
The Use of Zirconium Hydride Blankets in a Minor Actinide/Thorium
Burner Sodium-Cooled Reactor for Void Coefficient Control with
Particular Reference to UK’s Plutonium Disposition Problem

Francisco J. Arias∗ and Geoffrey T. Parks
Department of Engineering, University of Cambridge

Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

The use of zirconium hydride (Th-ZrH1.6) blankets in a thorium-fuelled sodium-cooled reactor
for void reactivity control with particular reference to UK’s plutonium disposition problem is
proposed and considered. It is shown that, with the use of such blankets, a mild moderation effect
is produced during voiding which compensates for the general hardening of the spectrum, enabling
a net negative void coefficient at pin level to be attained without the need to rely on traditional
neutron leakage enhancement techniques or neutron poisons, and with negligible impact on
transmutation capabilities. One important difference in comparison with the traditional methods
is that the void coefficient is obtained at the pin level, eliminating or mitigating substantially
the spatial dependencies on the location of the void. Combining the use of such blankets with
a suitable n-batch fuelling scheme yields a negative void reactivity coefficient throughout the life
of fuel. Additional research and development are required to explore further this concept’s potential.
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I. INTRODUCTION

The UK has the largest civil stockpile of separated plu-
tonium in the world, totalling some 112 tonnes, most
of it from reprocessing spent fuel over the years. This
represents a major storage liability and a proliferation
risk, costing the government ∼£80M/yr [1]. The ques-
tion of what to do with this plutonium has vexed succes-
sive governments for decades. Plutonium management
options include continued long-term storage, disposal in
a long-term repository, and reuse as nuclear fuel [2]. A
number of different plutonium storage options have been
proposed [3].

Following a public consultation, in December 2011 the
UK Department of Energy & Climate Change announced
that the favored management strategy is to use the pluto-
nium in mixed-oxide (MOX) fuel at an unspecified future
date [4]. This fuel could be used to fuel conventional re-
actors, such as those planned for the UK’s new nuclear
build. This strategy would convert the plutonium into
spent fuel that would still need storage, but it would no
longer pose a proliferation risk.

However, manufacturing MOX fuel is not straightfor-
ward and the UK’s recent record is not good. A MOX
plant at Sellafield, part of the Thermal Oxide Reprocess-
ing Plant (THORP) facility, cost £1.2G but only pro-
duced five tonnes of fuel per year for its first five years,
despite a 120-tonne-per-year design capacity, and closed
down due to lack of business.
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In order to minimize fuel fabrication costs associated
with manufacturing MOX, the use of metallic fuel has
been recently proposed using a fast burner reactor, taking
advantage of the wide range of conversion characteristics
achievable in a fast spectrum system [5–7], and several
reactor designs have been developed for weapons-grade
plutonium disposition [8]. However, the void coefficient
in sodium-cooled fast reactors is positive, which means
that reactivity increases if loss of the sodium coolant oc-
curs due to boiling or gas intrusion. Safety concerns are
exacerbated further by the fact that the delayed neutron
fraction in fast reactors is smaller than for thermal reac-
tors [9].

Traditional measures to maintain a negative void re-
activity coefficient are mostly based on the use of neu-
tron leakage enhancement techniques, such as the use of
neutron streaming channels [10], the installation of fixed
absorbers, increasing the operating reactivity margin, or
increasing the fuel enrichment [11]. However, these tech-
niques, and especially those relying on leakage enhance-
ment, incur an important economic penalty, because of
the reduction of available fissile material in the core.

Moreover, leakage enhancement techniques have a
strong spatial dependence on the location of the void:
a stream channel yielding a negative void coefficient if a
void occurs in the center of the core could be useless if a
void occurs in the core periphery. Weaver et al. [12, 13]
have shown that the local void reactivity worth is ∼$3–5
worth of positive reactivity due to the very small delayed
neutron fraction (∼2.5 times smaller than in a light wa-
ter reactor). Thus, the nuclear designer is compelled to
apply streaming fuel assemblies (or other neutron leak-
age enhancement techniques) extensively throughout the
core, with the inevitable consequent load-factor penal-
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ties.
An alternative approach to mitigate the positive void

