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ABSTRACT 
The canine transmissible venereal tumour (CTVT) is a transmissible cancer that is spread between 
dogs by the allogeneic transfer of living cancer cells during coitus. CTVT affects dogs around the 
world and is the oldest and most divergent cancer lineage known in nature. CTVT first emerged as a 
cancer about 11,000 years ago from the somatic cells of an individual dog, and has subsequently 
acquired adaptations for cell transmission between hosts and for survival as an allogeneic graft. 
Furthermore, it has achieved a genome configuration which is compatible with long-term survival. 
Here, we discuss and speculate on the evolutionary processes and adaptions which underlie the 
success of this remarkable lineage. 
 
INTRODUCTION 
The canine transmissible venereal tumour (CTVT) (Figure 1A) is a cancer that first emerged as a 
tumour affecting an individual dog that lived about 11,000 years ago [1-3]. Rather than dying 
together with its original host, the cells of this cancer are still alive today, having been passaged 
between dogs by the transfer of living cancer cells during coitus (Figure 1B). The genome of CTVT, 
which has recently been sequenced, bears the imprint of the evolutionary history of this 
extraordinary cell lineage [1]. Furthermore, the genome variation captured in global CTVT 
populations has highlighted some of the unique adaptations that have driven this lineage to become 
the longest-living and most prolific cancer known in nature. This “cancer which survived” is a 
remarkable biological entity which illustrates that evolution can drive a transition from mammalian 
somatic cell to obligate colonial parasite.  
 
The canine transmissible venereal tumour: origins of a global parasite 
CTVT is a sexually transmitted cancer that affects dogs and usually manifests clinically with tumours 
associated with the external genitalia of both male and female animals (Figure 1A). Although CTVT 
first appeared in the veterinary literature at least two hundred years ago [4], its uniqueness as a 
transmissible cancer was not noted until much later [2,3,5-7]. CTVT is endemic in at least ninety 
countries worldwide across all inhabited continents and its distribution is linked to the presence of 
free-roaming dogs [8]. 
 
Although CTVT is found worldwide, the patterns of genetic identity detected in tumours located on 
different continents indicate a single clonal origin for the disease [2,3]. Analysis of a mutational 
process with clock-like features, as well as comparison of microsatellite variation between tumours 
and between tumours, dogs and wolves, suggest that the lineage first arose as a cancer several 
thousand years ago [1-3]. By searching for genetic variation present in the CTVT genome and 
comparing it with genotypes associated with specific traits in modern canids, a picture of the 
“founder dog” that first spawned CTVT has emerged [1-3]; it appears that this individual was more 
closely related to modern dogs than modern wolves and had relatively low levels of genomic 
heterozygosity. This animal was probably of medium or large size with an agouti or solid black coat. 
The XO karyotype and genotype found in CTVT tumours precludes conclusions about the founder 
animal’s gender [1,9]. 
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CTVT probably first arose from a somatic cell, possibly a tissue macrophage or a dendritic cell 
[10,11], of this “founder animal” via evolutionary processes that are common between all cancers. 
The life-history of a cancer is generally characterised by successive waves of clonal outgrowth, 
driven by the acquisition of positively selected “driver” mutations [12]. The molecular processes 
promoted by driver mutations can shed light on the biological pathways underlying cancer, such as 
proliferative autonomy, resistance to cell death and genomic instability [13]. CTVT shares a number 
of putative driver mutations with human cancers, some of which possibly occurred in the original 
CTVT tumour. These include a rearrangement involving MYC, homozygous deletion of the CDKN2A 
locus, homozygous loss of SETD2 and a rearrangement involving ERG that creates a potential in-
frame NEK1-ERG fusion gene [1,5]. There is, however, no evidence to suggest that the original CTVT 
or its host were particularly extraordinary; we cannot know if the original CTVT was metastatic in its 
founder dog, or even if the original CTVT was the cause of its founder’s death. Nevertheless, we 
presume that a series of highly improbable events next triggered CTVT to become a transmissible 
cancer (Table 1).  
 
