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On the use of stimulated thermocapillary currents and virtual walls as
computational tools for natural convection simulation in enclosed spaces
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A new, alternative approach is proposed for natural convection simulation by means of stimulated
thermocapillary currents created by virtual walls. In contrast to the well-known effective thermal
conductivity model, in the proposed approach it is the mass motion due to the convective currents
which is intended to be simulated and the heat flux is a consequence of such flows. As a result,
no a priori knowledge of the Nusselt number is needed and thus the approach is more suitable
for complex geometries. Utilizing a simplified physical model and the definition of hydraulic
diameter, a generalized expression for enclosed geometries is derived which offers thermal engineers
a powerful analysis tool that can use virtual walls with an associated fictitious Marangoni stress for
pre-screening and estimation of Nusselt numbers.
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I. INTRODUCTION

Physical enclosures are frequently encountered in prac-
tice, and heat transfer through them is of practical in-
terest [1–6]. However, heat transfer in enclosed spaces
is complicated by the fact that the fluid in the enclo-
sure, in general, does not remain stationary. For ex-
ample, in a vertical enclosure, the fluid adjacent to the
hotter surface rises and that adjacent to the cooler one
falls, establishing rotatory motion (natural convection)
within the enclosure that enhances heat transfer. Over
the years, several methods have been proposed for the
simulation of natural convection, and among them the
most popular extension is the use of an effective diffusiv-
ity term (effective thermal conductivity) to convert the
effects of convection into pure conduction [7, 8]. However,
although such an approach offers a viable representation
of heat transfer by natural currents, it has an important
associated disadvantage. It is therefore worthwhile to
briefly review the traditional effective diffusivity method
to identify this weakness and then propose an alternative
approach which can be used to overcome it.

A. The effective thermal conductivity model

When the Nusselt number Nu is known, the rate of
heat transfer Q̇ through an enclosure can be determined
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from [9]:

Q̇ = hAs(T1 − T2) = κNuAs
T1 − T2

L
(1)

where T1 − T2 is the temperature difference over a dis-
tance L, As is the area, and the heat transfer coefficient
h is related to the thermal conductivity κ through the
definition of the Nusselt number:

Nu =
hL

κ
(2)

The rate of steady heat conduction Q̇cond across a layer
of thickness Lc, area As, and thermal conductivity κ is:

Q̇cond = κAs
T1 − T2

Lc
(3)

where T1 and T2 are the temperatures on the two sides
of the layer.

By comparing Eqs. (1) and (3) it can be seen that the
convective heat transfer in an enclosure is analogous to
heat conduction across the fluid layer in the enclosure,
provided that the thermal conductivity κ is replaced by
κNu [9]. In other words, the effective thermal conduc-
tivity model says: the fluid in an enclosure behaves like a
fluid the thermal conductivity of which is κNu as a result
of convection currents. That is:

κeff = κ ·Nu (4)

However, as is readily apparent, this effective conduc-
tivity model has a serious weakness which limits its ap-
plicability in certain circumstances, namely: it assumes
a priori knowledge of the Nusselt number.

This weakness is somewhat paradoxical, because, in
many instances, it is precisely the value of the Nusselt
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number that is sought. So, for example, in attempting to
apply the effective thermal conductivity model in an ap-
plication with complex or unusual geometry, say, in the
field of microelectronics, where it might be very difficult
to find in handbooks or the available literature a stan-
dard Nusselt number correlation for the specific design
under consideration, the thermal engineer will need to
exercise their judgement in deciding on the most appro-
priate correlation in order to define the effective thermal
conductivity in Eq. (4).

In order to address this problem, in this paper, an
alternative method is proposed that makes use of artifi-
cially induced thermocapillary flow associated with vir-
tual walls which will promote a mass flow similar to that
produced by gravity. The proposed method could be
a powerful pre-screening tool for thermal engineers by
which to obtain preliminary information about the Nus-
selt number correlation, and thus to define an effective
thermal conductivity. In the next section, we discuss
briefly the fundamentals of the proposed approach.