coefficient has been proposed with the use of thorium-
based fuel. Thorium-based fuel is an especially attractive
option not only because of its beneficial impact on the
void coefficient but also because its use results in the pro-
duction of fewer transuranics (TRU) than for uranium-
based fuels [14, 15].
In the specific context of the UK’s plutonium disposi-

tion problem, a thorium-based fuel in a PRISM sodium-
cooled fast reactor has been suggested, because of the po-
tential performance benefits arising from increasing the
TRU enrichment in the fuel (replacing the uranium with
232Th) and with a reduced void coefficient in comparison
to uranium-fuelled cores [16, 17]. However, despite an
improvement in the void coefficient, it was not possible
to maintain a negative void reactivity coefficient through-
out the life of fuel, thus limiting the maximum attainable
burn-up. Moreover, the calculations in this study [16]
were based on the assumption of homogeneous voiding.
In this paper the use of zirconium hydride (Th-ZrH1.6)

blankets to improve the void reactivity coefficient is pro-
posed. The simple idea that lies behind the use of hydride
blankets is to take advantage of the shape of the curve
of the number of fission neutrons produced per absorp-
tion in the fuel, a parameter normally known as η, as
a function of neutron energy, and especially for 239Pu,
which is the main contributor to the positive void coeffi-
cient. Briefly, when a void occurs, the neutron spectrum
is hardened and η increases (see Fig. 1). However, with
the presence of hydride blankets at top and bottom (in a
so-called ‘parfait’ configuration), some mild moderation
may be produced when a void occurs, and depending
on the size of the blanket, this mild moderation could
compensate the general hardening of the spectrum, thus
resulting in a net negative void coefficient.
The use of zirconium hydride in uranium-fuelled fast

reactors has been proposed in the past with the aim of
reducing the positive void coefficient [18, 19]; however, a
poor breeding ratio was reported because of the decrease
in the value of η due to spectrum softening. In con-
trast, in the context of the use of thorium-based fuel and
plutonium disposition, where the destruction of 239Pu is
sought, this is a point in favor of the use of such blankets.
Moreover, the poor breeding of 239Pu is compensated by
the breeding of the isotope 233U, which is able to breed
effectively in hard and epithermal spectrums [20].

II. REFERENCE CORE

The core considered in this paper features the same
tight lattice radial dimensions as the PRISM sodium-
cooled fast reactor designed by General Electric Hitachi
Nuclear Energy (GEH) proposed for construction at Sel-
lafield in the UK as a means of dealing with a portion of
the UK’s civil plutonium stockpile [14].
The reference core unit cell consists of a 101.6 cm
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FIG. 1: The parameter η for 239Pu.

FIG. 2: Reference thorium-fuelled unit cell and ‘parfait’ core
using Th-(ZrH1.6) blankets.

long active fuel height which is composed entirely of
TRU(30%)-Th-Zr. For the ‘parfait’ version, the core unit
cell is divided into an axially-zoned configuration com-
posed of 3 axial sections: a central seed of length 91.6
cm composed by TRU(30%)-Th-Zr, a 5 cm long bottom
Th-ZrH1.6 blanket and a 5 cm top Th-ZrH1.6 blanket.
The comparison between the reference and the proposed
parfait design is shown in Fig. 2.

The fuel pellet diameter is 0.547 cm and the distance
between the centers of the rods (or pitch), arranged in
a hexagonal lattice, is 1.191 cm. The 0.06 cm thick
cladding is made of HT9 ferritic-martensitic steel. The
inlet and exit sodium density is assumed to be 0.8 g/cm3.
The fuel and blanket compositions at beginning of life
(BOL) are given in Table 1.
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TABLE I: Fuel and blanket compositions at beginning of life.

TRU(30%)-Th-Zr fuel

Component Proportion
238Pu 0.00741
239Pu 0.13737
240Pu 0.06783
241Pu 0.03954
242Pu 0.02115
237Np 0.01638
241Am 0.00150
242mAm 0.00003
243Am 0.00576
242Cm 0.00054
243Cm 0.00003
244Cm 0.00234
245Cm 0.00012
232Th 0.6

Zr 0.1

Total Pu 0.2733

Total TRU 0.3000

Th-ZrH1.6 blanket

Component Proportion
232Th 0.400

Zr 0.589

H 0.011

Total Pu (parfait core) 0.2460

Total TRU (parfait core) 0.2700

A. Computer codes

The preliminary feasibility study presented in this
work is based on a 3D unit-cell analysis. The computa-
tions are performed with the SCALE� code system using
TRITON for the driver code [21], the KENO-V Monte
Carlo code for neutron transport calculations [22] using
ENDF/B-V derived 238 energy group cross-sections, and
the ORIGEN-S code for burn-up calculations [23]. The
active fuel portion of the fuel pin is divided into sixty
axial depletion zones: 15 in the lower blanket, 30 in the
fissile area and 15 in the upper blanket. The core per-
formance is estimated from the single unit-cell burn-up
analysis.

