al.



METHODS

Two cohorts of patients, from the Cambridge University
Foundation Hospital Trust, UK (Cambridge) and Memorial
Sloan Kettering Cancer Center, USA (MSKCC) were included
in this multi-institutional study. The clinical protocols and
methods of analysis at each institution are described below.

Training Data Set, Cambridge University Hospitals
Foundation Trust, UK

Study Design and Patient Population

A total of 42 patients (11 men, mean age 57.1 y [range,
29–79 y]; 31 women, mean age 42.9 years [range, 18–78
y]) with a preoperative cytological status that was inde-
terminate (Thy3), suspicious (Thy4), or diagnostic of thy-
roid cancer (Thy5) were prospectively recruited into this
pilot study between February 2010 and January 2012,
following ethical approval granted by the Local Research
Ethics Committee in January 2010. The inclusion criteria
for the study were: 1) proven Thy3–Thy5 thyroid lesions
on cytological classification; 2) a follicular neoplasm,
suspected malignancy, or an inconclusive lesion on
ultrasound-guided thyroid core biopsy; and 3) a plan for
surgical excision. Exclusion criteria included the typical
contraindications to MR imaging. Initially, FNAC or core
biopsy was performed on all nodules and reported by an
experienced cytologist or pathologist. Next, patients
underwent preoperative MRI (protocol below). Two
patients then opted out of surgical treatment and were
excluded from the study. The remaining 40 patients
underwent thyroid surgery. The type of thyroid surgery
depended on the recommendation of the local thyroid
multidisciplinary team meeting, which followed the
2007 British Thyroid Association Guidelines (see Table
1). The postoperative histology and nodule dimensions
for the 40 patients who underwent surgery were reported
by an experienced pathologist and correlated to the pre-
operative images.

MRI Protocol

MRI studies were conducted with a 3T HDx scanner (GE
Healthcare, Waukesha, Wisconsin, USA). Signals were
transmitted using a body coil and were received using
two channels of a four-channel phased array surface coil
(Machnet BV, Elde, The Netherlands) designed for stud-
ies of the carotid arteries. One arm of the coil was cen-
tered over the area of interest (thyroid nodule) to
maximize local sensitivity and secured by a soft cervical
collar to reduce motion artifact. After a three-plane local-
izer, the following sequences were performed:

1. Fast spin echo axial T1: echo time (TE)¼12 ms, repeti-
tion time (TR)¼ 580 ms, field of view (FOV)¼ 18 cm,
matrix¼ 256 � 192, number of averages¼4, and num-
ber of slices¼ 15 (slice thickness¼5 mm,
spacing¼1 mm); scan duration¼ 2 min, 31 s.

2. Fast spin echo axial T2: TE¼ 102 ms, TR¼ 3780 ms,
FOV¼18 cm, matrix¼384 � 256, number of
averages¼2, and number of slices¼ 15 (slice
thickness¼ 5 mm, spacing¼ 1 mm); scan duration¼ 1
min, 38 s.

3. Fast spin echo axial T2 with fat saturation: same as
sequence 2, except TR¼ 3360 ms, matrix 320 � 192,
and a chemical shift selective fat suppression pulse
was used; scan duration¼1 min, 13 s.

4. Diffusion-weighted dual spin echo planar imaging
(DW-EPI): TE¼ 81 ms, TR¼2200 ms, FOV¼ 22 cm,
matrix¼ 128 � 128, and number of averages¼16
(slice thickness¼ 5 mm, spacing¼1 mm); scan
duration¼ 2 min, 21 s; b values of 0 and 500 s/mm2

were acquired.

Fat saturation was achieved using both a spectrally
selective saturation pulse and a water-selective excita-
tion pulse. Spatial saturation bands were also used to
remove signal from overlying fat and other nearby tis-
sues. The scanner software automatically interpolated
the images to a reconstructed matrix of 256 � 256 by
zero-filling k-space.