B. Thermocapillary convection as a simulated
induced flow

Marangoni convection occurs when the surface ten-
sion of an interface depends on the concentration of a
species or on the temperature distribution. In the case
of temperature dependence, the Marangoni effect is also
called thermocapillary convection. The Marangoni effect
is of primary importance in the fields of welding, crys-
tal growth and electron beam melting of metals. For
this study it is sufficient to know that as a result of this
phenomenon a shear stress is developed in the interface
which is caused by the variation of surface tension. The
interested reader is referred to reference [10] for further
information about this phenomenon and supporting the-
ory.

Within the framework of this kind of convection, a
shear stress τσ, which is applied at the wall, is developed.
Its value is given by:

τσ = ∇Tσ · ∇sT (5)

where ∇Tσ = dσ
dT is the surface tension gradient with

respect to temperature, and ∇sT is the surface temper-
ature gradient.

Two aspects of the relationship in Eq. (5) suggest
this as a potential application for one-dimensional/two-
dimensional natural convection modeling: first, this
shear stress is a one-dimensional effect; and second, the
effect is driven by a temperature gradient.

II. MODEL DESCRIPTION

Although, in order to simulate a fluid flow (in this case
a thermocapillary flow) in full detail, it is necessary to
describe the associated physics in mathematical terms
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FIG. 1: Control volume used for calculations

through conversation principles, with the use of nonlinear
partial or ordinary differential equations to express these
principles [11, 12], for preliminary assessment purposes a
simple model based on momentum balance is preferable
and may be sufficient.

Let us consider a control volume, as depicted in Fig. 1,
in order to establish a simplified mathematical model
that will allow us to find a suitable expression for the
induction of thermocapillary currents in a manner sim-
ilar to gravitational currents, at least from the point of
view of mass transport.

A. Derivation

First, to analyse flow through the control volume, we
need to establish the forces acting on the control volume.
The pressure force pushing the liquid through the tube
due to the buoyancy forces is given by the change in
pressure multiplied by the area:

Fg = ρoβg(∆T ) ·A · L (6)

where ρo is the average density of fluid, β is the volumet-
ric coefficient of thermal expansion, g is the acceleration
due to gravity, ∆T is the increase in temperature over
the length of the control volume, A is the cross-sectional
area, i.e., A = πR2, and L is the length of the control
volume.
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We can define a (fictitious) Marangoni stress associated
with the walls as:

Fσ = τσ · Pw · L (7)

where τσ is the Marangoni stress defined previously in
Eq. (5), Pw is the wetted perimeter, i.e., Pw = 2πR, and
L is again the length of the control volume.

Thus, if we want our induced artificial thermocapillary
flow to “replace” the buoyancy-induced flow, this can be
accomplished by arranging that:

Fσ = Fg (8)

or, taking into account Eqs. (6) and (7):

τσ = ρoβg∆T
A

Pw
(9)

A hydraulic diameter Dh may be defined as [9]:

Dh =
4A

Pw
(10)

thus enabling Eq. (9) to be rewritten more compactly as:

τσ = ρoβg∆T
Dh

4
(11)

Eq. (11) thus allows us to calculate the equivalent fic-
titious Marangoni stress for any enclosed geometry by
means of the calculation of its hydraulic diameter.