III. RESULTS AND DISCUSSION

Figure 3 shows a comparison between the void coef-
ficient for the reference case and the parfait fuel design
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FIG. 3: The effect on the void coefficient as function of burn-
up time of using Th-(ZrH1.6) blankets.
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FIG. 4: The ratio of final (after 1000 full power days) to ini-
tial plutonium isotope quantities with and without Th-ZrH1.6

blankets.

using Th-ZrH1.6 blankets. It can be seen that a sub-
stantial reduction in the void coefficient of up to $0.6
is attainable. Moreover, this reduction in the void co-
efficient was obtained without significantly affecting the
plutonium consumption rates, as shown in Fig. 4.

A. n-batch fuelling

Although a substantial improvement in the void coef-
ficient resulted from the use of Th-ZrH1.6 blankets (see
Fig. 3), nevertheless the void coefficient becomes posi-
tive after 650 full power days or thereabouts. However,
an additional improvement can be achieved if the use of
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FIG. 5: Linear best fit of the void coefficient as a function of
burn-up.

Th-ZrH1.6 blankets is applied in combination with a n-
batch fuel management scheme.

First, it is apparent from Fig. 3 that the relationship
between void coefficient (α) and burn-up (B) is approxi-
mately linear. Therefore a linear best fit can be found as
(see Fig. 5):

α = α0 +AB (1)

yielding A = 0.0012 and α0 = −0.8648.

For the general case, and for preliminary calculations,
we can assume that all fuel operates at the same core-
average power density. Then, for an n-batch core at
steady state, at the end of a burn-up cycle the freshest
batch will have burn-up Bc, the next oldest batch 2Bc,
etc., and the oldest batch, which is ready for discharge,
has an accumulated burn-up nBc = Bd, where Bd is the
burn-up of the batch at discharge. The mean void coef-
ficient of the mixture (αs) can be computed merely by
averaging the batch void reactivities:

αs =
1

n

n∑
i=1

αi (2)

The end-of-cycle (EOC) void reactivity αi of batch i
given by Eq. (1) is then:

αi = α0 + iABc (3)

and the core EOC void reactivity αn for an n-batch core
given by Eqs. (2) and (3) is:

αn =
1

n

[
nα0 +

n(n+ 1)

2
ABc

]
= α0 +

(n+ 1)

2
ABc (4)
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FIG. 6: Variation over a cycle of the average core void coeffi-
cient using a 3-batch fuelling scheme.

where the standard result
n∑

i=1

i = n(n+1)
2 has been used.

Figure 6 shows the variation of the core void reactivity
over a cycle for a 3-batch fuelling scheme for the values
of A and α0 in the case considered. It is clear that αn is
negative not only at beginning of cycle (BOC) but also
at middle of cycle (MOC) and EOC.

IV. CONCLUSIONS

The use of zirconium hydride (Th-ZrH1.6) blankets in
a thorium-fuelled sodium-cooled reactor for void reactiv-
ity control with particular reference to UK’s plutonium
disposition problem has been proposed and subjected to
an initial assessment based on 3D unit-cell analysis. The
following conclusions can be drawn from this work:

• With the use of zirconium hydride (Th-ZrH1.6)
blankets in a parfait configuration, it is possible ob-
tain a core design with a negative void coefficient
at beginning and middle of life.

• Because of the small amount of hydride used, the
plutonium transmutation capabilities are not sig-
nificantly affected by the use of these blankets.

• In combination with a 3-batch fuelling scheme, a
core design with a negative void coefficient through-
out each cycle is attainable.

• Because the negative void coefficient is obtained at
the pin level, spatial dependence on the location
of any void is mitigated, in contrast to traditional
neutron leakage enhancement techniques.

• Preliminary results are encouraging and motivate
further research and development to explore the
potential of this concept.
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