Crossing the gaps 
Cancers frequently acquire features that cause cells to depart from a primary tumour and establish 
new tumours in distant sites of the body via a process of metastasis. CTVT, however, has acquired 
adaptations for the transmission of cancer cells to new hosts. The family Canidae may have been 
particularly at risk for the establishment of a sexually-transmitted cancer due to the existence of the 
long-lasting coital tie that is peculiar to this group. The coital tie may last for up to thirty minutes, 
and may lead to injuries to the genital mucosa; such conditions may thus provide an exceptional 
opportunity for the exchange of cancer cells between individuals [14]. Despite the potential for 
mating between dogs and wild canids, including wolves and coyotes, CTVT has not been reported 
within wild canid populations [8]. CTVT tumours are also occasionally found affecting non-genital 
regions, most commonly skin, nasal cavity, lymph node, eye and mouth [8]. As these sometimes 
occur without genital involvement [15-17], this suggests that there may be non-coital routes of CTVT 
transmission, possibly involving licking, sniffing or parturition. 
 
Transmissibility has presumably had consequences for CTVT genome evolution. Direct transmission 
of cancer cells may select for loss of cell adhesion; indeed, CTVT tumours are typically highly friable 
[18-20]. Furthermore, CTVT tumours are delicately encapsulated and bleed readily upon contact 
[20], presumably optimised for the release of CTVT cells during the friction involved in coitus. A 
genetic imprint of the CTVT transmission cycle was identified with the discovery that approximately 
forty percent of mutations in CTVT were caused by exposure to ultraviolet (UV) light from the sun 
[1]. Although UV mutagenesis would be expected to impact only the surface layer of cells of an 
ulcerated externally-facing tumour, it is these very cells, indelibly marked with a UV imprint, which 
have sustained the lineage by transfer to new hosts. 
 
The requirement for existence within an external compartment with ready access to new hosts may 
be a barrier for the emergence of naturally transmissible cancers. However, a variety of routes of 
cancer cell transmission could be envisaged, and depend on the behaviour and biology of the host 
species. The Tasmanian devil facial tumour disease, the only other known naturally occurring 
transmissible cancer, is transmitted by biting [21,22], exploiting the facial biting behaviour that this 
species engages in during aggressive interactions. Furthermore, a transmissible cancer in a 
laboratory population of hamsters was transmissible by cannibalism and mosquitos [23-25].  Cancer 
cells have also rarely been reported to have spread between two humans within a variety of 
contexts, including surgical accident, organ transplant, in utero and during experimental treatments 
[26-31].  
 



Once deposited within the breached mucosa of another animal, CTVT must next overcome perhaps 
the most potent obstacle facing transmissible cancers: the immune system. 
 
Evading the barriers 
Although all cancers, including those that remain within a single host, may have acquired 
adaptations to escape immune destruction, transmissible cancers are able to escape the immune 
system as an allogeneic graft. The highly potent immune response to allogeneic grafts is primarily 
mediated by direct allorecognition of foreign major histocompatibility complex (MHC) molecules by 
the graft recipient’s T cells [32]. Although MHC molecules are normally expressed by all nucleated 
cells, both CTVT and DFTD cells have lost expression of MHC molecules, presumably via a process of 
immunoselection [2,33-36]. Similarly, many human cancers modulate MHC molecule expression as a 
mechanism to escape immune detection [37]. 
 
The mammalian immune system has specific mechanisms to detect cells which are not expressing 
MHC molecules. Natural killer (NK) cells are specialised lymphocytes which become cytotoxic when 
activated by “missing self”, i.e. absent MHC. The mechanisms whereby transmissible cancers escape 
NK cell killing remain unclear [38]. The recruitment of an immunosuppressive tumour 
microenvironment leading to immune tolerance or anergy may be an important feature in 
transmissible cancer immune escape [33,39-41]. This suggestion is supported by the observation 
that CTVT rarely metastasises, thus departing from the established tumour microenvironment, 
except in immunosuppressed hosts and newborn puppies [42,43]. 
 