However, the most relevant parameter to be calculated
for computational simulations is not τσ but rather the
surface tension gradient ∇Tσ associated with the walls,
which in computational fluid dynamics (CFD) codes is in-
troduced as a boundary condition for walls. This surface
tension gradient can be readily calculated by combining
Eqs. (5) and (11), yielding:

∇Tσ = ρoβg
Dh

4
·
[

∆T

∇sT

]
(12)

If it is reasonable to express the temperature difference
in the fluid ∆T using an average thermal gradient ∇T as

∆T ≈ c1∇TL (13)

where L is the characteristic length of the system, and
c1 is a scaling constant to take into account the error
introduced by the use of an average thermal gradient,
then Eq. (12) can be rewritten as:

∇Tσ ≈ c1ρoβgL
Dh

4
·
[
∇T
∇sT

]
(14)

Thus, Eq. (14) allows us to define a fictitious surface
tension gradient associated with structures which will in-
duce a convective flux similar to a gravitational flux if we
know the relationship between the fluid thermal gradient
and the surface thermal gradient ∇T/∇sT . All the other

parameters in Eq. (14) are either physical or geometrical
parameters that are easily determined.

It is also readily apparent that, for computational ap-
plications, there is no impediment to the thermal en-
gineer defining virtual walls anywhere in the system.
Such walls would only have the function of introducing
a Marangoni flux, but they can be defined either with
a thermal conductivity equal to that of the surrounding
fluid, or, even better, with “shadow conditions” which re-
sult in the surface temperature in the virtual wall being
identically equal to the immediately surrounding fluid; in
other words, ∇T∇sT

= 1, and Eq. (14) then reduces to:

∇Tσ ≈ c1ρoβgL
Dh

4
(15)

This new proposed concept of virtual walls with an as-
sociated Marangoni stress offers a powerful tool for the
thermal engineer to use in the preliminary calculation of
the Nusselt number for complex systems where the Nus-
selt correlation is a priori unknown for natural convec-
tion computational simulations. These virtual walls can
be defined anywhere in the system with a suitably cal-
culated associated Marangoni stress. Fig. 2 shows some
schematic examples of the use of such virtual walls for the
induction of thermocapillary flows emulating the gravi-
tational flow patterns.

III. RESULTS AND DISCUSSION

To obtain some idea of the sorts of results predicted
by the use of virtual walls with associated Marangoni
stresses, some CFD calculations have been performed.
The simulations were performed with the FLUENT-
6.3r CFD code. The values of physical properties and
operating conditions (e.g., the gravitational accelera-
tion) were adjusted to yield the desired Rayleigh num-
ber Ra. For the cases presented here, these values
were: ρo = 1000 kg/m

3
, cp = 1.1030 × 104 J/kgK,

κ = 15.309 W/mK, η = 10−3 kg/ms, β = 10−5 K−1,

g = 6.96 × 10−5 m/s
2
, with the default domain being 1

m × 1 m × 1 m in size.
The cases were treated with a pressure-based, segre-

gated, steady solver with Green-Gauss cell-based gra-
dient treatment. The Semi-Implicit Method for Pres-
sure Linked Equations (SIMPLE) algorithm was selected
for the pressure-velocity coupling with relaxation factors
of 0.3 for pressure, 0.7 for momentum and 1 for en-
ergy as the defaults. The pressure was discretized with
a standard Rhie-Chow discretisation scheme [13] and
Quadratic Upstream Interpolation for Convective Kine-
matics (QUICK) was chosen as the advection scheme for
momentum and energy discretization. The convergence
criteria were set for absolute residuals below 1 × 10−3

for all the parameters except energy. ANSYS (2012) rec-
ommends a convergence criterion for energy of 10−6 [14].
The fictitious Marangoni stress associated with the struc-
ture was calculated using Eq. (12) with the constant c1
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FIG. 2: The use of virtual walls with associated Marangoni
stresses. Through the use of virtual walls, Marangoni induced
fluxes can be introduced easily. These can be used for the pre-
screening of systems in order to obtain a preliminary Nusselt
number correlation.

being set initially and then maintained constant for the
rest of the calculation for the specified geometry.

Figs. 3, 4 and 5 show the Nusselt number for some
generic selected geometries as a function of the Rayleigh
number estimated through the use of induced Marangoni
fluxes in comparison with the corresponding empirical
correlations from experimental data available in the lit-
erature [9]. The level of agreement between these correla-
tions and the results given by the approach using induced
Marangoni fluxes is apparent and encouraging.