Image Analysis

The ADC maps were calculated by fitting the signal inten-
sities in the images with b values of 0 and 500 s/mm2 as
follows:

S 500ð Þ ¼ S 0ð Þ� exp �500�ADCð Þ [1]

An experienced neuroradiologist who was blinded to
the clinical data of the subjects drew regions of interest
(ROIs) around the thyroid lesions on each image slice
containing a lesion, avoiding any obvious cysts or hema-
tomata from previous biopsy. ROI measurements were
defined on ADC maps, with reference to the T2-weighted
images, using an Advantage Windows workstation and
FuncTool software (GE Healthcare). Images where a thy-
roid nodule was not clearly identified (due to the small
volume of noncystic tissue sampled or to the severity of
DW-MRI–related distortions) were excluded from analy-
sis. Sixteen patients were excluded due to withdrawal
from surgery (n¼ 2), image distortion (n¼ 4), nodule too
small to be identified (<10 mm) (n¼ 3), and cystic nod-
ule (n¼ 7), leaving 26 patients with reliable images for
analysis. In this cohort, there were 10 patients with
malignant nodules and 16 patients with benign pathol-
ogy. To maintain consistency with the test data set,
which was a population of exclusively papillary carcino-
mas, the malignant nodules in the local data set were
limited to the eight cases of papillary carcinoma. A total
of 24 patients with 94 image slices were included in the
final training set for analysis. The number of image slices
per patient ranged from 1 to 7 in the training set
(mean¼ 4).

The mean ADC values for each slice in the nodule
were derived using FuncTool software. The mean ADCs
from multiple slices were then pooled as follows:

�x ¼ w1x1 þw2x2 þ � � � þwnxn

w1 þw2 þ � � � þwn
[2]

where �x is the overall weighted-mean ADC, w1 is the
area of the first ROI, x1 is the mean ADC of the first ROI,
w2 is the area of the second ROI, x2 is the mean ADC of
the second ROI, and so forth.
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Statistical Analysis

Weighted-mean ADC values were plotted against postop-
erative histology (benign and malignant thyroid tissue)
and the ROI areas and 95% confidence intervals (CIs)
were calculated using GraphPad Prism (version 5.00 for
Windows; GraphPad Software, San Diego, California,
USA). A two-sample t test was used to compare mean
values between benign and malignant cases.

Test Data Set, Memorial Sloan Kettering Cancer Center

Study Design and Patient Population

Between January 2011 and March 2012, a convenience
sample of 25 adult patients (�18 years) undergoing surgi-
cal consultation for thyroidectomy on the basis of a thy-
roid nodule FNAC either 1) demonstrating papillary
thyroid cancer or 2) suspicious for thyroid cancer were
enrolled in a prospective clinical trial evaluating multi-
parametric MRI including DW-MRI in the preoperative
evaluation of head and neck tumors. The prospective
protocol was approved by the MSKCC local institutional
review board. After providing appropriate informed con-
sent, all subjects underwent research MRI prior to thy-
roid surgery. The exclusion criteria were 1) presence of
contraindication to MRI, 2) tumor size >5 cm (as
detected by ultrasonography), and 3) claustrophobia. Of
the 25 patients initially enrolled in the study, seven
patients were excluded from the study due to either dis-
torted image quality (n¼ 5) or small tumor size such that
visualization was difficult on DW-MRI images (n¼2).
Eighteen patients were suitable for the final analysis.

MRI Protocol

MRI examination was performed on a 3T HDx scanner
(GE Healthcare) using an eight-channel neurovascular
phased-array coil. The MRI study consisted of standard
multiplanar (sagittal, axial, coronal) T1- and T2-weighted
imaging scans followed by DW-MRI scans. The duration
of the entire examination was approximately 30 min.