Early observations of CTVT revealed that experimentally transplanted tumours frequently undergo 
immune-mediated spontaneous regression two to six months after transplantation [44-46]. This, 
however, contrasts with naturally occurring CTVT, where spontaneous regression has not been 
consistently reported [14,47,48]. The immune response to CTVT may be influenced by the site of 
tumour transplantation (experimentally transplanted CTVT tumours are usually injected 
subcutaneously) and the concurrent presence of injuries and inflammation. It is also possible that 
there is variation in susceptibility to CTVT within the dog population that influences clinical 
progression and disease course [49]. This is supported by the observation that CTVT is usually found 
at low prevalence within affected dog populations [8]. 
 
Thousands of years of passaging between allogeneic hosts has presumably exerted powerful 
immunoselective pressures on CTVT. Signatures of this process may be present in the CTVT genome, 
possibly acting to prevent mutation of cell surface antigens. However, CTVT has possibly faced yet 
another selective challenge: maintaining its genome and cellular integrity over thousands of years 
despite the irreversible accumulation of mutations. 
 
Surviving the millennia 
Genetic variation, caused by the accumulation of somatic mutations, is the raw material upon which 
natural selection operates to drive the outgrowth of cancer [12]. Thus, genome instability and loss of 
DNA repair pathways have been described as “enabling characteristics” of cancer [13], and most 
human cancers carry a few thousand point mutations as well as structural variants and aneuploidy 
[12,50]. Most of these mutations are considered to be selectively neutral, captured in the cancerous 
clone by hitchhiking together with a small number of positively selected driver mutations. 
Interestingly, negative selection, operating to curb the accumulation of mutations that decrease 
fitness, has not been robustly detected in cancer [51-53].  
 
The exceptionally long lifespan of CTVT as a cancer raises the possibility that the accumulation of 
mutations has become a burden rather than an advantage in this lineage. Indeed, the CTVT genome 
has acquired approximately 1.9 million somatic substitution mutations, as well as thousands of 



structural rearrangements, copy number changes and retrotransposon insertions [1]. Interestingly, 
however, despite the enormous number of mutations and marked aneuploidy, the genomic 
rearrangements and microsatellite alleles observed in CTVT tumours collected from different 
continents are remarkably similar [1-3,7,9,54]. It is possible that CTVT has maintained or activated 
DNA repair and telomere stabilisation mechanisms that safeguard its genome against further 
mutation and instability. Additionally, given the large mutation burden already carried by CTVT, its 
genome may be particularly sensitive to further mutation such that negative selection acts to 
maintain stability. It is interesting that the oldest human cancer lineage, the HeLa cell line, which has 
continued to survive by passaging in laboratory cell culture for more than sixty years, also appears to 
have a relatively stable genome in terms of point mutation [55]. 
 
The occasional capture of mitochondrial DNA from its hosts appears to be one mechanism acquired 
by CTVT to support long-term survival [56] (Figure 2). The mitochondrial genome is gene rich, has a 
particularly high mutation rate [52], and encodes proteins involved in energy metabolism. The 
observation that mitochondrial DNA in CTVT is not clonal, but rather appears to have been acquired 
by periodic horizontal transfer from dogs, suggests that replacement of CTVT mitochondrial DNA, 
which presumably was carrying large numbers of possibly deleterious mutations, provided a 
selective advantage to the lineage (although we cannot exclude the possibility that CTVT acquired 
host mitochondrial DNA via purely neutral processes) [56]. Shuttling of mitochondria between cells 
may be more common than previously appreciated, as mitochondrial DNA has been observed to 
exchange between human cells in vitro as well as between normal and cancer mouse cells in vivo 
[57,58]. Although horizontal DNA transfer is in general a rare phenomenon in the animal kingdom, it 
has been occasionally described [59]. In one interesting example, horizontal DNA transfer was 
observed in ancient asexual bdelloid rotifers, and it was suggested that capture of environmental 
DNA may compensate for absence of sexual recombination and loss of gene function due to 
mutation [60,61].  
 