Finally, as a more realistic example, we consider the
case of a simple square 10 cm × 10 cm box, as depicted
in Fig. 6, but we assume that, for this specific design,
there is an arbitrary obstruction, say, a square rhombus,
located in the top-right quadrant, as shown. There would
be no Nusselt number correlation available in the litera-
ture for this specific case, so the calculation of an effective
thermal conductivity is not straightforward. However,
the thermal engineer could use a virtual wall with an as-
sociated calculated Marangoni stress in order to obtain
a preliminary relationship for the Nusselt number.

Fig. 7 shows the resulting relationships between Nus-
selt number and Rayleigh number from a natural convec-
tion simulation and using a virtual wall for the geometry
depicted in Fig. 6. The Nusselt number relationship for

FIG. 3: Comparison between the semi-empirical correlation
for the average Nusselt number for natural convection for
a vertical plate and that found using fictitious Marangoni
fluxes.
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FIG. 4: Comparison between the semi-empirical correlation
for the average Nusselt number for natural convection for a
horizontal plate with a hot plate upper surface (or a cold
plate lower surface) and that found using fictitious Marangoni
fluxes.

the simple square box (without the obstruction) is also
shown for comparison. The latter will be the ‘best’ cor-
relation available to the thermal engineer from the liter-
ature.

For this example, the resulting best fits for the Nus-
selt number correlations yield the following expressions:
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FIG. 5: Comparison between the semi-empirical correlation
for the average Nusselt number for natural convection for
a horizontal plate with a hot plate lower surface (or a cold
plate upper surface) and that found using fictitious Marangoni
fluxes.
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FIG. 6: A square box with a arbitrary obstruction. The pur-
pose of this simulation is to see the Nusselt number obtained
through the use of virtual walls in a system where there is no
Nusselt number correlation available in the literature.

Using a virtual wall:

Nu = 0.27 [Ra + 6800]
0.238

(16)

For natural convection:

Nu = 0.27 [Ra + 2800]
0.243

(17)

The Nusselt number correlation for a square enclosure
without the rhombus obstruction available in the litera-
ture is:

Nu = 0.27 [Ra]
0.25

(18)

As is apparent from Fig. 7, the relationship found us-
ing the virtual wall approach slightly over-predicts the
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FIG. 7: The Nusselt number from the simulation of the sys-
tem using natural convection and using an induced thermo-
capillary flux..

Nusselt number at low Rayleigh numbers and otherwise
somewhat under-predicts the Nusselt number for natural
convection, but overall it provides a much better esti-
mate of the Nusselt number than that given by square
enclosure correlation from the literature.

IV. SUMMARY AND CONCLUSIONS

In this paper an alternative approach for natural con-
vection modeling in enclosed spaces has been proposed.
This makes use of a stimulated thermocapillary flux asso-
ciated with a virtual wall. The proposed approach could
offer a powerful pre-screening tool for thermal design in
complex geometries where a suitable Nusselt number cor-
relation is not available from the literature, and thus it
is not possible to obtain a direct definition of an effec-
tive thermal conductivity term. Additional research and
development are required to explore the potential of this
new concept further.

NOMENCLATURE

A = cross-sectional area
cp = specific heat capacity at constant pressure
c1 = constant
Dh = hydraulic diameter
F = force
g = acceleration due to gravity
h = heat transfer coefficient
L = characteristic length
Nu = Nusselt number
Pw = wetted perimeter
Q̇ = Heat transfer rate
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R = radius
Ra = Rayleigh number
T = temperature
aaa
Greek symbols
β = thermal expansion coefficient
ρo = density
κ = thermal conductivity
σ = surface tension
τ = Marangoni stress
η = dynamic viscosity
∇ = gradient
aaa
Subscripts
cond = conduction

g = gravity
eff = effective value
s = surface
σ = surface tension
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