The T1- and T2-weighted MRI scans covered the whole
thyroid gland with a slice thickness of 5 mm, FOV of
20–24 cm, and acquisition matrix of 256 � 256. For the
T1-weighted MRI, the TR and TE were 500 ms and 15
ms, respectively; for the T2-weighted MRI, the TR and
TE were 4000 ms and 80 ms, respectively.

DW-MRI data were acquired using a single-shot EPI spin
echo sequence (TR¼ 4000 ms; TE¼ 98–104 ms; number of
excitations¼4; 3 orthogonal directions) with b values of 0
and 500 s/mm2. Fat suppression, shimming (shimming
FOV¼ 14–16 cm), and parallel imaging (acceleration
factor¼ 2) techniques were used. The DW-MRI scans were
focused on thyroid tumors using the following parameters:
number of slices¼ 4–8, slice thickness¼ 5 mm, gap¼ 0 mm,
FOV¼ 20–24 cm, and acquisition matrix¼128 � 128 (zero-
filled and reconstructed to 256 � 256 pixels). Images were
all obtained in axial planes.

Image Analysis

The ROIs for papillary thyroid cancers were placed within
the thyroid gland images avoiding obvious cystic, hemor-
rhagic, or calcified portions. Based on the radiological and
clinical information including ultrasound reports, they
were drawn on the DW-MR images by a neuroradiologist
who had more than 10 years of experience. The ROI
encompassed the entire nodule of interest with a mini-
mum two-dimensional ROI considered to be 17 mm2 (ie,
17 pixels). The ADC values were calculated using Equa-
tion [1] with b values of 0 and 500 s/mm2. A noise floor
rectification scheme was used in the ADC calculation (17),
which was performed on a voxel-by-voxel basis, generat-
ing an ADC map as well as averaged values for the ROIs.

Textural Analysis

Textural analysis (TA) was performed using MaZda
(Institute of Electronics, Technical University of Ł�od�z,
W�olcza�nska, Poland), a freely available software package
(18–20). Two-dimensional ROIs delineated by radiolog-
ists at each institution were transferred to MaZda by
using binary masks in ImageJ (National Institutes of
Health, Bethesda, Maryland, USA). An example of the
ROI transfer process is shown in Fig. 1.

Training Data Set Analysis

The MaZda textural analysis resulted in a report with
more than 300 texture parameters for each ROI in the
training data set. There were seven texture feature catego-
ries included in this analysis: run-length matrix, wavelet
transform, gradient, geometric, histogram, and autoregres-
sive model parameters in addition to features derived

FIG. 1. ADC images for a patient with a follicular adenoma from the training set. (a) Neuroradiologist-defined ROI of the lesion on a

bitmap-format ADC map in FuncTool. (b) The same ROI shown on the original resolution DICOM-format ADC map in ImageJ.
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from co-occurrence matrices in four directions (0�, 45�,
90�, and 135�) at pixel pair distances ranging from 1 to 5
pixels in separation. Feature reduction was necessary to
reduce the dimensionality. MaZda offers three feature
reduction algorithms: mutual information, Fisher coeffi-
cient, and classification error probability and average cor-
relation coefficients (POEþACC). Each algorithm
determined the 10 texture features that best distinguished
the selected classes in the program (eg, benign and malig-
nant), such that a combined total of up to 30 parameters
were identified for further investigation (21–23). This
dimensionality was further reduced by exporting the
selected features into the statistical package b11 (Institute
of Electronics, Technical University of Ł�od�z). Within b11,
subsets of the top 30 parameters were further evaluated
by sequentially eliminating features of lower significance
based on the MaZda-assigned rank (eg, top 29, top 28, top
27, etc., down to the top two parameters). The misclassifi-
cation rate for distinguishing benign and malignant nod-
ules using linear discriminant analysis (LDA) for each of
these subsets was then observed. The final subset achiev-
ing the lowest misclassification rate was selected for the
LDA model. The resultant most discriminant factor 1
(MDF1) values in the LDA model of the training set were
exported into GraphPad Prism to determine the sensitiv-
ity and specificity of the selected cutoff MDF1 value and
to generate a receiver operator characteristic (ROC) curve.
Additional analysis included comparing the number of
central slices and end slices that were misclassified in
nodules containing at least three slices, and classifying
thyroid nodules on the basis of the slice containing the
lowest MDF1 value (lowest scoring slice). The lowest
scoring slice was considered rather than the highest scor-
ing slice in order to minimize false positive results.