Influencing each other 
Parasites sometimes directly influence their hosts’ behaviour or physiology so as to optimise 
transmission to new hosts [62]. Given that CTVT has co-existed with its host for millennia, one could 
speculate that it may have acquired mechanisms to manipulate its hosts’ sexual receptiveness, 
oestrus cycle timing or smell preferences to enhance its chances of transmission. Interestingly, it 
appears that oestrogen receptor expression differs between the vaginal epithelium of CTVT-affected 
females and control females during certain stages of the oestrus cycle, suggesting that CTVT may 
modulate the local tissue environment [63]. Furthermore, there is evidence that CTVT may stimulate 
erythropoietin production by its host, or possibly directly produce erythropoietin via a 
paraneoplastic process [14]; a consequent production of red blood cells may compensate for blood 
loss via tumour bleeding, thus protecting its host from anaemia. Given that they carry a conspecific 
genome, transmissible cancers may be uniquely placed to directly manipulate the biology of their 
hosts. 
 
CONCLUSION 
Transmissible cancers are very rare in nature; indeed, naturally occurring transmissible cancers have 
been described only twice. Given that cancer itself is a common condition, both in humans and 
animals, it is clear that there is a very low probability for a cancer to develop into a transmissible 
form. In order to become transmissible, a cancer must acquire adaptations both to support the 
physical transmission of living cancer cells between hosts, and to escape the immune system within 
an allogeneic host. Once transmissible, a cancer must acquire a genome configuration that is 
compatible with long-term survival. The genome and biology of CTVT have started to illuminate how 
this particular cancer has become transmissible, and future research may reveal fundamental 
features that drive cancers to become long-lived parasites. 
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FIGURE LEGENDS 
 
Table 1. The cancer which survived. 
Transmissible cancers must acquire adaptations that allow them to survive as long-lived cell 
lineages. Summary of barriers to the emergence of transmissible cancers, and speculation on 
possible mechanisms acquired by CTVT to overcome these. 
 

Adaptations of transmissible cancers Speculation on possible mechanisms used by CTVT 

Transmission between hosts Tumour friability and ulceration, growth in external 
compartment, transmission during extended and often 
injurious canine coitus 

Immune evasion Down-regulation of MHC molecules from the cell surface, 
NK cell avoidance, recruitment of immunosuppressive 
microenvironment, inflammation 

Maintenance of genome integrity Maintenance or activation of DNA repair processes, 
telomere stabilisation, negative selection, mitochondrial 
genome capture from hosts  

 
 
 
Figure 1. Canine transmissible venereal tumour (CTVT). 
(A) CTVT causes tumours most often associated with the external genitalia of both male (left) and 
female (right) dogs.  
(B) CTVT first emerged from the somatic cells of the “founder dog” about 11,000 years ago. Since 
then, it has been transmitted between individual dogs by the allogeneic transfer of living cancer 
cells. 
 
Figure 2. Horizontal transfer of mitochondria. 
The finding that CTVT mitochondrial genomes derived from tumours in different dogs do not share a 
clonal origin led to the proposal that CTVT cells periodically capture mitochondria from their hosts 
[56]. CTVT cells (grey) are shown acquiring mitochondrial genomes from host cells (red and blue). 
Over time, the original CTVT mitochondrial genome (black), which presumably carried a large 
mutation burden, is replaced by the acquired host mitochondrial genomes (red and blue) via a 
process of genetic drift or positive selection.  
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