Test Data Set Analysis

The DW-EPI images and ROIs of the test data set were
imported into MaZda and processed in the same way as
the training set to generate >300 texture features per ROI
using the same seven texture classes as were considered
for the training set. Next, the MDF1 was calculated using
the same LDA model equation and final subset of param-
eters used for the training set. The resultant MDF1 val-
ues were used to classify the test set samples into either
malignant or benign categories, based on the predefined
training set MDF1 cutoff value. The additional compari-
sons of central versus end slice misclassification rates
and lowest scoring slice analysis as described in the
prior section were also performed.

RESULTS

Training Data Set

The T2-weighted and DW-EPI images were collected in
40 patients and achieved sufficient quality for reliable
ROI definition in 26 patients with a variety of benign
and malignant tumor subtypes. Fig. 1 depicts an exam-
ple of one patient’s ADC maps with ROIs drawn avoid-
ing a cystic area. Each ROI was originally delineated by
an experienced neuroradiologist using the FuncTool
software (GE Healthcare) and subsequently carefully
traced using ImageJ software onto the original resolu-
tion ADC maps so that binary masks of these ROIs
could be imported into MaZda to preserve the original
ROI locations. For each patient, the entire nodule was
classified as benign or malignant on the basis of histo-
logical analysis. The maximum nodule diameter was
determined, with a mean and standard deviation of

FIG. 2. (a) Overall weighted mean and

95% CI of the ADC values of benign and
malignant thyroid tumors for DW-EPI

(P¼0.02 for the difference between
means). The overall weighted mean ADC
for benign tumors was 2.24 � 10�3 mm2/s

(95% CI, 2.09–2.39), and for papillary car-
cinoma malignant tumors it was 1.92 �
10�3 mm2/s (95% CI, 1.65–2.19). The fol-

licular carcinoma (n¼1) and neuroendo-
crine (n¼1) tumors shown in this graph

were not included in the final analysis. (b)
ROC curve for performance of ADC using
a cutoff value of 2.16 � 10�3 mm2/s to

distinguish benign and malignant nodules
demonstrates an AUC of 0.73 (95% CI,

0.51–0.95), sensitivity of 70%, and speci-
ficity of 63%.
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29.3 6 8.0 mm for the benign nodules and
33.3 6 10.4 mm for the malignant nodules.

The performance of ADC alone in distinguishing
malignant and benign nodules was determined. Fig. 2
shows the overall weighted-mean ADC values for benign
and malignant tumors, with means for each patient and
corresponding subtype of thyroid nodule. The overall
weighted-mean ADC for benign tumors was 2.24 � 10�3

mm2/s (95% CI, 2.09–2.39) and for malignant tumors
was 1.92 � 10�3 mm2/s (95% CI, 1.65–2.19). The differ-
ence between the means of the benign and malignant
nodules was significant (P¼0.02); however, there was
overlap between the CIs, resulting in an area under the
curve (AUC) of 0.73 (95% CI, 0.51–0.95), sensitivity of
70%, and specificity of 63% on ROC analysis using a
cutoff ADC value of 2.16 � 10�3 mm2/s.

For the training set malignant category, only nodules
containing papillary carcinoma were included. Texture
analysis on the DW-EPI images yielded higher sensitivity
and specificity values (Fig. 3) than the ADC analysis.
Table 3 lists the original top 30 MaZda texture analysis
parameters obtained by using the three feature-reduction
algorithms (mutual information, Fisher coefficient, and
POEþACC), the final subset of the top 21 parameters
used for the LDA model, and the corresponding texture

classes for each parameter. This texture analysis LDA
model used a cutoff MDF1 value of >0.03265 as the
basis for classification as malignant. It correctly classi-
fied 89 of 94 thyroid nodule slices in the training set,
resulting in a misclassification rate of 5.3%, an area
under the curve (AUC) of 0.97 (95% CI, 0.92–1.0), and
the sensitivity and specificity values were 92% and
96%, respectively. Of the five misclassified slices, one
was a central slice (slice 2 of 7) and four were end slices
(either the first or last slice). Distinguishing whole thy-
roid nodules on the basis of the slice per nodule with
the lowest MDF1 value (lowest scoring slice) resulted in
correct classification of 22/24 nodules in the training set
based on the predefined cutoff value (Fig. 3).

Test Data Set

Our LDA model was tested on an independent data set
from MSKCC containing papillary carcinoma thyroid
nodules. The mean ADC value for this cohort was 1.80 �
10�3 mm2/s (95% CI, 1.52–2.08). Using the same 21 tex-
ture parameters from the training set LDA model, 32/34
slices were classified correctly, resulting in an overall
misclassification rate of 5.9% (Fig. 4). Using the same
cutoff MDF1 value of the training set (>0.03265), this

FIG. 3. Texture-based classification of individual images (a-c) and the nodule as a whole (d). (a) Output from b11 for the LDA classification
MDF1 values for all 94 slices of the training set. MDF1 values are shown for benign and malignant slices, where the red 1 symbol ¼
benign and the green 2 symbol¼malignant. Eighty-nine of the 94 slices were classified correctly using a cutoff value of 0.03265. (b) Mean
and standard deviation of the benign and malignant MDF1 values. (c) ROC curve for using this MDF1 cutoff as a diagnostic tool
(P<0.0001 and AUC of 0.97 [95% CI, 0.92–1.0]). (d) LDA classification results for the slice with the lowest MDF1 value per patient (lowest

scoring slice analysis). Twenty-two of the 24 nodules were classified correctly using the same training set cutoff value of 0.03265. The
mean and standard deviation values are shown along with separate points for each nodule. The two misclassified nodules were both

malignant and are shown in red.
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resulted in a sensitivity of 89% (95% CI, 65–99) and
specificity of 97% (95% CI, 74–100). Of the two misclas-
sified slices, one was a central slice (2 of 3) and one was
an end slice. The lowest scoring slice analysis correctly
classified 16/18 nodules in the test set (Fig. 4).

DISCUSSION

Comparisons with Other Studies

Our results comparing benign and malignant ADCs are
consistent with recent reports, as shown in Table 2 (6–12).
All of these reports except one (8) found lower ADCs in
malignant thyroid nodules compared with benign nod-
ules, supporting the hypothesis that increased cellularity
and reduced extracellular extravascular space restrict
water diffusion in malignant nodules (24). However, our
results indicated poor sensitivity and specificity for using
ADC alone to discriminate benign and malignant pathol-
ogy. This could be due to cytological similarities, because
both malignant and benign follicular thyroid tumors may
be well-differentiated and exhibit significant cytological
overlap (25). Additionally, in our study some small cystic
and necrotic areas may have been included in the ROIs
despite efforts to avoid them, which would have artifactu-
ally increased the mean ADC value of the nodule.

Strengths of the Study

To our knowledge, this is the first attempt to use texture
analysis (TA) for diffusion-weighted imaging of suspected

thyroid tumor nodules. Validating this model on an inde-
pendent data set from another institution provides addi-
tional evidence that this tool can be implemented in a
clinical setting and is robust against institutional differen-
ces in imaging equipment and technique. Our study dem-
onstrates very high performance for both the training and
test data sets as evidence of this robustness.

Limitations of DW-MRI Results

The DW-MRI images showed distortion at 3T, and, based
on neuroradiologist exclusion criteria, only 26/40 patients
(University of Cambridge) and 18/25 patients (MSKCC)
had images that could be interpreted. MSKCC excluded
seven patients due to either distorted image quality
(n¼ 5) or small tumor size resulting in poor visualization
on DW-MRI images (n¼ 2). Of note, seven cystic nodules
(University of Cambridge) were excluded. However, other
common thyroid imaging techniques such as ultrasound
elastography are also unable to image cystic nodules (26).
Better pulse sequences are necessary to reduce image dis-
tortion and improve interpretability such that radiologists
are able to draw reliable ROIs around small nodules. One
potential method that merits further investigation is
reduced FOV DW-EPI (27), which has previously shown
less distortion in diffusion imaging of the kidneys (28).

Possible Methodological Improvements

The small sample size of this study (24 patients in the
training set [University of Cambridge], 18 in the test set

Table 3
Top 30 Texture Parameters and Top 21 Feature Subset for Thyroid Stratification Model

MaZda Rank Texture Class Top 30 Texture Parameters Top 21 Feature Subset

1 Geometric GeoY GeoY
2 Geometric GeoX GeoX
3 Co-occurrence matrix S(0,3)SumAverg S(0,3)SumAverg

4 Co-occurrence matrix S(0,4)SumAverg S(0,4)SumAverg
5 Co-occurrence matrix S(0,1)SumAverg S(0,1)SumAverg

6 Co-occurrence matrix S(0,2)SumAverg S(0,2)SumAverg
7 Co-occurrence matrix S(0,5)SumAverg S(0,5)SumAverg
8 Co-occurrence matrix S(2,0)SumOfSqs S(2,0)SumOfSqs

9 Co-occurrence matrix S(1,0)SumOfSqs S(1,0)SumOfSqs
10 Co-occurrence matrix S(2,2)Correlat S(2,2)Correlat

11 Geometric GeoM2xy GeoM2xy
12 Co-occurrence matrix S(1,0)SumVarnc S(1,0)SumVarnc
13 Co-occurrence matrix S(3,-3)DifVarnc S(3,-3)DifVarnc

14 Geometric GeoS2 GeoS2
15 Geometric GeoXYo GeoXYo
16 Autoregressive model Teta1 Teta1

17 Co-occurrence matrix S(2,0)SumAverg S(2,0)SumAverg
18 Geometric GeoYo GeoYo

19 Wavelet transform WavEnHH_s-3 WavEnHH_s-3
20 Co-occurrence matrix S(5,5)DifEntrp S(5,5)DifEntrp
21 Co-occurrence matrix S(1,0)SumAverg S(1,0)SumAverg

22 Co-occurrence matrix S(1,1)SumAverg
23 Wavelet transform WavEnLL_s-3

24 Co-occurrence matrix S(2,2)SumAverg
25 Co-occurrence matrix S(1,-1)SumAverg
26 Co-occurrence matrix S(2,-2)SumAverg

27 Co-occurrence matrix S(3,0)SumAverg
28 Co-occurrence matrix S(3,3)SumAverg

29 Co-occurrence matrix S(4,0)SumAverg
30 Co-occurrence matrix S(3,-3)SumAverg
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[MSKCC]) results in underrepresentation of several
tumor subtypes. Moreover, our decision to limit the
malignant pathology in our training set to only papillary
carcinomas reduces its universal applicability to distin-
guish benign nodules from other types of malignant
pathology. A larger study is required, including all com-
mon tumor pathologies.

Another concern is that the large number of texture
parameters used for the LDA model may “overfit” the
training set, as the 21 parameters were combined into a
linear discriminant analysis model to represent the 94
slices in the training set. To reduce the risk of overfit-
ting, the top 30 parameters from the three feature reduc-
tion tools of the original MaZda output were further
examined in subsets in an attempt to reduce the dimen-
sionality of the texture parameters while still achieving
the lowest misclassification rate; that resulted in the
number of texture features being reduced from 30 to 21
parameters. It is encouraging that 32/34 slices in the
independently obtained test set from another institution
were classified correctly. However the number of param-

eters is still quite large relative to the size of the data set;
therefore, overfitting remains a risk. Testing this tool on
larger data sets will better characterize its robustness.

One potential technical concern is that the image reso-
lution of 256 � 256, obtained after scanner software
zero-fill interpolation, may alter the image’s textural
properties when compared with the original images in
which the resolution was determined by pulse sequence
parameters (128 � 128). Previous studies have shown
that zero-fill interpolated images enhance the textural
differences of physically distinct structures (29,30). How-
ever, it is routine clinical practice to use MR scanner
software to interpolate images by automatic zero-filling
of k-space to achieve a resolution of 256 � 256. Thus,
our results are reflective of results obtained using routine
clinical images.

An additional technical consideration is the difference
in TR between the diffusion MRI sequences used at the
two institutions. Variations in TE, TR, and other pulse
sequence variables have been shown to affect texture fea-
tures in phantom studies (31). Thus, the variation in TR
values used at the two institutions may impact the qual-
ity of the textural calculations; however, this concern
may be partially alleviated by the dominance of co-
occurrence matrix-derived texture parameters in our
LDA model. Co-occurrence-based features were found to
be the most robust of the texture categories examined by
Mayerhoefer et al. (31). This finding has been corrobo-
rated by recent studies that identified co-occurrence
matrix features as superior to all other texture classes in
distinguishing benign and malignant breast lesions (32)
and certain co-occurrence matrix features as helpful in
differentiating brain malignancies (33). Therefore,
although MRI acquisition parameters certainly need to
be taken into account in further clinical applications of
this technique, it is encouraging that our model is pri-
marily comprised of the co-occurrence features previ-
ously deemed robust in multiple clinical studies.

Furthermore, the low success rate of 26/40 reliable
ROIs (Cambridge data set) will not apply in future stud-
ies, since small and cystic lesions (n¼ 10 in the training
data set) could be identified by standard ultrasound, and
patients with inappropriate lesion characteristics would
not be offered the DW-MRI test. Patients excluded from
this study on the grounds of poor or distorted image
quality (n¼ 4 training set, n¼ 5 test set) present another
challenge. However, we anticipate that this problem will
also be greatly reduced in the future due to the develop-
ment of DW-MRI techniques with reduced distortion
(27). In principle, if thinner slices were analyzed, the
three-dimensional TA capability of MaZda could also
improve the classification, as patterns in the z-axis direc-
tion could be detected.

In conclusion, our pilot study indicates the potential
for textural analysis to be used on DW-MRI images for
noninvasively categorizing the malignancy of thyroid
nodules in a single, definitive procedure, thus sparing
patients from unnecessary operations and waiting times
associated with a diagnostic lobectomy. The current mul-
ticenter study shows promise for the limited patient pop-
ulation represented by our investigations. The ability of
the LDA method to classify images obtained in another

FIG. 4. (a) LDA classification most discriminant factor 1 (MDF1)

results for all 34 slices of the test set, with median and interquar-
tile ranges displayed alongside training set results. Thirty-two of
the 34 slices were classified correctly using the training set cutoff

value of 0.03265. (b) LDA classification results for the slice with
the lowest MDF1 value per patient (lowest scoring slice analysis)

for the test set. Sixteen of 18 nodules were classified correctly
using the same training set cutoff value of 0.03265 for MDF1 val-
ues. Mean and standard deviation values are shown along with

separate points for each nodule. One of the two misclassified test
set nodules is shown in red, and the other was an outlier (data

not shown; MDF1 value¼�13.5).
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institution using different imaging parameters suggests
that it will be robust. A larger, prospective study is now
needed to fully prove this model.
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